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ABSTRACT 

This paper focuses on the automatic extraction of beat structure from 

a musical piece. A novel statistical approach to modeling beat se­

quences based on the application of Hidden Markov Models (HMM) 

is introduced. The resulting beat labels are obtained by running the 

Viterbi decoder and subsequent lattice rescoring. For the observation 

vectors we propose a new feature set that is based on the impulsive 

and harmonic components of the reassigned spectrogram. Different 

components of observation vectors have been investigated for their 

efficiency. The main advantage of the proposed approach is the ab­

sence of imposed deterministic rules. All the parameters are learned 

from the training data, and the experimental results show the effi­

ciency of the proposed schema. 

1. INTRODUCTION 

Extracting different types of semantic information from music data 

has become an emerging area of research in Music Information Re­

trieval (MIR) community. Beat/downbeat tracking is one of the most 

challenging tasks in MIR. Beats are commonly defined as the time 

instants at which human beings would tap their foot for rhythm of the 

music. From the musicological viewpoint, downbeat position is de­

fined as the first beat in a bar. Classification of rhythmical events into 

beats and downbeats brings a portion of useful information about 

metrical structure, that can be used as high-level feature in many 
MIR tasks. 

Numerous approaches exist for beat/downbeat extraction. Most 

of them are based on searching for periodicities in some kinds of 

onset detection function (ODF) [1], [2]. The most common period­

icity detection methods are based on autocorrelation [3], [4], bank 

of comb filter resonators [5], or short-time Fourier transform of the 

ODF [3]. However, estimating beat structure for non-percussive 

sounds, especially with soft note onsets, becomes a more complex 
problem due to the noisy ODF. In order to circumvent this, more so­

phisticated methods that are based on pitch [6] and group delay [7] 

analysis were proposed. 

Recently, several HMM-based approaches have been proposed. 

Peeters in [8] used a reverse Viterbi algorithm which decodes hidden 

states over beat-numbers, while beat-templates are used to derive 

observation probabilities. Y. Shiu et al. [9] used a periodic HMM 

structure to extract beat locations, based on the tempo information 

obtained on the previous step. 

In this paper' we suggest an approach that performs a simulta­

neous estimation of beats and downbeats. It consists of two hierar-
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chical layers, which include acoustic modeling and word sequence 
modeling, with a novel schema to represent periodic metrical struc­

ture. In section 2, a brief introduction to the feature vectors extrac­

tion techniques is provided. Section 3 describes the system archi­

tecture. Experimental results are given in section 4, and finally, sec­

tion 5 suggests the conclusions. 

2. FEATURE EXTRACTION 

Feature extraction is an essential step towards effective and accu­

rate beat/downbeat positions extraction. In this paper two different 

types of features are proposed to model onset events and harmonic 

changes. The first dimension is represented by an Onset Detection 

Function (ODF), based on the impulsive part of the reassigned spec­

trogram. The second and third dimensions are introduced to model 

the dynamics of harmonic changes. In order to model fast and slow 
changes a Chroma Variation Function (CVF) is calculated for short 

and large context windows. The choice of CVF as a feature vector 

component is based on the assumption that most harmonic changes 

that occur inside a piece of music are located at metric bars. 

2.1. Time-frequency reassignment technique for harmonic and 

impulsive spectral components extraction 

The proposed feature set is based on the computation of the time­

frequency reassigned spectrogram and harmonic/impulsive compo­

nent separation proposed in [10]. Time-frequency reassignment 

(TFR) is a well-known technique in spectral analysis and has been 

widely used in different tasks such as sinusoidal estimation, cover 

song identification, chord recognition [11], or beat detection [12]. 

The main idea behind TFR is to remap the spectral energy of each 

spectrogram cell into another cell that is the closest to the true region 

of support of the analyzed signal. 

From a signal downsampled to 11025 Hz, the feature extrac­

tion scheme adopted here aims at separating the reassigned spec­

trogram into three components: impulsive, harmonic and noise by 

following the method proposed in [10]. For each time frame k and 

each frequency bin n, the impulsive and harmonic part of the reas­

signed spectrogram (Simp(k, n) and Sharm(k, n) respectively) are 
derived. In the present study, the noise component is discarded. To 

enhance the time resolution, the spectrogram use to derived Simp 
was computed with a Hanning window of 92 ms with 90% overlap 

between subsequent frames. Whereas, to enhance frequency reso­

lution, the spectrogram use to derived Sharm was computed with a 
Hanning window of 184 ms with 95% overlap. 
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2.2. Onset detection function 

The TFR technique has proved to be efficient to derive an onset de­

tection function (see [12], for example). In our approach, the onset 

detection function is obtained by summing all spectral components 

of the impulsive reassigned spectrogram in a given frame: 

ODF(t) = L Simp(k, n) (1) 

k 

The ODF based on the spectral energy sum of the impulsive part 

of the reassigned spectrogram acts as the first dimension in the fea­

ture vector space. 

