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Abstract We present a new, freely available, multi-

modal corpus for research into, amongst other areas,

real-time realistic interaction between humans in on-

line virtual environments. The specific corpus scenario

focuses on an online dance class application scenario

where students, with avatars driven by whatever 3D

capture technology is locally available to them, can

learn choreographies with teacher guidance in an on-

line virtual dance studio. As the dance corpus is fo-

cused on this scenario, it consists of student/teacher

dance choreographies concurrently captured at two dif-

ferent sites using a variety of media modalities, includ-

ing synchronised audio rigs, multiple cameras, wearable

inertial measurement devices and depth sensors. In the

corpus, each of the several dancers performs a num-

ber of fixed choreographies, which are graded accord-

ing to a number of specific evaluation criteria. In ad-

dition, ground-truth dance choreography annotations

are provided. Furthermore, for unsynchronised sensor

S. Essid, T. Fillon, A. Masurelle, and G. Richard
Institut Telecom / Telecom ParisTech,
CNRS-LTCI - Paris
France
E-mail: firstname.lastname@telecom-paristech.fr

X. Lin, A. Aksay, Q. Zhang, V. Kitanovski, G. Kordelas and
E. Izquierdo
Multimedia and Vision Group (MMV),
Queen Mary University
London, UK

Marc Gowing, Philip Kelly, Noel E. O’Connor
CLARITY: Centre for Sensor Web Technologies,
Dublin City University,
Ireland

G. Kordelas, P. Daras
Centre for Research and Technology - Hellas,
Informatics and Telematics Institute,
Thessaloniki, Greece

modalities, the corpus also includes distinctive events

for data stream synchronisation. The total duration

of the recorded content is 1 hour and 40 minutes for

each single sensor, amounting to 55 hours of recordings

across all sensors. Although the dance corpus is tai-

lored specifically for an online dance class application

scenario, the data is free to download and use for any

research and development purposes.

Keywords Dance · multimodal data · multiview video

processing · audio · depth maps · motion · inertial

sensors · synchronisation · activity recognition · virtual

reality

1 Introduction

The 3DLife Network of Excellence is a European Union

funded research project that aims to integrate research

that is currently conducted by leading European re-

search groups in the field of Media Internet. Within

3DLife we believe that it is time to move social net-

working towards the next logical step in its evolution:

to immersive collaborative environments that support

real-time realistic interaction between humans in online

virtual and augmented environments.

To achieve this goal 3DLife, partnered by Huawei,

has proposed a grand challenge to the research commu-

nity in conjunction with the ACM Multimedia Grand

Challenge 2011. The ACM Multimedia Grand Chal-

lenges are a set of problems and issues from indus-

try leaders, geared to engaging the research community

in adressing relevant, interesting and challenging ques-

tions about the industry’s 2-5 year horizon. The 3DLife

grand challenge calls for demonstrations of technologies

that support real-time realistic interaction between hu-

mans in online virtual environments. In order to stim-
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ulate research activity in this domain the 3DLife con-

sortium has provided a scenario for online interaction

and a corpus to support both the investigation into po-

tential solutions and allow demonstrations of various

technical components.

More specifically, the proposed scenario considers

that of an online dance class, to be provided by an ex-

pert Salsa dancer teacher and delivered via the web. In

this scenario, the teacher will perform the class, with all

movements captured by a state of the art optical mo-

tion capture system. The resulting motion data will be

used to animate a realistic avatar of the teacher in an

immersive online virtual ballet studio. Students attend-

ing the online master-class will do so by manifesting

their own individual avatar in the virtual dance stu-

dio. The real-time animation of each student’s avatar

will be driven by whatever 3D capture technology is

available to him/her. This could be captured via visual

sensing techniques using a single camera, a camera net-

work, wearable inertial motion sensing, and/or recent

gaming controllers such as the Nintendo Wii or the Mi-

crosoft Kinect. The animation of the student’s avatar in

the virtual space will be real-time and realistically ren-

dered, subject to the granularity of representation and

interaction available from each capture mechanism.

In this paper, we present the novel annotated dataset

that accompanies this grand challenge. This free and

publicly available dance corpus consists of data gath-

ered at two separate site locations. At each site multi-

modal recordings of Salsa dancers were captured with a

variety of equipment, with each dancer performing be-

tween 2 to 5 fixed choreographies. 15 dancers (6 women

and 9 men) of differing expertise have been recorded at

SiteA and 11 dancers (6 women and 5 men) at SiteB.

The recording modalities captured in each recording

setup include multiple synchronised audio capture, depth

sensors, several visual spectrum cameras and inertial

measurement units. The total duration of the recorded

content is 1 hour and 40 minutes for each single sensor,

amounting to 55 hours of recordings across all sensors.

In addition, this publicly available dataset contains a

rich set of dance choreography ground-truth annota-

tions, including dancer ratings, plus the original music

excerpts to which each dancer was performing to.

Moreover, as not all data stream modalities are syn-

chronised, the corpus incorporates means to synchro-

nise all of the input streams, via distinctive clap mo-

tions performed before each dance rendition. These clap

motions can be used to determine the delays between

the different streams as will be described in Section 8.2.

Such delays as found by a reference automatic system

are provided along with the dataset.

