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ABSTRACT

This paper presents a method to derive efficient frequency
estimators from the Discrete Fourier Transform (DFT) of the
signal. These estimators are very similar to the phase-based
Discrete Fourier Spectrum (DFS) interpolators but have the
advantage to allow any type of analysis window (and espe-
cially non-rectangular windows). As a consequence, it leads
to better estimations in the case of a complex tone (cisoid)
perturbed by other cisoids. Overall, our best estimator leads
to results similar to those of phase vocoder and reassignment
estimators but at a lower complexity, since it is based on a
single Fast Fourier Transform (FFT) computation.

1. INTRODUCTION

Sinusoidal modeling [1] is a very popular and efficient rep-
resentation for speech and music signals. It has led to nu-
merous applications such as audio coding, analysis, synthe-
sis and sound transformation. However, to be eligible for
such applications, these models require accurate parameter
estimations and, in particular, accurate frequency estimation.

Many frequency estimators use the Short Time Fourier
Transform (STFT) as a starting point. Such estimators can be
classified into three main categories: namely, time methods
where the time of the STFT varies as in the phase vocoder [2]
and the derivative method [1], window methods where the
window varies as in the spectral reassignment [3], and fre-
quency methods where the frequency varies as in the ampli-
tude spectrum interpolation [4] or the phase-based DFS in-
terpolators [5, 6]. A comparison of the state-of-the-art fre-
quency methods can be found in [7, 8]. The latter meth-
ods have the advantage to require only one FFT computa-
tion since they only use adjacent frequency bins of this single
FFT.

This article presents a new frequency estimator that is
rather similar to the phase-based DFS interpolator. However,
the method used to derive the frequency estimator is original
and presents the advantage to allow the use of windowing,
which was not the case in [5]. Similarly to previous work, it
is supposed in this paper that the studied signal is a complex
sinusoid with quasi-constant amplitude and frequency, in the
neighborhood of a time ¢. Such a signal can be written as:

x(t+1)2 AP T4w(r+ 1) (1.1)
where A £ Ae/? is the complex amplitude of the sinusoid, (A
is the real amplitude and o the constant phase), and f is the
pulsation, both for the time ¢. 7 is the local time in the neigh-
borhood of the time #. This sinusoid can be perturbed by a
complex noise w, which is supposed to be zero-mean white
Gaussian. The asymptotic properties of the estimator pre-
sented in section 4 also holds under weaker noise properties
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described in [9, 6].
The analysis is based on the Short Time Fourier Trans-
form (STFT) of the partial, defined as:

N/2

X(tawk;h)é Z

n=—N/2

x(Tn+t) h(rn)exp(_j ank) (12)

where N is the size in samples of the window support h, F
is the sampling frequency, k is the frequency bin, 7, = n/F
is the time in seconds of the corresponding sample number
(n is an integer). Finally, w; = Z’Z‘F is the pulsation of the
bin k. Here N is supposed to be odd. This STFT corresponds
to the centered form of the FT, which is sometimes called
zero-phased FT, because the phase spectrum response of a
symmetric window % has a phase equal to zero in the neigh-
borhood of the frequency zero. This definition is preferred
here, because it will simplify the developments presented in
this article. If N is even, a centered form of the STFT is also
possible, but will be slightly different as the sum will not be
on integer values anymore. The STFT of the signal (1.1) can
be put under the form:

X(t,00:h) = AT (0 — Bsh) + W(t, k) (1.3)
where ['(w;h) is the discrete time FT, using the defini-
tion (1.2), of the window A for the pulsation w, and W is
the STFT of the noise.

In practice, the definition of the FT used is often the
linear-phased FT (i.e. the sum in the FT is done from O to
N — 1), as for many implementations of the FFT for exam-
ple. A practical way to zero-phase the FFT is to perform a
(N —1)/2 sample circular permutation of the windowed sig-
nal before computing the FFT [1]. In the remainder of this
article, all the FT will be zero-phase.

2. PROPOSED METHOD

The proposed method combines Fourier Transforms (FT)
computed for two different frequencies @, and @,. The win-
dow £ is supposed to be symmetric, real and positive. In this
part, the noise is not considered. Let’s introduce the follow-
ing FT ratio:

2 X(t,013h) — X(1,an;h)
%_X(t o1;h) +X(t, 0 h) @D
(o = Bsh) —T(@n— B;h) 22)
- D(o; — B:h) +T(a, — B:h) '

Because of its particularity, one can show that this ratio
can be understood as a ratio of two FT differing in windows.
Let Aw & 259 @, £ 252 and § £ @, — B, then J can




be written as:

(k)
(8 he)

(2.3)

where hg and A, are new analysis windows defined by:

hy(7) £sin(AwT)A(t),  he(T) 2cos(AwT)h(T)
If i is even, then &y is odd and /4, is even.