2.3. Chroma variation function 

Discrimination between beats and downbeats is particularly chal­

lenging and often needs a richer feature set, rather than a single 

ODF. Papadopoulos and Peeters [13] exploited interrelationships be­

tween chords and downbeats to perfonn simultaneous estimation of 

these attributes. Davies [14] used spectral difference between band­

limited beat synchronous analysis frames as a robust downbeat in­

dicator. In this work we propose to use a so-called Chroma Varia­

tion Function. The main concept here on which we base our ideas 

is the fact that harmonic (chord) changes frequently occur on the 

downbeat positions. CVF reflects the discrepancies between mean 
chroma vectors of two adjacent segments. This technique was used 

in [15] and [16], where spectral variation function features were used 

for speech recognition and automatic segmentation purposes. It was 

shown that using variable context lengths along with mean subtrac­

tion leads to more robust features. In this paper we adopt a similar 

approach. 

Let c(k) be a chromagram derived from Sharm(k, n) as pro­

posed in [11]. Left Cl L (k) and right Cr L (k) contexts of length L 
correspond to the bins with indexes [k - L, ... , k] and [k, ... , k + L] 
respectively. The chromagram c(k) is extracted from the harmonic 

part of the reassigned spectrogram introduced in [10]. 

Let cl/(k) and cr/(k) be the left and the right contexts with 

subtracted mean value over time m(k) of the context that corre­

sponds to the bins with indexes [k - L, ... , k + L]: 

(2) 

(3) 

Let p( Cl, cr) be the nonnalized inner product between the two con­

text means Cl and Cr: 

The CVF is then defined as: 

CV F(k) = 

1 - min(Mlejt, Mright) 
2 

M1ejt = min (p(CIL'(k), cr'(k))) 
15;j5;L J 

Mright = min (p(cl'(k), crL'(k))) 
15;j5;L J 

(4) 

(5) 

(6) 

(7) 

The meaning of CV F (k) can be interpreted as a cosine of an 

angle between the two mean chroma vectors with subtracted m(k) 
value. In order to identify the highest (i.e., most significant) chroma 
variations, given the left and the right contexts, minimum values in 
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Equations 6 and 7 are used. Varying context length L allows one to 

set up the ability to detect smooth or fast harmonic changes. 

3. BEATIDOWNBEAT DETECTION SYSTEM OVERVIEW 

Our method for beat/downbeat estimation follows a statistical ap­

proach that consists of two hierarchical levels: acoustic modeling 

and word sequence modeling. These general ideas have already 

proved to be effective in speech recognition or chord recognition. 

Statistical approaches have also been used in beat/downbeat estima­

tion but usually do not involve a word sequence modeling step. As 

opposed to some deterministic approaches, where beat locations are 

obtained by some kinds of periodicity analysis and subsequent beat 

detection using the tempo infonnation extracted on the previous step, 

no prior infonnation is needed here. The proposed approach relies on 
the concept that the rhythmic events can be described as a dictionary 

of words. Each word represents a time segment between two adja­

cent beat events. In other words, we introduce a specific dictionary 

and unit alphabet, which opens the way to the application of lan­

guage model approaches to the beat/downbeat estimation problem. 

Then, similarly to speech recognition, a unit-based transcription of 

each word from the dictionary is provided. The alphabet includes 

5 units (beat pre-attack/attack, downbeat pre-attack/attack, no-beat) 

and words are then defined by aggregating units. Each word is then 

characterized by a given duration. 

3.1. Acoustic modeling 

As opposed to many other tasks, such as speech/chord recogni­

tion, the use of HMMs for decoding highly periodic events, e. g. 
beat/downbeat positions, has some distinctive features. One of the 

most serious problems one can come across, when trying to use 

HMM for decoding highly periodical events, is the problem of keep­

ing periodicity in the output labels. Self-transitions in the states of 

an HMM allow the model to remain in the same state for quite a long 

period of time. At the same time, time intervals containing numer­

ous note onsets can force the model to produce beat labels with very 

short durations. Y. Shiu et al. [9] proposed a periodic left-to-right 

model that produces periodic output. However, a prior infonnation 

on the tempo is required. The solution proposed here is to discard 

all self-transitions and to add an additional word sequence modeling 

layer to the system architecture. 

