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Abstract—Sinusoidal modeling is one of the most popular
techniques for low bitrate audio coding. Usually, the sinusoidal
parameters (amplitude, pulsation and phase of each sinusoidal
component) are kept constant within a time segment. An alterna-
tive model, the so-called Exponentially-Damped Sinusoidal (EDS)
model, includes an additional damping parameter for each sinu-
soidal component to better represent the signal characteristics. It
was however never shown that the EDS model could be efficient
for perceptual audio coding. To that aim, we propose in this paper
an efficient analysis/synthesis framework with dynamic time-
segmentation on transients and psychoacoustic modeling, and an
asymptotically optimal entropy-constrained quantization method
for the four sinusoid parameters (e.g including damping). We
then apply this coding technique to real audio excerpts for a given
entropy target corresponding to a low bitrate (20 kbits/s), and
compare this method with a classical sinusoidal coding scheme
using a constant-amplitude sinusoidal model and the perceptually
weighted Matching Pursuit algorithm. Subjective listening tests
show that the EDS model is more efficient on audio samples with
fast transient content, and similar to the classical model for more
stationary audio samples.

Index Terms—Exponentially damped sinusoids, Quantization,
Entropy, Parametric audio coding.

I. INTRODUCTION

For low bitrate audio coding applications, parametric coders
are an efficient alternative to transform coders. Classical trans-
form coders (e.g. MPEG-1 Layer 3 [1] or MPEG-2/4 AAC [2])
use a time-frequency transform with a perfect reconstruction
capability. The transform coefficients are quantized in order to
perform a spectral-shaping of the quantization noise according
to psychoacoustic considerations. Finally, a lossless entropy-
coding stage transforms the set of quantization indexes (and
some extra parameters, called side-information) into a bit-
stream. Such coders are efficient for high-bitrate/high-quality
coding, as the reconstructed signal tends to equal the original
signal as the bitrate increases.

At low bitrate, the efficiency of transform coders col-
lapses because of an excessive amount of side-information.
In contrast, parametric coders model the signal with very
few meaningful parameters. This method usually does not
allow perfect reconstruction, but leads to a significantly sparser
representation than classical time-frequency transforms. The
remaining of the coder is similar to a transform coder: pa-
rameters are quantized and quantization indexes are entropy-
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coded. Many parametric signal models have been proposed in
the literature, but the sinusoidal model [3] remains the most
popular, because most real-world audio signals are dominated
by tonal components. Traditionally, in sinusoidal models used
for parametric coding, the amplitude of each component is kept
constant within each analysis/synthesis time segment. Both
parametric codecs included in the MPEG-4 Audio standard,
HILN [4] and SSC [5], use a sinusoidal model combined
with a residual signal model, often called noise model. In
SSC, other features are added, namely a transient model us-
ing Meixner waveforms, and alignments of analysis/synthesis
time-segments with onsets. In both HILN and SSC, sinusoidal
parameters are quantized independently: frequency is quan-
tized at just noticeable distortion [6], amplitude uses a log-
uniform scalar quantizer, and phase uses a uniform scalar
quantizer. This scheme requires a low computation time but
is obviously less efficient than a vector quantizer since it
does not take advantage of the statistical dependency between
parameters. Recently, more efficient joint-scalar quantizers
for sinusoidal parameters have been proposed [7], [8], which
almost equal a vector quantizer in terms of entropy-distortion
tradeoff but with a much lower complexity.

Some studies have shown that an evolution of the traditional
sinusoidal model, the Exponentially Damped Sinusoidal (EDS)
model, is an efficient alternative for modeling some audio
signals [9], especially when the signal exhibits many onsets
(i.e. sharp amplitude variations). The time-envelope of each si-
nusoidal component is an increasing or decreasing exponential,
controlled by an additional damping parameter. A nice feature
with the EDS model is that efficient estimation algorithms
have been proposed. They can be roughly divided in two
categories: iterative analysis-by-synthesis methods (Matching
Pursuit) [10] and subspace-based methods (MUSIC, ESPRIT)
[11], [12]. However, it was never shown that the EDS model
could be efficient for perceptual audio coding. In a previous
paper [13], we presented a new entropy-constrained joint-
quantization scheme for EDS parameters. This method was
restricted to the quantization of amplitude, phase and damping.
We showed that this scheme was almost as efficient as a vector
quantizer in terms of entropy / SNR trade-off, and its low
complexity was compatible with audio coding applications.