Remark that 7 is necessarily real. In fact, as k. is sym-
metric, I'(@;h.) is purely real, and as &, is anti-symmetric,
I'(w; hy) is purely imaginary. It will now be shown that an
estimator can be defined from (2.3) and the parity hypothesis
on h.

Taylor expansions around the frequency zero will be
done. The frequency derivative property of the FT states that:

o'T i ;
=—(o;h) = (—j)'T(w;7".h)

EPY 2.4)

Let ['(h) = T'(0;h). As I(t'.hy) = 0 if i is even, and
[(t'.h.) = 0 if i is odd, the upper part of (2.3) will be ex-
panded to an order 1 and the lower part to an order 0. ¢; and
¢y in [0, 8] exist such that:

T(t.h)8 —T(c1371s) & 05
T(he) —T(c2;72he) & '

[(t.hs) (1—P)

%:

= 0 (2.6)
L(he) (1-0)
where P and Q are the Lagrange remainders,
P2 T(c1373 1) 82 02 [(cy;22he) 82 27

[(th) 6 C(he) 2

The values of I'(7'.hy) and I'(t".h.) depend only on the
analysis window / and are known in advance. So if the cor-
rective terms P and Q are small compared to 1 (cf section 3),
an estimation of the frequency can be obtained as:

U(he)
I'(t.hy)

B =aw,—R(H2) (2.8)

In practice, 7 is never exactly real, this is why the real part
(R()) of A is taken. When using an FFT, formula (2.8) can
be applied to the two most energetic bins of the cisoid: the
maximum DFS bin k and the highest DFS bin between &+ 1
and k — 1. In this case, A® is the half frequency resolution of
the FFT and @), is the middle of the two bins selected.

Algorithm:

1. Initialization: compute I'(7.h;) and I'(h,) for the window
h used in the FFT.

2. Compute the zero-phased FFTs for a time ¢

3. Select the maximum bin k = argmax; |X (¢, ®;; h)| and the
second maximum k' = arg maX;e (k4 1,4-1} [ X (1, @33 1)

4. Compute the ratio J# = Xl k) =X 0,0, 38)

’ p - X(t,wk;11)+X(t,a)k/ 3h)
5. Compute the estimated frequency:

B =y — 9{(%) Flzgrh;lZ)’ where @), = ((Dk + a)k/)/2

| | Han | Ham | Rec | Bla | Gau |

by 1.5e-4 | 2.1e-2 | 3.9e-6 | 5.4e-3 | 2.4e-2

by 1.3e-1 | 1.4e-1 | 2.5e-1 | 1.0e-1 | 1.3e-1
Error

bound(Hz) 2.6e-3 | 3.8e-1 | 8.3e-5 | 9.4e-2 | 4.3e-1

Table 1: Bound values for different analysis windows.

3. ERROR BOUND

In this section the performances of the algorithm without
noise are studied. Using equation (2.6) and the definition
of the estimator (2.8), the error between 8 and the estimation

B can be rewritten as:

(Q-P)
(1-0)

Since B is inside [®;, a%], | 8] is lower than the half frequency
resolution of the DFT, R = nF/N.

We will first try to bound P and Q. The FT of a real
symmetric and positive window reaches its maximum in @ =
0 and is decreasing for @ € [0;R]. Therefore P and Q are
positive, and tight bounds on P and Q are:

B-B= 5 3.1)

['(73.hy) R?
~ T(t.hs) 6 -

I(7%.h.) R?
C(he) 2

(3.2)

If no additional hypotheses on the window & are made,
|P| < w%/24 and |Q| < ©?/8. It means that Q could be equal
to 1. Let’s now suppose that & verifies the following property:

h(n)>2 Y. h(n) (3.3)
In|<N/2 N/4<|n[<N/2
For all the usual windows, the energy of the center is supe-
rior to the energy of the edges. Consequently all the usual
windows verify (3.3). With this hypothesis, the bound on Q
becomes: |Q| < 57%/64 < 1, which proves that 1/(1 — Q) is
O(1) . As Pisalso O(1), and & is O(N~"), then, from (3.1),
the estimate error 8 — 3 is O(N~!), for all the windows veri-
fying property (3.3). For some windows, the corrective terms
P and Q will be of the same order, leading to smaller order
of error: it has been shown that for the rectangular window,
the estimator is O(N~2) [6].