Although created specifically for the ACM Multi-

media Grand Challenge 2011, the corpus is free to be

used for other research and development purposes. This

could include research into approaches for 3D signal

processing, computer graphics, computer vision, human

computer interaction and human factors:

– 3D data acquisition and processing from multiple

sensor data sources;

– Realistic (optionally real-time) rendering of 3D data

based on noisy or incomplete sources;

– Realistic and naturalistic marker-less motion cap-

ture;

– Human factors around interaction modalities in vir-

tual worlds;

– Multimodal dance performance analysis, as a partic-

ular case of human activity analysis, including dance

steps/movements tracking, recognition and quality

assessment;

– Audio/Video synchronisation with different capture

devices;

– Extraction of features to analyse dancer performance,

such as the automatic localisation and timing of foot

steps or automatic extraction of dancer movement

fluidity, timing, precision (to model) and alignment

with the music, or another performer;

– Automatic extraction of music information such as

tempo and beat analysis or musical structure anal-

ysis.

This paper expands upon the initial publication [10]

by describing a multimodal synchronisation scheme that

allows us to provide the delays between the unsynchro-

nised streams of data, and by further developing poten-

tial applications for the dataset proposed.

The rest of this paper is organised as follows: Section

2 highlights related corpuses and the major difference

in the one presented in this work. Section 3 provides an

overview of the data captured and incorporated into the

corpus for each dance performance. Section 6 details the

hardware setup and capture of all data modalities used

within the corpus. Section 4 provides an insight to how

each dance performance was captured in terms of re-

hearsal, performance and capture. The choreographies

used in the corpus are detailed in Section 5, while the

ground-truth choreography annotations provided with

the corpus are outlined in Section 7. In Section 8, we

provide details on the data post-processing and release

to the community. Section 9 outlines possible fields of

application for the current dataset. Finally we provide

concluding remarks on the corpus in Section 10.
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2 Related work

In this section, we review the datasets available to the

community in the research fields related to our work.

The KTH database [20] contains six types of human

actions performed by 25 people in four different scenar-

ios: outdoors, outdoors with scale variation, outdoors

with different clothes and indoors. The Weizmann hu-

man action dataset [6] contains 90 low-resolution video

sequences showing 9 different people, each performing

10 natural actions. The backgrounds are static and the

foreground silhouettes are included in the dataset. KTH

and Weizmann databases have been extensively used for

the evaluation and comparison of single-view video hu-

man action recognition algorithms. The Assisted Daily

Living (ADL) dataset [17] is another single-view database

that contains high resolution videos of ten complex daily

activities.

Regarding multi-view and 3D activity databases,

several researches have created their own databases for

verifying their implemented approaches.

The IXMAS [26] dataset contains 11 actions each

performed 3 times by 10 actors. The multi-view acquisi-

tion is achieved using five Firewire cameras, with static

background and illumination settings. Each dataset con-

tains the raw videos, camera calibration files, extracted

silhouettes using background subtraction, as well as the

associated 3-D models obtained from these images by

using multi-view camera reconstruction software based

on visual hulls.

The HumanEva dataset [23] consists of two parts:

HumanEva-I and HumanEva-II. HumanEva-I contains

data from four subjects performing a set of six prede-

fined actions in three repetitions (twice with video and

motion capture, and once with motion capture alone).

Each sequence is recorded by 3 colour and 4 grayscale

cameras and a synchronized motion capture system that

provides the 3D body poses of the subjects. HumanEva-

II contains only two subjects performing an extended

sequence of actions. However, for the capturing a more

sophisticated hardware system is used than HumanEva-

I, that consists of four colour cameras and a better qual-

ity motion capture system.

The i3DPost Multi-view Human Action Dataset [11]

is a corpus containing multi-view 3D human action/inter-

action data. This database contains videos of 8 persons

and 12 actions captured from 8 high resolution cameras.

Moreover, there are sequences that capture the basic fa-

cial expressions of each person. The multi-view videos

have been further processed to produce a 3D mesh at

each frame describing the respective 3D human body

surface.

MuHAVi human action video database [24] has been

created using 8 cameras in a challenging environment.

The dataset includes 17 action classes performed by

14 actors. A subset of action classes has been used to

manually annotate the image frames and generate the

corresponding silhouettes of the actors. Annotated sil-

houettes provide a useful ground truth for scientists to

evaluate their algorithms.

The CMU motion capture database [13] mainly aims

at advancing research on human gait as a biometric.

The database contains 25 individuals performing four

different walking patterns on a treadmill. All subjects

are captured using six high resolution colour cameras

distributed evenly around the treadmill.

CASIA action database [25] is a collection of se-

quences of human activities captured outdoors by cam-

eras from different angle of view. The sequences include

eight types of actions performed by 24 subjects and

seven types of two person interactions performed by 2

subjects. Videos sequences are recorded simultaneously

with three static non-calibrated cameras from different

viewing angles.

WARD (Wearable Action Recognition Database) [27]

consists of continuous sequences of human actions mea-

sured by a network of wearable motion sensors. The

wireless sensors are instrumented at five body locations:

two wrists, the waist and two ankles. There are 20 hu-

man subjects that produce a set of 13 action categories

that covers some of the most common actions in a hu-

man’s daily activities.