In this paper, we propose an extended version of this study.
Our contributions concern the analysis-synthesis framework
and the quantization stage: we describe, under some reason-
able simplifying hypothesis, an analytic solution for optimal
entropy-constrained joint-quantization of the whole parameter
set. Furthermore, we now take in consideration the auditory
perception in both the EDS analysis stage and the quantization
stage. We also demonstrate the merit of our solution compared
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to the more traditional sinusoidal model.
Concerning the analysis-synthesis framework, three main

difficulties must be taken into consideration: first, as explained
in [12], the efficiency of the EDS model is conditioned to
the accuracy of time-segmentation. Thus ideally, the analysis
window should be rectangular and time-segments boundaries
should be aligned with onsets, but the practical determination
of boundaries location is still an issue. Second, the selec-
tion of sinusoidal components should be made according to
psychoacoustic considerations. In other words, for a given
number of components, only the most perceptually significant
ones should be selected. Two different approaches have been
proposed [14], [15], but they are not fully compatible with
parametric audio coding requirements. Third, as explained in
[16], the time-envelopes resulting for the synthesis with an
EDS model are not smooth, and smoothness is desirable in
the context of audio coding in order to avoid discontinuities at
time-segment boundaries. In this paper, we propose an efficient
analysis/synthesis framework for the EDS model which meets
these three requirements.

Concerning quantization, the inclusion of an additional
damping parameter in the signal model calls for a new quan-
tization scheme. We propose an extension of the joint-scalar
quantization method by Korten et al. [8], which allows jointly
quantizing the four parameters of each sinusoid (amplitude,
phase, damping and pulsation) under an entropy constraint
according to psychoacoustic considerations. When the quan-
tization stage is followed by a noiseless coder, the entropy
of quantization indexes is an estimation of the output bitrate
in the ideal case. In this paper, we do not consider noiseless
coding: we evaluate our coding scheme in terms of distortion
for a given (target) entropy. We do not consider either the
quantization and coding of perceptual and segmentation data.
We focus on the quantization of EDS parameters, which is the
critical part in terms of entropy/distortion trade-off. A global
description of the coding/decoding system that we propose is
illustrated on figure 1.

This paper is organized as follows. In the first part, we
present the signal model, the parametric estimation method
and the analysis-synthesis framework. In the second part,
we consider the optimal quantization of parameters under an
entropy constraint, first in the single-sinusoid case, then in
the multiple sinusoid-case with psychoacoustic considerations,
which is the real situation in audio coding. In the last part, we
evaluate our coding scheme in terms of perceived distortion,
and compare it with a similar coding scheme using a constant-
amplitude sinusoidal model, using state-of-the art methods for
parametric estimation and quantization.

II. THE ANALYSIS/SYNTHESIS FRAMEWORK

A. Signal model

The EDS model for a signal x(t), t ∈ [0, T ] can be written
as

x(t) =

K−1∑
k=0

sk(t) + ε(t), (1)

where T is the length of the analysis/synthesis time-segment,
K is the model order (i.e. the number of sinusoidal compo-

nents), sk(t) is an exponentially damped sinusoid and ε(t) is
the residual signal. t can be a continuous-time variable (then T
represents seconds) or a discrete-time index (then T represents
a number of samples). Each EDS is defined as

sk(t) = αk (zk)
t. (2)

αk are the complex amplitudes, zk the poles. Formulation (2)
is mathematically convenient, but it is often clearer to use
more explicit expressions. We write the poles as

zk = e
1
T (δk+iωk), (3)

where δk are the dampings and ωk the pulsations. Pulsation is
directly related to the frequency of the oscillating part of each
component (frequency is defined as ωk/ (2π), but we rather
use pulsation for convenience sake), and damping is related
to the sharpness of the exponential time-envelope. A positive
damping corresponds to an increasing envelope, a negative
damping to a decreasing envelope and a null damping to a
constant-amplitude sinusoid. Note that we choose to normalize
dampings and pulsations with respect to T . As we will use this
model with variable-length time-segments, this ensures that the
statistical distribution of dampings and pulsations is consistent
over all segments. Furthermore, this expression will appear to
be more convenient while optimizing the quantization.

We write the amplitudes as

αk =

{
ak e

−δk+iψk if δk ≥ 0,
ak e

iψk if δk < 0,
(4)

where ak are the real amplitudes and ψk the phases. Practi-
cally, ak corresponds to the maximum value of the exponential
time-envelope, at t = 0 for a negative damping, and at t = T
for a positive damping. Using different expressions for αk with
positive and negative dampings avoids numerical errors while
estimating ak in the case of high (absolute) dampings.

It appears that quantizing directly ψk is not efficient. Indeed,
in sinusoidal modeling, the phase origin is usually not at
the beginning of the analysis segment: It was proved in [8]
that, for constant-amplitude sinusoids and symmetric analysis
windows, the energy of the quantization error is minimal when
the phase origin is located in the middle of the segment. In our
case, we show in section III-A1 that the optimal phase origin
depends on damping, and must be adjusted independently for
each component. For this purpose, we define a new phase
parameter ϕk = ψk + ωkτk, where τk sets the location of
the phase origin. The constant-amplitude case corresponds to
τk = 1

2 . The phase parameter to be quantized is ϕk. We show
that τk only depends on the damping parameter δk, and thus
does not need to be transmitted to the decoder.

In this study, we focus on the sinusoidal part, and do not
consider the coding of the residual signal ε(t).