In order to find the bound on P — Q, the Lagrange remain-
ders P and Q will be rewritten as :

iF(TZH_l ~hs) 521’

P:;(_ I(t.hy) (2i+1)! (3.4
S lr( Zi-hc) 52i
in;(—m ﬁ'(zi)z (3.5)

ILet 12 be an integer variable which tends to infinity, let g(r) be a positive
function and f(n) any function. Then f = O(g) means that |f| < A.g for
some constant A and all values of n. [10]
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A bound on P — Q is therefore the infinite sum: cies @ and @, respectively.

5 -~ 5 In [11], it is proved that if w is white Gaussian, then
P—Q| < Z R |F(T k) (2n+ I)F(T '~h6)| W (t,w;h) is O(y/NIn(N)) almost surely. This property is
T E Qi) T(th) I'(he) still true for more general assumptions on the noise, which
(3.6)  aredescribed in [11, 9]. If the function used to construct the

Alembert’s rule shows that this bound is a convergent series,
and as R is usually small, this series converges fast. The first
terms give a good approximation of this bound.

Let’s note | and b, the boundson P— Q (3.6) and Q (3.2)
respectively. Values of these bounds for different typical win-
dows are given in table 1. As b, < 1, one can conclude that
a bound on the error is:

~ b 1
B-BI< 75

9] 3.7

Theorem 1 If the window h is real, symmetric, positive,
and verifies the property (3.3), then the error of the estima-
tor (2.8) without considering the noise influence is at least
O(N~Y) and is bounded by lf—‘th, where by and b, are the

bounds in equations (3.6) and (3.2) respectively, and R is the
half Fourier resolution.

In the last line of table 1, the bounds are given in Hz
for F = 16000 and N = 512, and for various analysis win-
dows. The small values of the bound b1 show that the two
error terms P and O compensate each other, especially for
the rectangular window. This is why the first order Taylor
expansion of equation (2.5), which seems a bit rough at first,
can nevertheless give good results, depending on the window
used. It can be noted that superior order Taylor expansions
of (2.3) can lead to more precise estimators, but at the cost
of an increase in complexity. In this case the frequency esti-
mation is now one of the roots of a polynomial which has the
same order as the expansion order.

4. STATISTICAL PROPERTIES OF THE
ESTIMATOR

The noise influence on the performance of the estimator is
discussed in this section. The analysis will be very similar to
the one given in [6], as they consider almost the same esti-
mator but only in the case of a rectangular window. It also

follows the strategy adopted by Quinn in [9, 10].
Let 2 2 j gggzg and d £ AI'(8;h.). From equa-

tion (2.3), if no noise is present, there is identity between
% and 2. From the definition of .7 in equation (2.1), and
using equation (1.3), the ratio .7 has the form:

(W1-Wa)
- @.n
T+=7

where W) and W, are the STFT of the noise for the frequen-

discrete window £ is continuous, positive, and normalized,
i.e. <1 on the interval of definition, then Y, 4, will be O(N)
and 1/(Y,, h,) will be O(N~!). This property will be useful
to determine the function orders. As I'(8;h.) is O(N), then

(Wi +Wa)/d is O(N~'/2In(N)'/?).
W —Wz)) (1- (Wi +Wa) (W) +W,)?
d d d?
+O(N"In(N)'?)) 4.2)

H=(Z+

The expansion has been done to an order 2, because order 1
terms will be canceled when considering the expectation.
What interests us is the expectation of the squared er-
ror between the true frequency and the estimated frequency,
which corresponds to the Mean Squared Error (MSE) in sec-
tion 5:
A\2 F(hc')
BB B = E{ (res)

R(HA) — 6)2} 4.3)

Substituting equation (4.2) inside eq (4.3) leads us to an
asymptotic development of the MSE. After some simplifica-
tions, one can found that this development is given by equa-
tion (4.4). If N is large enough, a variance estimate, or at
least a tight bound on the variance, could be computed for
each value of 5. We have chosen to present only the worst
estimation case bound which is given by equation (4.5). This
bound has been computed for different typical windows, rep-
resented in figure 1. The bound is composed of two terms:
one corresponding to the deterministic error, and another to
the error caused by the noise. If we consider this bound as
a function of the SNR: 62/A% = 10(~SNR/10) " the determin-
istic error will be constant, and the noise error will be a lin-
ear function of the SNR in a log scale. Therefore, when the
deterministic error is dominant - i.e. for high SNRs - the
estimator error will be constant, and when the noise error
becomes dominant, for low SNRs, the error will be linear (in
log scale). This explains the shape of the curves, in two parts,
of the figure 1.

Theorem 2 If the function used to construct the window h
is real, continuous, positive, normalized, symmetric and ver-
ifies the property (3.3), then the estimator defined in (2.8)
is asymptotically unbiased and, when N is large enough, a
worst case bound on the variance is given by equation (4.5).