The majority of the aforementioned databases con-

tain simple human actions captured by multiple syn-

chronised cameras. However, to the best of the authors’

knowledge, there has been no previous research datasets

recorded concurrently through multiple diverse modal-

ities capturing the visual spectrum, audio, inertial mo-

tion and depth information; nor has there been mul-

timodal datasets focusing on complex types of human

activites such as dance.

3 Corpus overview

The dance corpus we present provides both synchro-

nised and unsynchronised multi-channel and multi-modal

recordings of Salsa dance students and teachers. Within

the corpus, dance performances were captured at two

seperate sites. An overview of the two multi-modal cap-

ture setups (one for each data capture site) is provided

in Figure 1. Details of all equipment setup will be de-

scribed in Section 6.

The setup for each site differs slightly in terms of

equipment specifications and equipment locations - how-
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ever, the following data was recorded regardless of the

recording site:

– Synchronized multi-channel audio of dancers’ step

sounds, voice and music. The environments at Site

A and Site B recorded 16 and 14 channels respec-

tively, consisting of 7 overhead microphones, 1 lapel

microphone worn by the dancer and the remaining

channels recorded by on-floor piezo-electric trans-

ducers.

– Synchronised camera video capture of the dancers

from multiple viewpoints covering whole body: Site

A and Site B used 5 and 6 cameras respectively.

– Inertial sensor data: captured from 5 sensors worn

on the dancer’s body: both wrists, both ankles and

around the waist.

– Depth maps for dancers’ performances: captured us-

ing a Microsoft Kinect.

– Original music excerpts: 3 short excerpts sampled

from 2 distinct Salsa tracks.

– Camera calibration data.

– Ground-truth annotations, including: musical anno-

tation (tempo and beats), choreography annotation

(step labels and ideal timing) and performance rat-

ings awarded to each dancer by the teacher.

In addition, at capturing siteA, dancers were also

simultaneously captured using four additional non syn-

chronised video captures covering a number of areas of

their bodies.

The modalities that were synchronised during cap-

turing include 16 channels audio data, multi-view videos

captured with unibrain cameras (SiteA) and PixeLink

cameras (SiteB). During post processing, synchronisa-

tion is achieved between audio and WIMU data, audio

and different subsets of video data. Synchronization de-

tails will be more thoroughly discussed in Section 8.2.

A total of 26 subjects were recorded performing 2 to

5 pre-defined Salsa choreographies (depending on their

level of ability). Multiple takes for each choreography

are included in the corpus, with performances lasting

approximately 20-40 seconds.

4 Recording protocol

Each dancer was recorded multiple times performing

each time one of five pre-defined choreographies. For

every new dancer, the recording session started with a

preparation phase during which he/she was equipped

with the wearable recording devices and given instruc-

tions regarding the proceedings of the recordings and

the choreographies to be performed (see Section 5).

Next, the dancer was given time to rehearse these chore-

ographies until he/she felt ready to be recorded. Only

(a) Capture setup at SiteA.

(b) Capture setup at SiteB.

Fig. 1 Recording setup.
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the choreographies that could be mastered by the dancer

(after a reasonable rehearsing time that varied from 5 to

30 minutes for each choreography) were hence recorded.

For each choreography a number of takes were captured

to account for potential defects. The number of takes

recorded varied from one dancer to another depending

on their time availability. The goal was to try hard to

obtain, for each choreography, at least two takes where

the dancer would finish the whole choreography (with-

out stopping in the middle).

The recording started with the calibration of the

camera network, which was repeated at various times

during the entire session to ensure that the calibration

data was reliably refined over time. It was performed

using a 5x4 squared chessboard calibration pattern with

square size of 15cm. The square size was set to be large

enough so that the chessboard pattern was depicted

clearly in the video of the cameras. This pattern was

placed on the dancing stage.

While the signals captured by some subsets of sen-

sors are perfectly synchronised, namely all audio chan-

nels (except for the audio streams of the mini DV cam-

eras), synchronisation is not ensured across all streams

of data. To minimise this inconvenience, all dancers

were instructed to execute a “clap procedure” before

starting their performance, where they successively clap

their hands and tap the floor with each foot. Hence, the

start time of each data stream can be synchronised (ei-

ther manually or automatically) by aligning the clap

signatures that are clearly visible at the beginning of

every data stream.

5 Music and choreographies

Salsa music was chosen for this dance corpus as it is a

music genre that is centred at dance expression, with

highly structured, yet not straightforward rhythmic struc-

tures. The music pieces used were chosen from the Cre-

ative Commons set of productions to allow us to eas-

ily make them publicly available. Three short excerpts

from two distinct tracks (of two distinct albums) at dif-

ferent tempos were extracted and used along with a

forth excerpt consisting of a Son Clave rhythmic pat-

tern [1] in all dance sessions. All the song excerpts used

are provided in the database at 44.1KHz stereo.

Each dancer performed 2 to 5 solo Salsa choreogra-

phies among a set of 5 pre-defined ones. These chore-

ographies were designed in such a way as to progres-

sively increase the complexity of the dance steps/movements

as one moves from the first to the last one. They can

be roughly described as follows:

C1 4 Salsa basic steps (over two 8-beat bars), where no

music is played to the dancer, rather, he/she voice-

counts the steps: “1, 2, 3, 4, 5, 6, 7, 8, 1, ..., 8” (in

French or English).

