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ABSTRACT

The reverberation time is a key feature for describing the
acoustic properties of a reverberant room. It can be com-
puted from a measured Room Impulse Response but in many
applications it has to be estimated blindly. Existing blind
methods give accurate estimates but they often exhibit high
variance across different speakers. In this paper, a low vari-
ance blind estimator of the reverberation time is derived from
the decay rate distribution of the signal. The influence of the
reverberation time on the statistical moments of the distri-
bution is analyzed and one relevant moment is taken as an
estimator. The variance of the estimator is reduced thanks
to a prewhitening filter and a modification of the decay rate
distribution. Experimental results confirm the accuracy of the
method when the observed signal is sufficiently long.

Index Terms— Reverberation time, blind estimation, de-
cay rate distribution, low variance

1. INTRODUCTION

The reverberation time (RT) is one of the main features for
describing the acoustics of a room. It is defined as the amount
of time required to measure an energy decay of 60 dB after
the excitation source is turned off. The RT gives valuable in-
formation on the degradation affecting the speech signal [1]
and it is needed to calibrate der beration algorithms that are
based on a statistical model of the Room Impulse Response
(RIR) of the enclosure [2, 3]. It is usually computed from a
measured RIR using the well-known Schroeder’s backwards
integration method [4]. However in a real speech communi-
cation context we do not have access to this information and
must proceed blindly.

The problem of blind estimation of the RT has largely
been addressed in the last decade. Some blind techniques
exploit a model of the deformation of the speech signal in-
troduced by reverberation. The RT is then mapped to a mea-
sure of the deformation of the temporal [5] or the spectral
[6] envelope of the signal. In [7], an Artificial Neural Net-
work is trained to learn reverberation models. Other methods
segment the decaying regions of the log-energy envelope of
the signal and use linear regression on these regions to track
the decay rate [2]. Recently, Maximum Likelihood (ML) ap-

proaches have been developed [8, 9]. RT estimates are con-
tinuously computed and an order filter is used to choose the
most likely value. Wen et al. develop a blind method linking
the second moment of the decay rate distribution to the RT
[10]. The method performs in the Fourier domain. For each
analysis frame a linear regression is made on the subband log-
energy envelope to compute the decay rates. The method is
fast and reliable, but exhibits high variance accross speakers.

In this paper, we introduce a low variance RT estimator
based on the decay rate distribution of speech signals. The
estimation is performed in the time domain by studying the
distribution of the energy ratios between adjacent frames of
the energy envelope. The analysis of the relationship between
the statistical moments of this distribution and the RT shows
that the variance of the negative-side of the distribution is
a reliable estimator of the RT. We show in our experiments
that a prewhitening stage significantly reduces the variance
of the estimator while keeping a small estimation bias. We
also show that using a truncated distribution instead of the
symmetric one used in [10] improves the accuracy of the es-
timator.

The paper is organized as follows: in Section 2 we intro-
duce the sound decay model that will be used to derive the RT
estimator described in Section 3. The estimator is compared
to a state of the art method in Section 4 and some conclusions
are suggested in Section 5.

2. MODEL OF SOUND DECAY TAIL

The decay tail of a RIR is often modeled as an exponentially
damped Gaussian white noise [11]. Since the RT is defined
from a measured RIR, we expect to reliably estimate it in
speech segments where the RIR model holds. Thus, we model
the decay tail d(n) of speech signals as:

d(n) = b(n)e−δn (1)

where b(n) ∼ N (0, σ2
b ), n is the sample index and δ is

the decay rate which is related to the reverberation time by:

δ = 3 ln(10)/RT (2)

Using equation (1), we compute the energy envelope of
the decay tail, denoted e(n):
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Fig. 1. Distribution of the energy ratios for some RT values:
a) Anechoic speech, b) RT = 250 ms, c) RT = 500 ms and
d) RT = 1 s.

e(n) = E[d(n)d(n)∗] = σ2
be

−2δn (3)

where E[.] denotes the expectation operator.
We analyze the temporal energy envelope of the signal

with a frame length of N samples and an hop size of R sam-
ples. Let’s consider the total energy of the envelope e(n) over
the mth frame:

Em =

N−1∑
i=0

e(Rm+ i) = σ2
b

(
1− e−2δN

1− e−2δ

)
e−2δRm (4)

Let ρ(m) be the logarithm of the energy ratio between
frames m and m − 1. Using equation (4), a straightforward
estimator of the decay rate is obtained:

ρ(m) = log

(
Em
Em−1

)
= −2δR (5)

The model assumed in this section holds only if the speech
source is a white noise, which is not realistic. For all other
speech signals, the decay rate is underestimated. In the next
section, we use the distribution of ρ to build an estimator that
is robust to modeling errors.

3. BUILDING AN ESTIMATOR

3.1. Energy Decay Distribution

In the following, we store successive estimates of the decay
rate in an histogram to get an approximation of the energy
decay rate distribution. Fig. 1 shows these histograms for a
single speaker and multiple RT. Fig. 1-a) shows the Laplacian
nature of the anechoic speech distribution and Figs. 1-b), c)
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Fig. 2. Statistical moments of the decay rate distribution as
a function of RT with 95% confidence intervals represented:
a) Mean, b) Variance, c) Skewness, d) Kurtosis, e) Variance
of the symmetric distribution [10] and f) Variance of the trun-
cated distribution.

and d) give the shape of the distribution for a RT of 250 ms,
500 ms and 1 s, respectively. As RT increases, negative decay
rates appear more often and the distribution becomes asym-
metric.

We analyze the average, across several speakers, of the
first four statistical moments of the distribution of ρ in order
to establish a link between the RT and the shape of the distri-
bution. Figs. 2-a), b), c) and d) respectively show the aver-
age mean, variance, skewness and kurtosis of the distribution,
as well as the 95% confidence intervals. For those four mo-
ments, the confidence intervals are too wide and can lead to
confusion if they are used as estimation features. This is ex-
plained because the shape of the distribution depends on both
the RIR and the considered speaker. In [10], it is assumed that
the negative-side of the distribution contains most of the infor-
mation about the decay rate of the RIR. Thus, the variance of
a symmetric distribution having the same negative-side than
the original distribution is used in [10] as an estimator for the
RT. In this work, we keep this assumption but we study the
properties of a truncated distribution where all the positive
decay rates of ρ are ignored. Then, we take the variance of
the truncated distribution as an estimator. Figs. 2-e) and f)
show the variances of the two modified distributions. In both
cases the variability due to the speakers is reduced and the
lowest confidence intervals are obtained with the variance of
the truncated distribution, denoted ν.

Finally, a 3rd order polynomial is fit by least squares in
order to determine the decay rate δ as a function of ν:

δ = α3ν
3 + α2ν

2 + α1ν + α0, (6)
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Fig. 3. Bias of the estimator compared to Wen et al. method
[10]. 95% confidence intervals are shown for some RT values.

3.2. Prewhitening

The white noise assumption made in Section 2 does not hold
for speech. We get closer to the model using a prewhitening
filter obtained by linear prediction, for example. According
to [12] the LP residual of reverberant speech is explained as
the convolution of the LP residual of clean speech by the RIR
and, because of this, the effect of reverberation is mainly ob-
servable in the LP residual of the signal. We then expect to
estimate reliably the RT using the prewhitened signal.

4. EVALUATION

4.1. Settings

For our experiments, we generated 23 RIR with reverbera-
tion times from 100 ms to 1100 ms using the Fast Image-
Source Method described in [13]. Schroeder’s method was
then used to validate the reverberation times of the generated
RIR. About 7 minutes of anechoic speech from 7 different
speakers were taken from the ARCTIC database [14] to train
the estimator. For each speaker and each RIR, we pass the sig-
nal through a 20th order prewhitening filter with 32 ms long
non-overlapping windows. The prewhitened signal is then an-
alyzed in frames of length N = 64 ms with 75% overlap. We
compute the logarithm of the energy ratios between adjacent
frames and build the corresponding histogram. The variance
of the negative values of the histogram is then calculated for
each speaker and each RIR. Finally, a least squares polyno-
mial fit over the average variance across the speakers gives
a function linking the measured variance ν to the decay rate
δ, which is linked to the RT by (2). After exhaustive experi-
ments, a 3rd order polynomial was found to be the best fit to
the observations with a correlation coefficient of 0.9992.
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Fig. 4. Variance of: i) Wen et al. estimator (dashed), ii) the
proposed estimator (solid) for several RT values.