B. Setting the model order

For a given signal and a given time-segment, finding the
optimal value of parameter K, i.e. the number of sinusoids, is
a challenging problem. Many methods have been proposed to
automatically determine the best model order with respect to
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Fig. 1. Block-diagram of the coding/decoding scheme. JSQ means Joint-Scalar Quantization.

various criteria, e.g. Maximum Likelihood, Information The-
oretic (ITC), Akaike Information (AIC), Maximum Descrip-
tion Length (MDL), Efficient Detection (EDC) or ESTimated
ERror (ESTER). For a review, see [17]. However, all these
methods rely on purely algebraic considerations and the results
are not always perceptually optimal. In this paper, we do not
directly address this problem. We consider a fixed mean-bitrate
approach: we set the average entropy of quantization indexes
for one component, i.e. the average amount of coding bits per
component, which determines the model order.

C. Estimation of the parameters

1) Classical EDS model: Actually, the most efficient
schemes for EDS parameter estimation are subspace methods
[12], [14], [15], [18]. These methods are well known for their
good spectral properties, and as explained in section IV-A, fast
implementations have a lower complexity than fast Matching
Pursuit. In this paper, we use the estimation scheme proposed
in [18], which is an extension of the ESPRIT algorithm [19].
The basic algorithm can be briefly described as follows, using
the discrete-time signal model.

We define the signal vector:

x =
[
x[0] x[1] . . . x[T − 1]

]t
, (5)

where (.)t stands for the transposition operator. The Hankel
signal matrix is defined as:

X =


x[0] x[1] . . . x[Q− 1]
x[1] x[2] . . . x[Q]

...
...

...
x[R− 1] x[R] . . . x[T − 1]

 , (6)

where Q > K, R > K, and Q + R − 1 = T . Q ≈ R
was proved to be an efficient solution [20], thus we choose
Q = ⌊T/2⌋ where ⌊.⌋ stands for the lowest integer. We also
define the complex-amplitude vector:

α =
[
α0 α1 . . . αK−1

]t
, (7)

and the Vandermonde matrix of the poles:

ZT =


1 1 . . . 1
z0 z1 . . . zK−1

...
...

...
...

zT−1
0 zT−1

1 . . . zT−1
K−1

 . (8)

Thus, equation (1) can be written as:

x = ZTα+ ε (9)

Performing a singular value decomposition (SVD) on X leads
to:

X = [U1U2]

[
Σ1 0
0 Σ2

] [
V1

V2

]
, (10)

where Σ1 and Σ2 are diagonal matrices respectively contain-
ing the K largest singular values, and the smallest singular
values; [U1U2] and [V1V2] respectively are the corresponding
left and right singular vector matrices. The shift-invariance
property of the signal space spanned by V1 yields:

V ↓
1 Φ = V ↑

1 , (11)

where the poles are the eigenvalues of matrix Φ. (.)↑ and (.)↓

respectively stand for the operators discarding the first line and
the last line of a matrix. The estimation of Φ that minimizes
the mean square error is:

Φ =
(
V ↓
1

)†
V ↑
1 , (12)

where (.)† denotes the pseudo-inverse operator. Then, zk can
be obtained by diagonalizing Φ. The associated Vandermonde
matrix ZT is computed. Finally, the optimal amplitudes with
respect to the least square criterion are obtained by:

α = (ZT )†x. (13)

2) Perceptual EDS model: The previous estimation scheme
is optimal according to the MSE criterion when the signal
follows the EDS model and when the residual signal is a
stationary white noise. However, real-life audio signals do
not exactly follow the EDS model and the residual is not
white, which degrades the performance of the estimation.
Furthermore, this method minimizes the MSE, which is not a
perceptual criterion. Some estimation methods use a whitening
pre-filter in order to improve the performance of the estimation
[21], and some other focus on the perceptual aspects: in
[15], a subband-analysis approach is used. This method seems
efficient, but is hardly compatible with audio coding, because
the unavoidable frequency-domain overlap between subbands
leads to multiple representation of some components, which
degrades the coding efficiency. In [22], Chen et al. modified
the Total Least Squares (TLS) algorithm, which is very similar
to ESPRIT, in order to get approximately the result of the
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original method applied to a pre-filtered version of the input
signal, but without the drawback of deleting the first samples
of the filtered signal corresponding to the length of filter
impulse response. In [14], a modified version of this method
is applied to audio signals with a perceptual pre-filter. In this
study, we propose another modified version of this method.
We define the perceptual pre-filtering matrix of size R×R as

M =



µ[τ ] . . . µ[0] 0 . . . 0
...

. . . . . . . . .
...

µ[N − 1]
. . . . . . 0

0
. . . . . . µ[0]

...
. . . . . . . . .

...
0 . . . 0 µ[N − 1] . . . µ[τ ]


,

(14)
where µ[n], n ∈ {0 . . . N − 1} is the impulse response of the
perceptual filter, and τ = N+1

2 , N being an odd number.
In the estimation algorithm, the SVD is actually performed
on MX instead of X (equation (10)), which is similar to
pre-filtering the audio signal x by µ. Due to the Toeplitz
structure of matrix M , the shift-invariance of the signal space
is preserved, and the eigenvalues of Φ are the most important
poles from a perceptual point of view. With this method,
psychoacoustics is taken into consideration in the selection of
sinusoidal components, but the residual signal is still generally
not white. However, this does not seem to significantly impact
the precision of pole estimation. The estimation of complex
amplitudes is still given by (13).