C2 4 basic steps, 1 right turn, 1 cross-body; danced on

a Son clave excerpt at a musical tempo of 157 BPM

(beats per minute).

C3 5 basic steps, 1 Suzie Q, 1 double-cross, 2 basic

steps; danced on Salsa music excerpt labelled C3 at

a musical tempo of 180 BPM.

C4 4 basic steps, 1 Pachanga tap, 1 basic step, 1 swivel

tap, 2 basic steps; danced on Salsa music excerpt

labelled C4 at a musical tempo of 185 BPM.

C5 A solo performance mimicking a duo, in the sense

that the girl or the boy is asked to perform alone

movements that are supposed to be executed with a

partner. The movements are: 2 basic steps, 1 cross-

body, 1 girl right turn, 1 boy right turn with hand

swapping, 1 girl right turn with a caress, 1 cross-

body, 2 basic steps; danced on Salsa music excerpt

labelled C5 at a musical tempo of 180 BPM. Figure

2 gives visualisations of the timing of basic steps for

men.

C6 Whenever possible a real duo rendering of chore-

ography C5 has been captured. It is referred to as

C6 in the data repository.

The dancers have been instructed to execute these

choreographies respecting the same musical timing, i.e.

all dancers are expected to synchronise steps/movements

to particular music beats. It is also important to note

that the dancers have been asked to perform a Puerto

Rican variant of Salsa, and are expected to dance “on

two”.

Bertrand is considered as the reference dancer for

men and Anne-Sophie K. as the reference dancer for

women, in the sense that their performances are con-

sidered to be the “templates” to be followed by the

other dancers. The videos of Bertrand and Anne-Sophie

were actually played to the student dancers during their

training, asking them to mimic the performance of the

reference dancers. It is worth noting that dance steps for

men and women are not identical as they are designed

to complement each other in the partnered dance rou-

tines.

6 Recording equipment setup

The specifics of each capture modality will be described

in detail in the following sections using Figure 1 as ref-

erence. It should be noted that all data is recorded and

provided in open formats.
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Fig. 2 Basic Steps for Men.

6.1 Audio equipment

The audio capture setup was designed to capture the

dancer’s voice and step-impact sounds in such a way to

allow users of the dataset to effectively exploit sound

source localisation and separation technologies. The en-

vironments at SiteA and SiteB were recorded using 16

and 14 perfectly synchronised channels, respectively.

Eight microphones were placed around the dance cap-

ture area: seven Schoeps omni-directional condenser mi-

crophones: placed overhead of the dance area; and one

Sennheiser wireless lapel microphone positioned to cap-

ture the dancer’s voice. In addition, on-floor acoustic

sensors were used to focus on the dancer’s step-impact

sounds, namely four acoustic-guitar internal Piezo trans-

ducers, and only at SiteA Bruel & Kjaer 4374 piezoelec-

tric accelerometers (used with a charge conditioning

amplifier unit with two independent input channels).

The position of the microphones and acoustic sensors

is given in Figure 1.

Recording was performed using two Echo Audiofire

Pre8 firewire digital audio interfaces controlled by a

server based on Debian with a real-time patched ker-

nel that runs an open-software solution based on Ffado,

Jack and a custom application for batch sound playback

and recording. Accurate synchronisation between mul-

tiple Audiofire Pre8 units was ensured through Word

Clock S/PDIF.

All the channels were encoded in separate files in

mono at 48kHz with a 24-bit precision (but the sample

encoding in the corresponding files is 32-bit Floating

Point PCM in order to facilitate reading the generated

audio files using standard audio software). The on-floor

positions of the Bruel & Kjaer and Piezo sensors, as

well as the spacing between the Shoeps microphones

are provided in the corpus. The music was played to

the dancers by a PC through amplified loudspeakers

placed in the dance rooms as shown in Figure 1.

Audio Calibration. During the recording at SiteA, audio

calibration was performed in order to provide a way to

localize the positions of the dancer’s feet on the dance

floor using step-impact sounds. This calibration proce-

dure consisted of hitting the floor with a metal tip at

different known locations on the dance floor board. For

SiteA, the dance floor was made up with two Medium-

density fiberboard (MDF) panels of 2m × 1m. Each

panel was hit several successive times over a regular

grid of points. Hence, we provide a set of audio calibra-

tion measurements at 92 positions on the two boards.

Based on this calibration, one can elaborate local-

ization methods to retrieve the positions of the feet ac-

cording to the audio signals of the steps on the dancing

board.

Due to the exact synchronization of the different au-

dio channels and the fixed position of the sensors, the

delays of arrival of the sound produced by a step at the

different sensors can be used to determine the sound

source localization and thus, the position of the foot

on the dancing board. Figure 3 shows an illustration of

the sound propagation from the sound source (the foot

step) to the vibration sensors and to the microphone ar-

ray. Such localization methods rely on a physical model

of the sound propagation in the air and/or in the board

material. In that case, the calibration signals can enable

one to estimate the physical parameters of the models

(speed of sound, delays or positions between the sound

source and the sensors).