The acoustic unit dictionary was build is such a way that dif­

ferent units model the following events: beat pre-attack (BTp), beat 

attack (BTa), downbeat pre-attack (DBTp), downbeat attack (DBTa) 

and "no beat " (NB). We draw an analogy between a unit in the beat 

extraction task and a phoneme in speech recognition. All the units, 

apart from NB, are represented by a Bakis HMM with a number Nst 
of hidden states and no self-transitions. The NB unit has only one 

emitting state. The number of states Nst imposes a duration con­

straint and corresponds to the necessary number of time frames to 

output the unit. 

The model parameter estimation is done using training material 

with ground-truth markers, manually labeled. The extracted feature 

vectors are segmented according to the ground-truth labels so that 

each segment contains Nst frames corresponding to a specific unit. 

All emission probabilities are learned from the training data using 

the Baum-Welch algorithm. 

In such a way, different units model different phases of a 

beat/downbeat event, following at the same time the duration con­

straint. The proposed training schema rules out the possibility to 



stay in any state for more than one frame. Figure 1 depicts an exam­

ple of the acoustic training when Nst = 4 and n( i) is the number of 

frames used to train the NB unit in i-th ground-truth beat segment. 

3.2. Language modeling 

The language modeling layer is an essential part in the proposed beat 

detection system. Its main target is to provide statistical information 

about beat sequences and beat periodicity. The dictionary for the 

beatldownbeat tracking task consists of two word classes: beat and 

downbeat words. Each word from the dictionary is characterized by 

the duration information. 

For each word, a unit-level transcription is provided. It consists 

of a pre-attack unit, followed by an attack unit and a number D of 

NB units that define the duration factor. The first 7 words of the 

dictionary are provided in Table 1. 

Table 1: Dictionary for the beatldownbeat tracking task 

Word Uni t t r anscription 

beat20 BTpBTa20NB 

downbeat20 DBTp DBTa 20NB 

beat21 BTpBTa21NB 

downbeat21 DBTp DBTa 21NB 

beat22 BTpBTa22NB 

downbeat22 DBTp DBTa 22NB 

beat23 BTpBTa23NB 

Having ground-truth annotations for both beat and downbeat, 

one can collect training text from it and leam the statistics on pos­

sible word sequences. Training language models starts with the ex­

traction of input text from the ground-truth labels. Each sentence is 

composed of word tokens defined as described above. The duration 
information for each word is extracted from the time instants cor­

responding to the boundaries of the segment. In order to take into 

account all possible tempo variations, scaling factors in the range 

0.2 - 2.0 are applied. As a consequence, a number of sentences is 

extracted from each ground-truth song. An example of the training 

text extracted from a very short song is given in Table 2. Symbols 

< s > and < / s > denote the beginning and the end of a musical 

piece respectively. The extracted text is given as an input to train 

N-gram language models. 

Table 2: Text extracted from the ground-truth labels 

< 8 > downbeat52 beat52 beat52 beat52 downbeat52 ... beat52 < /8 > 

< 8 > downbeat54 beat54 beat54 beat54 downbeat54 ... beat53 < /8 > 

< 8 > downbeat56 beat55 beat56 beat55 downbeat55 ... beat55 < /8 > 

< 8 > downbeat57 beat57 beat57 beat57 downbeat57 ... beat57 < /8 > 

... 

< 8 > downbeat94 beat94 beat94 beat94 downbeat94 ... beat94 < /8 > 

< 8 > downbeat96 beat96 beat96 beat96 downbeat95 ... beat95 < /8 > 

< 8 > downbeat98 beat97 beat98 beat97 downbeat97 ... beat97 < /8 > 

3.3. BeaUdownbeat detection 

The process of beat structure extraction starts with feature vector 

extraction for a given test song as described in section 2. The ex­
tracted feature vectors are then passed to the decoder. Similarly to 

the approach of multiple-pass decoding, which has been successfully 

used in speech recognition [17], the decoding procedure consists of 

two steps. In the first step, time-and-space efficient bigram language 

model is applied in the stage of Viterbi decoding, producing a lat­

tice. The different lattice nodes denote time instants and lattice arks 

denote different hypotheses about beat and downbeat events. In the 

second step, the obtained lattice is rescored applying more sophisti­

cated 4-gram language models on the reduced search space. A set of 
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important parameters here includes acoustic model weight, language 

model weight and insertion penalty. Finally, the obtained transcrip­

tion labels are matched against ground-truth. 