Different versions of the pre-filtering matrix have been
proposed in the literature. In [14], a circular Toeplitz matrix
is used, which is similar to performing a circular convolution
on the input signal. This is known to introduce an edge-effect
distortion, and thus does not seem suitable for audio coding.
In contrast, we introduce a zero-padding in the pre-filtering
matrix to avoid this edge-effect.

To compute the perceptual filter coefficient µ[n], we use
an earing model. We appply the MPEG #2 psychoacoustic
model (described in [2]) to the input signal. We get signal-to-
mask ratios (SMR) over constant-length time segments (2048
samples, with 50% overlap). As explained in the following
section, our analysis segments are aligned with onsets and
thus are not necessarily aligned with the psychoacoustic model
segments. A reasonable way to compute the SMR over each
analysis segment is to average the SMR over psychoacoustic
model segments that overlap this analysis segment.

In the literature, the perceptual filter in the frequency
domain is usually identified to the inverse of the masking
threshold. From our experiments, we found out that better
results were obtained while directly using the SMR. Min-
imizing the MSE weighted by the inverse of the masking
threshold is equivalent to minimizing the mean SMR. This
makes sense since some studies have shown that the SMR is an
accurate measure of perceptual distortion in a single perceptual
subband. The mean SMR over all frequency bands is usually
considered as a global measure of perceptual distortion, but it
does not take the absolute energy of each spectral component

into account. It is well known in audio coding engineering
that a medium degradation on a high energy component will
probably be much more annoying than a severe degradation on
a low energy component, since the first one will more likely
affect the global energy of the audio signal. This is especially
true for low frequencies. Using the SMR as perceptual weight
allows minimizing a criterion that takes both the relative
energy (with respect to the masking threshold) and the absolute
energy of each spectral component into account.

Finally, we compute the impulse response of the perceptual
filter by applying an inverse Discrete Fourier Transform to the
SMR.

D. Setting the analysis/synthesis segments and windows

The EDS model is efficient assuming that the boundaries of
analysis/synthesis segments are aligned with onsets. Thus, we
first perform an onset detection on the input signal. We use the
method proposed by C. Duxbury et al. [23], which is based
on a subband decomposition and an energy-variation criterion
in each subband. This method determines the onset positions
with a precision of 256 samples. For a more efficient detection,
we moved a posteriori the onset location to the nearest local
maximum of instantaneous energy. Once the onset locations
are estimated, the boundaries of analysis/synthesis segments
are computed. As a certain amount of overlap is unavoidable,
we choose to locate the beginning of a segment 32 samples be-
fore the onset, and the end of the previous segment 32 samples
after. A maximum segment length is set for implementation
convenience to 2048 samples. This means that we consider two
overlap categories: short overlaps (64 samples, i.e. 1.5 ms at
44100 samples per second) around onsets, and long overlaps
(1024 samples, i.e. 23 ms at 44100 samples per second) in
stationary regions.

Considering windows, the only choice for analysis is the
rectangular window, because any other would degrade the
estimation of dampings. At synthesis, a smooth window is
necessary to avoid discontinuities, e.g. the square-sine (Hann)
window. The onset locations and synthesis windows are illus-
trated on a portion of a glockenspiel signal in figure 2.
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Fig. 2. Glockenspiel signal, onset locations and synthesis windows.
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III. JOINT-SCALAR QUANTIZATION OF PARAMETERS

In this section, we consider the quantization of sinusoid
parameters. For a single sinusoid sk(t), the set of parame-
ters to be quantized is written pk = {ak, δk, ωk, ϕk}. Note
that the phase parameter is obtained according to ϕk =
ψk + ωkτk where ψk is the original phase given by the
estimation algorithm, and τk is the phase-origin parameter
which will be set as a function of δk in section III-A1.
After quantization and decoding, the reconstructed parameters
are p̂k = {âk, δ̂k, ω̂k, ϕ̂k}, and the reconstructed sinusoid is
denoted ŝk(t). The theoretically optimal solution would be
to apply a 4D trained vector quantizer to pk, but complexity
quickly becomes a serious issue when the dimension increases.
For amplitude-constant sinusoids, a more efficient joint-scalar
quantization scheme was proposed by Korten et al. [8]. We
propose below an extension of this approach to the case of
exponentially damped sinusoids.

A. Single sinusoid case

1) Defining the quantizers: In a first step, we describe
a quantization method that minimizes the mean quadratic
distortion between the original and the decoded signals, under
a constraint on the entropy of quantization indexes. With the
continuous-time model, the distortion is defined as

d(pk, p̂k) =
1

T

∫ T

0

|sk(t)− ŝk(t)|2 dt. (15)

In practice, x(t) is a discrete-time signal, but the continuous-
time expression is still a good approximation as long as 1/T
is much smaller than the sampling frequency.