Alternate localization methods could rely on pat-

tern recognition approaches. For such methods, the cali-

bration signals could be considered as references or used

as a training database for either classification or regres-

sion methods.
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Fig. 3 Sound propagation of the foot steps noise through the
dancing board to the vibration sensors and through the air
to the microphone array.

6.2 Video equipment

6.2.1 Synchronised Video Equipment

For the capture at SiteA, 5 firewire CCD cameras (Uni-

brain Fire-i Color Digital Board Cameras) were con-

nected to a server with two FireBoard-800 1394b OHCI

PCI adapters installed. Three cameras were connected

to one PCI FireBoard-800 adapter, and two to the sec-

ond, thereby allowing the network load to be distributed

between the two adapters. The server had the UbCore

5.72 Pro synchronisation software installed, which pro-

vided the interface for the centralised control of the

connected cameras, including the synchronized video

capturing and the adjustment of the capturing param-

eters. The parameters of the video capture were de-

fined to be 320x160 pixels at 30 frames per second with

colour depth of 16 bits. In the dataset, the Unibrain

camera data was decoded from MJPEG to raw AVI and

stored as ZIP archives. However, the camera synchro-

nisation at SiteA was controlled by software and there-

fore, it was not perfectly accurate. As a consequence,

very slight variations appeared in the total number of

the frames recorded by each synchronized camera. This

is discussed and corrected in the post-processing stage

– see Section 8.1.

The equipment for SiteB is different however, with

the cameras synchronized via hardware. At SiteB, the

viewpoints of U-Cam 1 to U-Cam 5 were replicated by

6 PixeLink 1.3 mega pixel colour PL-B742 cameras, la-

belled Cam1 to Cam6 in Figure 1(b). The PixeLink

cameras were synchronized using a common trigger-

ing signal, which was a square waveform signal gen-

erated by a digital function generator and a triggering

frequency set to be 15Hz. Each cycle triggered the cap-

ture of single image frame for each camera. All captured

frames using these cameras are stored in BMP format

in the dataset.

6.2.2 Non-synchronised Video Equipment

For the SiteA data capture, two standalone, non-synchronised,

digital video cameras (both with audio) were used to

capture the dancers from differing angles. The first shoot-

ing the dancers’ feet, with the second DV camera shoot-

ing the torso. In addition, at SiteA two additional non-

synchronised video data streams were also acquired us-

ing Microsoft Kinect cameras. The first Kinect camera

was angled to cover the whole of the dancer’s body from

the front, while the second was angled to the upper-

body of the dancer and taken from the side. In SiteB

only one of the four non-synchronised streams was repli-

cated, with the first Kinect camera angle being recap-

tured.

In this dataset both the Kinect cameras were cap-

tured at circa 30Hz and stored using the OpenNI-encoded

(.ONI) data format (see next section). The videos from

both DV cameras were first stored on tapes before be-

ing transferred to a PC using a proprietary application.

They were encoded using the cameras native DV video

codec with 720 × 576 pixels at 25 frames per second,

with the audio streams encoded as PCM S16 stereo at

32kHz and 48kHz respectively for the feet and torso

cameras.

6.2.3 Kinect Depth Stream

In both of the data capture sites a Kinect depth data

stream was acquired from Kinect 1 (see figure 1(a)).

This data stream was synchronised with the Kinect

video stream (described in the previous section) and

both were simultaneously captured and stored using the

OpenNI drivers/SDK and the OpenNI-encoded (.ONI)

data format [2].

The OpenNI SDK provides, among others, a high-

level skeleton tracking module, which can be used for

detecting the captured user and tracking his/her body

joints. More specifically, the OpenNI tracking module

produces the positions of 17 joints (Head, Neck, Torso,

Left and Right Collar, L/R Shoulder, L/R Elbow, L/R

Wrist, L/R Hip, L/R Knee and L/R Foot), along with

the corresponding tracking confidence. An overlay of

the extracted skeleton (using the OpenNI SDK) on the

Kinect depth stream can be seen in Figure 4.

6.3 Inertial measurement units

Data from inertial measurement units (IMUs) were also

captured with each dance sequence. Each sensor streamed

accelerometer, gyroscope and magnometer data at ap-

proximately 80 - 160 Hz. Five IMUs were placed on

each dancer; one on each dancer’s forearm, one on each
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Fig. 4 Skeleton tracking for the dancer Helene.

Fig. 5 Inertial sensor data for right ankle of dancer Bertrand.

dancer’s ankle, and one above their hips. Each IMU pro-

vides time-stamped accelerometer, gyroscope and mag-

netometer data for their given location across the du-

ration of the session. These measurements are stored as

raw ASCII text. A sample of the IMU data is shown in

Figure 5.

7 Ground-truth Annotations

Various types of ground-truth annotations are provided

with the corpus, namely:

– Manual annotations of the music in terms of beats

and measures, performed by a musician familiar with

the salsa rhythm, given in Sonic Visualiser [7] (.svl)

format and ASCII (.cvs) format;

– Annotations of the choreographies with reference

steps time codes relative to the music also given

in Sonic Visualiser (.svl) format and ASCII (.cvs)

format, these annotations were acquired using the

teachers’ input; they indicate the labels of the salsa

movements to be performed with respect to the mu-

sical timing. An example of this type of annotation

is depicted in Figure 6;

Fig. 6 Beat, measures and Choreography annotations.