5. PERFORMANCE COMPARISON

The purpose of this section is to compare the behavior of the
new estimators to the classical ones. As studies comparing
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the classical frequency estimation methods have been done
more than once [7], only the algorithms giving the best re-
sults will be considered, namely the classical phase vocoder
(“Vocoder’), the reassignment method (‘Reassignment’), and
another interesting method, Macleod’s 3 samples interpola-
tor (‘Macleod’). All the methods are summarized in table 2.
The new method is named ‘F’ followed by the first three let-
ters of the window used.

In order to achieve a frequency estimation, peak detection

is needed, but as our purpose is to compare the frequency es-
timators, it will be assumed in all experiments that the correct
maximum bins are known. The second maximum bin is still
supposed unknown.The classical Cramer-Rao Bound (CRB)
framework is used to compare the estimators for different
Signal to Noise Ratios (SNR) [5]. The CRB is represented
by a dashed line.

The experiments are presented for F = 16000 and N =
512. The error between the true and estimated values is based
on an average of the possible causes of error: on noise, using
K independent realizations, on frequency values, using ran-
domly picked frequency in regularly spaced interval (10Hz
size) over all the spectrum, and on the initial phase and am-
plitude, using random values between [0,27[ and [0.1,0.9]
respectively. The noise variance is computed from the cur-
rent amplitude value. In the experiments 2(c) and 2(d), the
second sinusoid has the same amplitude as the first one.

Figure 2(b) shows the raw performances of the F estima-
tor on a single cisoid, for different analysis windows. As the
SNR increases, the noise becomes negligible, and the inher-
ent bias due to approximation (2.6) appears, as explained in
section 4. The theoretical curves in figure 1 have the same
shape and the same performance relations as the experimen-
tal curve. They have also approximately the same magnitude
order as the experimental MSE. The shift between the theo-
retical curves and the experimental MSE is explained by the
fact that the bound (4.5) corresponds to the worst estimation



| Name I Estimation | Window |
Vocoder B=F.(LX(t+1/F,0;h)—£X(t,0;h)) Han
Reassignment B=o+3( ;(((ttgf;z)) Han
Macleod B =m0+ Aw@, Rec
where 6 = ER((zxg((t(g(f:)g(i%@ga}fg)gé%@&Szt))cg(hgz)wh))

Table 2: Summary of the different methods compared.

case.

The F estimator is compared to the classical methods de-
scribed in table 2. For clarity, only two different versions of
the F estimator have been retained: F-Rec and F-Han. In the
case of a single cisoid estimation, all methods give similar
values and perform quite well as all the MSE are contained
within 1db of the CRB. F-Han, because of its inherent bias,
does not perform as well as the other estimators. The best
results are obtained with Macleod’s estimator, but F-Rec is
very close. These two methods use the rectangular window,
and the way Macleod derived his in [5] makes them very sim-
ilar. If one takes a closer look to the formula of Macleod’s
estimator (table 2), one can see that it is the solution of an
order 2 polynomial. As it has been mentioned in the previ-
ous section, the error made with approximation (2.6) may be
reduced by using higher Taylor expansion orders, which is
what is done in Macleod’s estimator. The increase in perfor-
mance is nonetheless quite small. For low SNR (-20db), the
performances of F-Rec and F-Han drop faster than for other
estimators. This is caused by the asymmetry of the method:
the estimation is best done when using the maximum bin and
the second highest bin, but for this noise level the second
highest bin is hard to find. A solution, as for Quinn’s esti-
mator, is to compute the estimation for both bins around the
maximum, and to use a test to determine which estimation is
best [S]. But this error appears only in a failure area where
all estimators perform badly.

Figures 2(c) and 2(d) represent the errors for an estima-
tion perturbed by a second cisoid which is, respectively, at
100Hz and 1000Hz from the first cisoid. The methods using
rectangular windows now give worse results than the others,
except when the perturbation due to the second sinusoid be-
comes smaller than the noise perturbation. The other meth-
ods perform better because they use a Hann window which
has a better side lobe attenuation. The F-Han method appears
to be a good compromise between side lobe attenuation and
single cisoid precision, comparable to the phase-vocoder and
the reassignment.

6. CONCLUSION

This paper has presented a new frequency estimator based on
frequency variations of the FFT. This estimator is very simi-
lar to the estimation called DFS interpolator using the phase,
but the method presented allows the use of non-rectangular
windows, which was not possible before. The advantage of
using non-rectangular windows is to keep good performances
even if the estimation is perturbed with close cisoids, which
was the main default of the DFS interpolator using the phase.
The results using a Hann window are similar to the perfor-
mances of the classical phase vocoder and the reassignment
method. In future work, we believe that using superior order

expansion and testing different ratio filters 7 will lead to
estimators performing better than the classical ones in all the
scenarii.
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