In this section, as we consider the quantization of a single
sinusoid, we omit index k. In appendix A, we show that
d(pk, p̂k) can be approximated under a high resolution hy-
pothesis, i.e. when p̂ ≈ p. We also show that the distortion
can be minimized with respect to the phase origin parameter
τ . We get

d(p, p̂) ≈ a2h1(2δ) + â2h1(2δ̂)− 2aâ h1(δ + δ̂)

+ aâ(ω − ω̂)2h2(δ + δ̂) + aâ(ϕ− ϕ̂)2h1(δ + δ̂),
(16)

where functions h1 and h2 are defined in the appendix
(equation (29)). This approximation is valid when the phase
origin parameter is set according to

τ =
(δ + δ̂)− 1 + e−(δ+δ̂)

(δ + δ̂)
(
1− e−(δ+δ̂)

) ≈ 2δ − 1 + e−2δ

2δ (1− e−2δ)
. (17)

It can be easily proved that τ → 0 when δ → −∞, and
τ → 1 when δ → ∞, which means that when the damping
is highly positive (resp. negative), the phase origin is located
in t = T (resp. in t = 0), i.e. where the instantaneous energy
is maximum. Furthermore, one can see that τ = 1

2 when δ =
0, which is consistent with the case of a constant-amplitude
sinusoidal model.

Optimization of entropy-constrained quantizers under a high
resolution hypothesis was originally introduced by A. Gersho
[24]. In this approach, the quantizers are defined by their
quantization cell density (QCD), which can be seen as the

inverse of the quantization step-size. In order to derive an
analytic expression for the optimal QCD, we make a simpli-
fying assumption: amplitude, phase, damping and pulsation
are quantized with scalar quantizers, but depending on one
another. This is called joint-scalar quantization (JSQ). Then,
the global QCD can be written as the product of four scalar
functions: gA, g∆, gΩ and gΦ respectively for amplitude,
damping, pulsation and phase. We note i = {ia, iδ, iω, iϕ}
the set of quantization indexes associated with p̂. We note P ,
P̂ and I the random variables associated respectively with p,
p̂ and i. The optimal quantizers minimize the mean distortion
D = E[d(P, P̂ )] under the constraint H(I) ≤ H, where H(I)
denotes the entropy of quantization indexes and H the target
entropy for one component.

In appendix A, we show that the mean distortion can be
approximated as a function of scalar QCDs:

D ≈ 1
12

∫
ρP (p)

[
h1(2δ)
g2A(p)

+ a2h1”(2δ)
g2∆(p)

+ a2h2(2δ)
g2Ω(p)

+ a2h1(2δ)
g2Φ(p)

]
dp.

(18)

where ρP (p) is the probability density function of EDS
parameters and h1” stands for the second order derivative of
function h1.

The joint entropy of quantization indexes can be approxi-
mated by [24]

H(I) ≈ h(P ) +

∫
ρP (p) log2 [gA(p)g∆(p)gΩ(p)gΦ(p)] dp,

(19)
where h(P ) is the joint differential entropy of EDS parameters
defined as

h(P ) = −
∫
ρP (p) log2(ρP (p)) dp. (20)

Assuming that the entropy-distortion function of any quantizer
(i.e. D as a function of H(I)) is decreasing, the optimal
solution (i.e. the minimum value for D) is reached when
H(I) = H. This constrained optimization problem can be
conveniently solved with a Lagrange optimization technique.
In appendix B, we show that the optimal QCDs are

gA(δ) ≈ h1(2δ)
1
2 2

1
4 (H−H0)

gΦ(a, δ) ≈ a h1(2δ)
1
2 2

1
4 (H−H0)

g∆(a, δ) ≈ a h1”(2δ)
1
2 2

1
4 (H−H0)

gΩ(a, δ) ≈ a h2(2δ)
1
2 2

1
4 (H−H0),

(21)

where H0 is a constant that only depends on the probability
density function of the parameters.

One can see that the amplitude, pulsation and phase quantiz-
ers are uniform (the QCD does not depend on the variable to be
quantized), but the quantization step-size depends on damp-
ing for amplitude, and on both damping and amplitude for
pulsation and phase. The damping quantizer is non-uniform:
the QCD is maximal for small dampings and decreases as the
absolute value of damping increases, i.e. the quantization cells
are smaller for high dampings.

Combining equations (21) and equation (18) gives the
theoretical entropy-distortion function, i.e. the mean distortion
D as a function of the entropy of quantization indexes H:

D ≈ 1

3
2

1
2 (H0−H). (22)
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2) Implementation issues: The quantizers defined by equa-
tion (21) can be implemented with compression/expansion
functions and a scalar uniform quantizer, the QCD being the
slope of the compression function [25]. We get the following
compression functions:

fA(a, δ) ≈ h1(2δ)
1
2 2

1
4 (H−H0) a

fΦ(a, δ, ϕ) ≈ a h1(2δ)
1
2 2

1
4 (H−H0) ϕ

f∆(a, δ) ≈ a 2
1
4 (H−H0)

∫ δ
0
h1”(2u)

1
2 du

fΩ(a, δ, ω) ≈ a h2(2δ)
1
2 2

1
4 (H−H0) ω

(23)