– Ratings of the dancers’ performances assigned to

dancers by the teacher Bertrand1.

The dancers’ ratings are given as an integer score

between 1 and 5, 1 being poor and 5 excellent, across

five evaluation axes:

“Upper-body fluidity” evaluates the fluidity of the dan-

cer’s upper-body movements;

“Lower-body fluidity” evaluates the fluidity of the dan-

cer’s upper-body movements;

“Musical timing” evaluates the timing of the executed

choreography movements/steps with respect to the

music timing, the ideal timing being given in the

choreography annotation files placed in the music/

folder;

“Body balance” evaluates the state of balance or qual-

ity of equilibrium of the dancer’s body while he/she

executes the choreography;

“Choreography” evaluates the accuracy of the executed

choreography; a rating of 5 is attributed to a dancer

as soon as he/she accurately reproduces the sequence

of figures/steps of the choreography, quite indepen-

dently from the quality of execution of each single

figure.

8 Data preparation and release

A number of post-processing stages were undertaken in

order to ease the use of the corpus. Firstly, only valid

recording takes were incorporated into the corpus. We

considered as valid any take during which the dancer

could finish the execution of the whole choreography

(without stopping in the middle), and all modalities

could be captured properly (without any technical de-

fects). Secondly, the various streams of data were vi-

sually inspected and data manually edited to crop out

1 More ratings by other experienced Salsa dancers will be
provided in the near future
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irrelevant content ensuring the clap event (described in

Section 4) would occur within two seconds from the be-

ginning of each recording modality. As such, although

some of the data streams are not fully synchronised,

the maximum offset of any one modality to another is

set to two seconds, allowing users to more easily use

multiple sets of unsynchronised data modalities.

8.1 Unibrain capture post-processing

The camera synchronisation at SiteA was controlled by

software (see Section 6.2.1), which didn’t provide per-

fect synchronisation. Inaccurate synchronisation was caused

by delays in the time required for the software to propa-

gate the commands of starting and stopping the captur-

ing across the camera network. As a result, very slight

variations (less than twelve frames) were appeared in

the total number of the frames recorded by each cam-

era. Based on technical specifications, the most likely

possibility is that the redundant frames per captured

video sequence were equally split between its beginning

and its end. Hence, the following post-processing proce-

dure was applied to remove the redundant frames from

each captured video sequence.

Let us assume that the total number of the recorded

frames by each of 5 cameras (U-Cam 1 to U-Cam 5 ) is

N1 to N5, while N3 is the minimum number of frames

that will be used as a common basis to equalise the

number of frames recorded by the rest of the cameras.

For instance, in order to compensate delay in the video

recorded by U-Cam 1, so as to have the same number

of frames with the video recorded by U-Cam 3, when
N1−N3 is an even number, (N1−N3)/2 frames are re-

moved from the beginning of U-Cam 1 ’s frame sequence

and (N1 −N3)/2 frames from the end of the sequence.

Otherwise in case N1 − N3 is odd, (N1 − N3 + 1)/2

frames are removed from the start and (N1−N3−1)/2

frames from the end of the sequence. The same proce-

dure is applied to frame sequences recorded by U-Cam

2, U-Cam 4 and U-Cam 5, respectively. Thus, the re-

sulting post-processed recordings have equal number of

frames.

However, this post-processing procedure does not

ensure that the video streams are perfectly synchro-

nized, since it is based on the most possible circum-

stance that the redundant frames are equally split be-

tween the start and the end of the video sequence, which

is true in most but not in all cases. Therefore, the syn-

chronisation procedure described in Section 8.2 is fol-

lowed in order to compensate more reliably the time

delays that lead to variation in the total number of

frames captured by each camera. Aside from video syn-

Fig. 7 Overview of synchronisation strategy

chronisation, the procedure in Section 8.2 is actually

used to synchronise all heterogeneous data streams.

8.2 Multi-modal Synchronisation

Figure 7 gives an overview of our approach to syn-

chronisation between the heterogeneous streams of data

recorded.

The details of the different synchronisation compo-

nents are given hereafter. To understand the rationale

behind this synchronisation scheme it is important to

keep in mind that some subsets of data streams are al-

ready synchronised via hardware, these include: Subset

S1 consisting of data from 16 audio channels, Subset S2

composed of video streams of 5 UniBrain cameras(not

perfectly synchronised as mentioned in Sec. 8.1), and

Subset S3 that is the different WIMU signals. There-

fore, it is sufficient to synchronise instances of each sub-

set with the other data streams to achieve overall syn-

chronisation. As can be seen from Figure 7, the audio

modality is used as a bridge to synchronise other types

of modalities. The procedure is as follows:

– Synchronise the videos taken by the feet and torso

cameras using audio-to-audio synchronisation be-

tween the audio streams of these videos (described

in Section 8.2.1);

– Synchronise one of the audio channels of S1 with

either audio streams of the feet or torso cameras, us-

ing the same audio-to-audio synchronisation method;

– Synchronise one of the audio channels of S1 with the

WIMU signals in S3 (described in Section 8.2.2).