4.2. Estimator Performance

We test our method in a 7-fold approach. For each fold, we
exclude one speaker from the training database and we com-
pute the average, across the remaining speakers, of the vari-
ance of the truncated distribution as a function of the RT. The
coefficients {αi} of the estimator in (6) are then calculated
and stored. Then, we observe about 1 minute of signal from
the excluded speaker and compute its decay rate histogram.
After taking ν, the variance of the negative-side of the distri-
bution of ρ, we estimate the RT using the learned coefficients.
We compare this method to our implementation of the algo-
rithm in [10], where the decay rates are computed by linear
fitting on the energy envelope of the signal and the histogram
is computed over exactly the same 1-minute long observation
as above. The average estimated RT and the variance of the
estimator are analyzed for both methods.

In Fig. 3, we show the estimated RT as well as the 95%
confidence intervals. Both algorithms give an unbiased es-
timation for low RT and a slight bias as RT increases. We
analyze the variance of both estimators in Fig. 4. The pro-
posed method has a very low variance for RT smaller than
500 ms. For higher RT, the variance increases with the RT
but it remains lower than the one of Wen et al. method for
almost every RT. This ensures better robustness to speaker
variability. This gain in accuracy is obtained at the cost of
longer computation as we need to observe at least 1 minute
of speech signal to converge to a correct estimate. This is not
necessarily unpractical because in some situations, such as in-
car dereverberation, the acoustic environment is quite stable
and allows for an incremental learning of the properties of the
enclosure.

We finally study the influence of the prewhitening stage
by ignoring it in the same training and testing scheme de-
scribed above. For completeness, we justify the use of the
truncated decay rate distribution by comparing our RT esti-
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Fig. 5. Variance of the estimator when the prewhitening stage
is ignored (dotted), when the whole decay rate distribution
is considered (dash-dotted), when the symmetric distribution
is used (dashed) and using the truncated distribution and the
prewhitening stage as described above (solid).

mator to the one obtained when the whole distribution or the
symmetric distribution of the prewhitened signal are consid-
ered. We analyze the variance of the estimates for each case
in Fig. 5. It is clear that both the prewhitening and the trun-
cation of the distribution reduce the variance of the estimates,
particularly for high reverberation times. This is because both
modifications narrow down the gap between the signal and the
model given in Section 2.

5. CONCLUSION

We presented a robust method for the blind estimation of the
reverberation time of a room. The decay rates of the time
domain energy envelope of the signal are computed. We an-
alyzed the influence of the reverberation time on the shape
of the distribution of the decay rates. The variance of the
negative-side of the distribution was found to be a good fea-
ture for the estimation and it was linked to the reverberation
time using a 3rd order polynomial. We showed that the use of
a prewhitening filter as a preprocessing stage helps to reduce
the variance of the estimator. Our evaluation showed that,
if the analyzed signal is sufficiently long, the proposed esti-
mator reliably estimates the reverberation time while having
little dependency on the considered speaker.
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[9] H.W. Löllmann, E. Yilmaz, M. Jeub, and P. Vary, “An
improved algorithm for blind reverberation time estima-
tion,” in Proc. IWAENC, Tel Aviv, Israel, 2010.

[10] J.Y.C. Wen, E.A.P. Habets, and P.A. Naylor, “Blind esti-
mation of reverberation time based on the distribution of
signal decay rates,” in Proc. ICASSP, Las Vegas, USA,
2008, pp. 329–332.

[11] J.D. Polack, La Transmission de l’énergie sonore dans
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