For amplitude and phase, the compression functions are linear
with respect to the main variable. For damping, computing
the compression function is not straightforward: The integral
cannot be analytically computed, but it can be approximated
with numerical integration techniques. So, we pre-compute
and store a sampled version of the integral (i.e. for a finite
set of values of δ). The compression function value for
any δ is obtained by linear interpolation between sampled
values. We use a pseudo-logarithmic sampling for δ (i.e. a
logarithmic sampling, except around zero where a uniform
sampling is used), which is much more efficient than a uniform
sampling. For amplitude, phase and pulsation, we chose zero
as the central reconstruction value and for damping, we found
that the best results are obtained when zero is a boundary
between two quantization cells. This implementation satisfies
the conditions of symmetry around zero given in appendix A.
For phase, the step-size of the quantizer is slightly modified in
order to cover [0, 2π] with an integer number of quantization
cells. In the encoder, amplitude quantization and damping
quantization are related, so they must be jointly performed. For
quantizing phase and frequency, and for computing the phase
origin τ , using the decoded values instead of the original ones
minimizes the final MSE. This requires a local decoder inside
the encoder, as illustrated on figure 3.

3) Real entropy-distortion function: First, we evaluate the
performance of our quantization scheme on synthetic data.
Like in [7] and [8], we assume that amplitude, phase and
damping are statistically independent. In the literature, the
amplitude is usually Rayleigh distributed and the phase is
uniformly distributed over [0, 2π]. With the EDS model, we
found out that the amplitude is more likely Gamma distributed
(p = 1 and θ = 0.21). For damping, only the distribution of |δ|
is significant. Experiments showed that log(|δ|) approximately
follows a centered Gaussian distribution (σ = 1.2), and log(ω)
approximately follows a non-centered Gaussian distribution
(µ = 5.5, σ = 1).

We evaluated the entropy-distortion curve on N = 108 sets
of parameters where amplitude, phase, damping and pulsation
are independently generated using the distributions described
above. The constant H0, defined in appendix B (equation (44)),
cannot be computed analytically, but it can be numerically
estimated. We obtained H0 ≈ −5.2 bits. Both measured and
theoretical entropy-distortion curves are plotted in figure 4.
One can observe that theoretical and practical curves diverge in
low resolution but converge under a high resolution hypothesis.
We also compared our method with an entropy-constrained
vector quantizer (VQ) as described by Chou et al. [26], for

different sizes of the training database made of independent
realizations of the same distributions. One can see that the
VQ is always more efficient than the joint-scalar quantizers.
However, as explained in [26], the minimum achievable dis-
tortion is directly related to the size of the database, and thus
to the complexity. The largest tractable database on a high-
performance workstation was 106 set of parameters, which
corresponds to a minimum distortion of −51 dB. In terms of
complexity, the joint scalar quantizer clearly outperforms the
VQ, and there is no limit to the minimum achievable distortion.
Thus, the JSQ is more suitable to high-resolution applications.
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Fig. 4. Entropy-Distortion functions, evaluated on N = 108 set of parameters
(synthetic data), of the real JSQ, theoretical JSQ and real trained VQ, for
several training database sizes (TDS).

4) Distribution of entropy between parameters: We also
considered the distribution of entropy between the quanti-
zation indexes associated to the 4 parameters. For differ-
ent values of the target entropy, we computed the ratio
H(Ix|Iy, Iz, Iu)/H(Ix, Iy, Iz, Iu), x being amplitude, phase,
pulsation or damping, and {y, z, u} the other 3 parameters.
The results are plotted on figure 5. One can notice that
pulsation always requires the greatest part of the entropy
(which is consistent with the results reported in [8]), and the
damping always requires the lowest part, especially in low
resolution. Asymptotically, it seems that all four parameters
contribute equally, but this is out of the range of audio coding
applications. Usually, sinusoidal coding requires between 15
and 20 bits per components. At these values, about 50% is
devoted to pulsation, and about 12% is devoted to damping.

B. Multiple sinusoids case

In a second step, we consider the optimal quantization of
the whole set of parameters p = {p0 . . . pK−1} for a given
analysis time-segment. We assume that the random variables
{P0 . . . PK−1} are independent and identically distributed. We
seek for the quantizers that minimize a perceptual distortion
measure under an entropy constraint. We assume that we
define a measure of perceptual significance (or perceptual
weight) µ(ω) as a function of pulsation. The inverse of the
masking threshold over the current analysis/synthesis segment
is usually chosen, but like in section II-C, we obtained better
results with the SMR computed with MPEG psychoacoustic
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model #2 [2]. In appendix C, we show that the mean distortion
over the current segment can be approximated by

D ≈ 1
12

∑K−1
k=0

∫
ρP (pk) µ(ωk)

[
h1(2δk)
g2Ak

(pk)
+

a2kh1”(2δk)

g2∆k
(pk)

+
a2kh2(2δk)

g2Ωk
(pk)

+
a2kh1(2δk)

g2Φk
(pk)

]
dpk.