To complete overall synchronisation, one is left only

with the problem of synchronising the videos of feet/torso

cameras with the ones captured by the Kinects and Uni-

Brain cameras, which is addressed in Section 8.2.3.
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8.2.1 Audio-based synchronisation

Audio-to-audio synchronisation is achieved by first esti-

mating the signals energy envelopes, then using a simple

cross-correlation measure between these envelopes. The

delay between the two signals is deduced as the time-lag

that needs to be applied to one data stream in order to

obtain maximum cross-correlation. The audio envelopes

are estimated by computing the energy values in 5-ms

local audio frames with a 1-ms hop size. The sampling

frequency of the envelopes is thus 1000 Hz, hence al-

lowing us to speed-up the process compared to a situ-

ation where cross-correlation measures would be taken

directly from the original audio signals whose sampling

frequencies can be as high as 48 kHz. The other ad-

vantage of this approach is that it can cope with the

fact that some audio streams are sampled at differing

frequencies, for example the audio stream of the foot

camera is at 32 kHz while signals from S1 are sampled

at 48 kHz. Furthermore, it has been found unneces-

sary to consider the whole signal durations to achieve

this synchronisation, rather only the first few seconds of

each recording is taken, covering the initial clap event

and the start of the music (on recordings with music).

The whole procedure has been validated by listening

tests (across all the recordings) where a reference audio

stream (from the feet camera) was played along with

any of the other delayed streams to confirm that they

became synchronous.

In the challenge scenario, all dancers are expected

to execute the same choreographies and synchronise

their movements to the same background music. There-

fore, synchronising the performances of two dancers is

quite straightforward as it solely entails synchronising
the recorded music signals relating to each dancer, that

is channel 5/6 recordings of a dancer A with channels

5/6 recordings of dancer B. This is achieved using the

previously described procedure.

8.2.2 Synchronisation of WIMUs

Synchronisation between audio and WIMUs is achieved

by maximising the cross-correlation between a specific

WIMU and audio features around the clap event. These

features are designed to characterise the clap event sig-

nature. The audio feature employed here is the output

of an onset detection component [4] applied to the au-

dio signal of channel 20, i.e. one of the overhead Shoeps

microphones that clearly captures the sound of hands

and feet claps.

The WIMU synchronisation feature exploits the ac-

celerometer signal of both wrist sensors. A clap will ap-

pear as a large spike in the accelerometer signal of both

wrist WIMU accelerometers simultaneously. To detect

this event, all three axes are combined for each sen-

sor. The average and maximum amplitudes, and their

corresponding timestamps are calculated using 150-ms

sliding window with 10-ms hops. The window with the

largest variance for both WIMUs is identified as the

clap signature. As the sampling frequency of the audio

feature is 360 Hz (due to the signal analysis param-

eters of the onset detection module) and the WIMU

feature is 100 Hz, the WIMU frequency is upsampled

to that of the audio stream before computing the cross-

correlation.

8.2.3 Multi-view video synchronisation

In this section, we describe the approach to calculate

the time shift between two videos taken from unsyn-

chronised cameras. The videos can be of different qual-

ity and frame rate. Temporal features are extracted for

every video frame. Correlation-matching between fea-

tures from two different videos is then used to obtain

the offset between them. We also employed a method

to detect the dancer’s upper body to locate the area

for feature extraction and improve the synchronisation

accuracy.

The temporal features used for video temporal align-

ment are based on appearance changes [16]. This ap-

proach is suitable when cameras are static, and it does

not require a high level of scene understanding. The to-

tal amount of appearance change between two succes-

sive frames is calculated for each frame and the values

are interpolated on a 1-ms time grid in order to achieve

sub-frame accuracy. The time shift between two videos

is obtained as the value that maximises the normalised

correlation between the temporal features of each video.

The frame region used to calculate the appearance

change should be chosen so that it contains only the

moving objects (or part of moving objects) visible in

both videos. As such, for the 3DLife dataset we use

an upper-body detection method to locate the dancer’s

upper-body movements, as some videos in the used

dataset do not capture the whole body. Figure 8 shows

temporal features for the DV torso camera and the

Kinect camera respectively.

In order to improve the synchronisation accuracy,

unexpected object movement in the video sequence should

be excluded from the temporal features calculation. In

the original work [16] this is achieved by splitting video

frames into sub-regions of regular size and iteratively

excluding sub-regions that have negative impact on the

correlation between two video sequences. As this trial

and error approach is inefficient in terms of computa-

tional cost, we employ a state of art upper-body de-
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tection algorithm [8] to facilitate adaptive selection of

regions for temporal features calculation as opposed

to searching sub-regions with negative impact itera-

tively. In this work, the algorithm uses trained part-

based models combined with an optional face detector

to improve the detection performance. Figure 8 (top

row) shows the detection results applied to the videos

captured using the Microsoft Kinect and the DV cam-

corder. By applying temporal features and correlation

calculations only within detected regions, the synchro-

nisation accuracy is improved.

Fig. 8 Top row: example for upped body detection; Bottom
row: temporal features extracted from the two videos.

We evaluated the described approach using videos

from the dataset. A total of 103 video sets were included

in this evaluation (each video set includes: 5 UniBrain

videos, torso video and feet video recorded by DV cam-
corders, and two videos recorded by Kinects). The av-

erage error of synchronisation was within one frame,

which is quite accurate as it corresponds to around 30-

40ms in time.