4. EXPERIMENTAL RESULTS 

Following MIREX evaluations, the scoring methods were taken from 
the beat evaluation toolbox and are described in [18]. F-Meas. 

and DBt F-Meas. are F-measures calculated using 70 ms preci­

sion window for beats and downbeats respectively. Cemgil is calcu­

lated using a Gaussian error function with 40ms standard deviation. 

Goto score measures correct or incorrect tracking based on statisti­

cal properties of a beat error sequence. The system was tested using 

2-fold cross-validation on a dataset that is composed of 72 modem 

pop songs and used for the evaluations inside the Quaero project. An 

additional evaluation was performed using the Hainsworth database. 

Since this database does not contain downbeat information, DBt F­

Meas. is excluded from the evaluation results. The results for dif­

ferent feature vector configurations are given in Table 4, where al­

gorithm Davies corresponds to the results obtained with the Sonic 

Annotator software2 with Bar and Beat Tracker QM Vamp plug-in3• 

The feature vector configuration is given in Table 3. 

Table 3: Feature vector configurations 

CVF 0.4s window 

CVF 0.4s window CVF 2s window 

Table 4: MIREX-based system performance. 

Algori thm I F-Meas. I DBlF-Meas. Cemgil Golo MeK. P-score 
Quaero d at aset 

ldims 81.88 30.52 77.20 79.17 79.96 

2dims 86.53 56.64 81.35 86.11 84.81 

3dims 85.32 60.09 80.22 84.72 83.84 

DAVIES 87.23 64.36 77.45 80.56 84.15 

Hainswor th d at aset 

ldims 73.23 61.61 62.43 73.80 

2dims 76.03 63.98 65.19 75.92 

3dims 74.01 62.06 62.43 74.15 

DAVIES 75.93 61.73 66.85 76.87 

The results for beat estimation indicate that the proposed method 

with 2dims feature vector configuration performed nearly as well as 

the reference method by davies et al. in terms of F-meas. Better 

results are obtained with our approach for other metrics (Cemgil 

and Goto) for the Quaero dataset. Adding CVF feature component 

with the context length of 0.4 sec to a single ODF shows a signifi­

cant increase in performance for both beats and downbeats estima­

tion. However, downbeat F-measure is further improved by adding 
the third feature vector dimension, which is CVF with the context 

length of 2 sec. Needless to mention a slight decrease in the beats F­

measure estimate in comparison with the 2dims configuration. Nev­

ertheless, these two features do improve the downbeat estimation 

results for the proposed method. Tests on the Hainsworth dataset 

proved the advantage of 2dims feature configuration over 3dims one 

for beat detection. F-meas. and Cemgil for 2dims configuration 

outperformed the reference method. 

Participation in MIREX 2011 Audio Beat Tracking4 contest was 

an excellent opportunity to compare the performance of the proposed 

2http://omras2.orglSonicAnnotator 
3http://www.varnp-plugins.org 
4http://www.music-ir.orglrnirexlwikiI2011:Audio_BeaLTracking 
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Fig. 1: Unit-based HMM training 

system with many other systems. Two different systems, which 

are KFROI and KFR02 were submitted. KFROI corresponds to 

the 2dims feature vector configuration, while KFR02 correponds to 
the 3dims one. Model parameters were estimated using the Quaero 
dataset. Experimental results showed that both systems performed 

well on the "MCK " dataset, showing F-measure value very close to 
the top result. 

5. CONCLUSION 

The experimental results have shown that the proposed probabilis­
tic approach to simultaneous estimation of beat/downbeat positions 

from audio is effective. The introduced explicit modeling of beat 
segment duration in the language modeling layer proved to be effec­

tive for solving the output labels periodicity problem. In addition, 
the system is also flexible and can be trained on other musical styles. 
Further improvement could be gained by incorporating tempo esti­

mation into the model and by utilizing high-level features to enhance 

downbeat estimation. Another interesting investigation can be con­
ducted in the area of application of multi-stream HMMs. Splitting 

feature vector into a number of separate streams and assigning dif­

ferent stream weights could be effective. 
The potential of the proposed approach is clearly shown. Indeed, 

although the training material is sufficient to validate the approach, 

it is still small and a longer training would undoubtedly allow to 
improve those first results. Furthermore, another potential improve­

ment could be brought by building genre specific language models. 
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