(24)
This expression does not take the distortion coming from the
interaction between two components into account, which is
valid when the sinusoidal components in each segment are
not very close in the spectral domain.

Assuming that i = {i0 . . . iK−1} stands for the whole set
of quantization indexes in the current segment, and similarly
to section III-A1, the entropy of quantization indexes can be

written as

H(I) ≈ Kh(P ) +∑K−1
k=0

∫
ρP (pk) log2 [gAk

(pk)gΦk
(pk)g∆k

(pk)gΩk
(pk)] dpk.

(25)
Applying the same method as in section III-A1, we get the
optimal QCDs:

gAk
≈ µ(ωk)

1
2 h1(2δk)

1
2 2

1
4 (

HK

K −H0−Hµ)

gΦk
≈ ak µ(ωk)

1
2 h1(2δk)

1
2 2

1
4 (

HK

K −H0−Hµ)

g∆k
≈ ak µ(ωk)

1
2 h1”(2δk)

1
2 2

1
4 (

HK

K −H0−Hµ)

gΩk
≈ ak µ(ωk)

1
2 h2(2δk)

1
2 2

1
4 (

HK

K −H0−Hµ),

(26)

where HK is the total entropy for the K components in
the current time-segment and the constant Hµ is defined in
appendix C.

One can notice that we approximately get the same QCDs
as in the single-sinusoid case, but each QCD is now multiplied
by µ(ωk)

1
2 . In other words, the QCD is higher, i.e. the

quantizer is more precise, when the component is perceptually
more significant. Also, the target entropy appears as HK/K,
which corresponds to the average entropy per component.
This is consistent with the fact that the number of coding
bits is allocated to the whole set of K components. The
corresponding compression functions can be derived in the
same way as in section III-A2.

IV. EVALUATION OF THE CODING SYSTEM

In this section, we evaluate the performance of our coding
scheme in terms of perceived quality vs. entropy on real
audio data. As a reference, we choose a constant-amplitude
sinusoidal model with the quantization scheme described in
[8]. We globally use the same analysis/synthesis framework
with dynamic segmentation aligned with onsets and the same
psychoacoustic model for both methods. The two differences
are: first, the windows. For the standard model, we follow
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H̄ sin H̄ EDS Bitrate ratio Attack Attack
Id Author Identification Style Duration model model for damping sharpness density
1 P. Simon Late in the Evening Percussions 6 s 16 bits 23 bits 30% +++ +++
2 S. Rollins Sentimental Mood Jazz saxophone 7 s 16 bits 22 bits 27% + +
3 J.J. Cale The Problem Electric Guitar 6 s 15 bits 21 bits 29% ++ ++
4 S. Vega Toms dinner Singing voice 4 s 18 bits 24 bits 25% +++ ++
5 F. Tarrega Alhambra Classical guitar 6 s 15 bits 21 bits 29% ++ +++
6 G.P. Telemann Fantasia Flute 8 s 19 bits 27 bits 30% +++ +
7 W.A. Mozart Alla Turca Piano 7 s 15 bits 21 bits 29% + +++
8 J.S. Bach Suite Cello 6 s 16 bits 22 bits 27% + ++

TABLE I
AUDIO MATERIAL FOR LISTENING TEST. ATTACK SHARPNESS AND DENSITY GRADES HAVE BEEN OBTAINED THROUGH INFORMAL LISTENING TESTS

AND ARE GIVEN ONLY FOR INFORMATION PURPOSES. + : LOW, ++ : MEDIUM, +++ : HIGH.

the same approach as in the literature: sinusoidal windows
are used for analysis and synthesis. Second, for the standard
model, the estimation algorithm is the perceptually weighted
Matching Pursuit [27]. Note that the perceptual weights are
identical for both algorithms.

A. Complexity

For each method, we evaluate the computational load re-
quired for estimating the parameter set over each analysis
segment. We recall that T stands for the length of the analysis
segment (in samples) and K stands for the model order.

First, we consider the case of the standard model. For
a general Matching Pursuit (MP) algorithm, the complexity
is proportional to the size of the dictionary (the set of all
possible atoms) [28], and thus depends on the discretization
of the parameters. Using the notations introduced in [28], we
assume that frequency is discretized using αfT levels. αf
is usually greater than 1 (which corresponds to the spectral
resolution of the Fourier Transform), but does not exceed a
few dozens. A fast implementation of the MP for extracting
constant-amplitude sinusoids using the FFT algorithm [27]
has a complexity in O(αfKT log(T )). A refinement stage
using a Newton algorithm [9] increases the precision of the
frequency estimation, but also increases the complexity. We
do not consider such a method here.

For the EDS model, some implementations using MP have
been proposed [10]. Assuming that damping is discretized
using αdT levels, a fast implementation using the FFT al-
gorithm has a complexity in O(αfαdKT

2 log(T )). Again,
a refinement stage using a Newton algorithm can be per-
formed to increase the precision of frequency and damping
estimation. In contrast, the complexity of subspace methods
is not related to the precision of parameter estimation. A fast
implementation of ESPRIT [29, Chapter V] has a complexity
in O(KT (K+log(T ))). When searching for a few sinusoidal
components, i.e. K small, this is similar to the complexity of
the standard model using fast MP, and much lower than the
complexity of the EDS model using fast MP.