The time shifts for all videos in the dataset were

calculated relative to the videos taken from the feet

camera - the reference camera. These time shifts were

added to the dataset as an additional useful data to be

used in applications requiring synchronised multi-view

videos. The accurately synchronised data was further

analysed and augmented for presentation in an original

software application [12] for an enhanced dance visual-

isation experience.

8.3 Data Release

Since May 2011, the dance corpus for the 3DLife ACM

Multimedia Grand Challenge 2011 has been made pub-

licly available through a website, allowing anyone to

download it through FTP. Researchers are also free

to submit work for publication to any relevant confer-

ences/journals/etc. outside of ACM Multimedia 3DLife

Grand Challenge 2011.

9 Fields of application

The 3DLife dance dataset can be exploited by the scien-

tific community to boost research in various emerging

scientific fields. In the following, we refer to some in-

teresting applications that could take advantage of our

dataset.

This multi sensor dataset is an adequate testbed to

evaluate algorithms relevant to human pose recovery.

Human body pose recovery is a fundamental task in

human motion analysis and in recent years there has

been rapid progress regarding markerless 3D pose re-

covery of humans from multi-view video data. A recent

framework for unconstrained 3D human upper body

pose estimation from multiple camera views in complex

environments is presented in [14].

Depth sensors provide an alternative technology for

human pose recovery. In particular, Microsoft’s Kinect

is an affordable solution for boosting research and inno-

vation in 3D human pose recovery methods. The work

in [22] proposes a novel method for fast and accurate

prediction of 3D positions of body joints from a single

depth image generated by a single Kinect device. An-

other solution for handling the pose recovery problem

is to use measurements from wearable inertial sensors

attached to the person’s limbs [21]. The work in [18]

proposes a hybrid human pose tracker that combines

video data with inertial units measurements to com-

pensate for the drawbacks of each sensor type.

When human poses are estimated over time, the

term human motion analysis is adopted. Advances in

human motion analysis would benefit a wide spectrum

of applications, especially in the domains of virtual re-

ality, human-computer interaction, surveillance and el-

derly monitoring.

A comprehensive survey on visual view-invariant hu-

man motion analysis can be found in [15]. This work

presents recent developments in view-invariant human

motion analysis with an emphasis on view-invariant

pose representation and estimation, and view-invariant

action representation and recognition. While video-based

human motion analysis has received much interest dur-

ing the last decades, the launch of Kinect technology

may provide a new insight in the human motion anal-

ysis field.

The work in [3] describes a novel system that auto-

matically evaluates dance performances against a stan-

dard performance and provides visual feedback to the
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performer in a 3D virtual environment. In order to align

and evaluate dance performances, Kinect depth-maps

from the current dataset are considered to extract the

motion of a performer via human skeleton tracking.

The framework for the automatic evaluation of dancers

performance is extended in [9] to include, except for

Kinect depth-maps, audio and WIMU modalities. In

[19] a classification system designed to recognize danc-

ing gestures in real-time and with high accuracy from

Kinect depth data is introduced.

The low cost of inertial sensors and their signifi-

cant technological improvement in terms of size and

power consumption provides an alternative option for

analysing human motion. An extensive review of the

literature related to the techniques for classifying hu-

man activities that are performed using inertial sen-

sors is presented in [5]. This study pinpoints that iner-

tial sensor technology can be exploited, among others,

in remote monitoring of the elderly, rehabilitation and

physical therapy, dance and ballet, sports science and

virtual reality.

This multimodal dance corpus stands as a complex

human activity database that is challenging for develop-

ing and testing human pose recovery and human motion

analysis approaches. Moreover, the multimodal nature

of the collected data allows the evaluation of methods

that use diverse types of input data (i.e. visual input,

depth data and inertial measurements), forming a con-

venient benchmark for comparing algorithms that ei-

ther use input data from a single type of sensors or fuse

data from different types of sensors for improved perfor-

mance. Concluding, the appealing features of the pre-

sented corpus could constitute it as a roadmap for the

construction of new databases with rich multi-source

content.

10 Concluding remarks

In this work, we have presented a new multimodal cor-

pus for research into, amongst other areas, real-time

realistic interaction between humans in online virtual

environments. Although the dataset is tailored specifi-

cally for an online dance class application scenario, the

corpus provides scope to be used by research and devel-

opment groups in a variety of areas. As a research asset

the corpus provides a number of features that make it

appealing including: it is free to download and use; it

provides both synchronised and unsynchronised multi-

channel and multimodal recordings; the novel record-

ing of dancer sound steps amongst other specific sound

sources; depth sensor recordings; incorporation of wear-

able inertial measurement devices; a large number of

performers; a rich set of ground-truth annotations, in-

cluding performance ratings.

We believe that the provided corpus can be used

to illustrate, develop and test a variety of tools in a di-

verse number of technical areas. For instance within our

research teams, this dataset is currently being used to

develop enhanced frameworks for the automatic anal-

ysis and evaluation of human activities (in particular

dance performances) from multimodal recordings, in-

cluding tasks such as i) human motion analysis, ii) ges-

ture/dance movement recognition, or iii) pose estima-

tion using depth and inertial sensors in order to make

tracking more robust to self occlusions and subtle joint

orientation errors and trying to balance the demands

between accuracy and speed in real time human-computer

interaction applications.
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