In our worst case, the length of the analysis segment is
T = 2048 and the model order is K = 40. Assuming that
αf = αd = 1, about 106 elementary operations are required
for both the standard model with fast MP and the EDS model

with fast ESPRIT, while the EDS model with fast MP requires
about 109 elementary operations.

As a conclusion, subspace methods are much more efficient
than MP for estimating the parameters of the EDS model. One
can also notice that using the damped sinusoidal model does
not increase the complexity of the analysis process compared
to the standard model.

B. The evaluation process

With both coding methods, two parameters must be set: the
model order K and the target entropy of quantization indexes
per component H̄ = HK/K which controls the precision
of the quantization process. The resulting bitrate and signal
quality will depend on both parameters. So, maximizing the
perceived quality for a given bitrate implies finding the optimal
combination between these two parameters. We choose to tune
the quantization stage so that the quantization error reaches
a ”perceptible but not annoying” level. To do so, we set a
fixed average bitrate R = 20 kbits/s, which seems to be
a reasonable value for parametric audio coding applications.
For both methods and for each audio excerpt, we perform
the coding process for a discrete set of target entropy H̄,
between 10 and 30 bits per component. Assuming that the
noiseless coder is ideal i.e. the average number of coding bits
per component equals the entropy, the model order is given by
K =

[
TR
H̄fs

]
where [.] denotes the nearest integer and fs the

sampling frequency. Then, we apply the PEMO-Q algorithm
[30] between the resynthesized unquantized and quantized
signals. This method performs an objective evaluation of
perceptive difference between two audio samples, and thus
measures the distortion introduced by the quantization process.
We a posteriori select the value of H̄ that corresponds to the
desired quality.

For both methods, applying the joint-scalar quantizers im-
plies the estimation of an offset parameter on the entropy, in
our case H0+Hµ. Estimating these parameters is not easy: H0

depends on h(P ), and it is well known that precisely estimat-
ing the entropy is a difficult problem [31], especially in multi-
dimensional spaces, since a precise estimation sometimes
requires a huge number of observations. Obviously, estimating
the offset parameter with a reasonably good precision is not
possible for each analysis segment individually. So we choose
a global approach: we assume that model parameters follow a
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probability density function common to all audio files, which
defines a global offset parameter. Practically, we build a large
audio database made of many short audio segments from
various styles, and apply both coding methods with a medium
model order corresponding to 20 bits per components and a
unitary scale factor, i.e. in our case 2

1
4 (H̄−H0−Hµ) = 1, which

implies H̄ = H0 + Hµ. Then, we measure the entropy of
quantization indexes over the whole database, which happens
to be an estimation of the average entropy per component
H̄, i.e. of H0 + Hµ. We measured an entropy offset of
8.2 bits for the EDS model and of 10.4 bits for the standard
sinusoidal model. From equation (26), one can see that a lower
entropy offset H0 + Hµ means that a higher target entropy
H is required to get the same scale factor. Thus, it appears
that the EDS model requires in average 2.2 more bits per
component than the standard model for the same quantization
granularity. However, one can not draw conclusions about the
final efficiency of both models now, because the scale factor
is not necessarily proportional to the perceived distortion.

C. The audio material

We selected 8 short monophonic audio excerpts, with
various attack sharpness and density profiles, described in
table I. For each one, we give the average entropy of quan-
tization indexes per component H̄ which corresponds to a
”perceptible but not annoying” quantization error. We also
provide informative grades for attack sharpness and attack
density. These have been set through informal listening tests
in order to clarify the interpretation of the listening test.
The original and decoded audio files are available online at
http://www.tsi.telecom-paristech.fr/aao/?p=863.

First, it appears that audio signals with very sharp transients
(1, 4 and 6) require more coding bits, especially with the EDS
model. This can be explained as follows: the coding quality on
sharp transients is obviously crucial from a perceptual point
of view, and thus audio material with sharp transients will
require more binary information for a given quality. As the
entropy offset is common to a large audio database, tracks
with exceptionally sharp transients will require a higher target
entropy for a given quality.

Then, with the EDS model, each component requires sig-
nificantly more bits: in average, the classical sinusoidal model
requires 16.3 bits per component and the EDS model 22.6 bits
per component. Considering that the difference represents the
amount of bits required for coding the damping in the EDS
model, we obtain 6.3 bits for damping i.e. an average entropy
ratio of 28%. Thus, with real audio data and psychoacoustic
modeling, the part devoted to damping is close to 1/4, whereas
on synthetic data and without a masking model, the results
in figure 5 give an entropy ratio close to 1/6 for the same
target entropy. Obviously, when psychoacoustics is taken into
account, damping becomes much more significant.

Consequently, since the total bitrate is set to 20 kbits/s for
both models, the average model order is 21% lower with
the EDS model. In other words, there are less sinusoidal
components in the synthesized signal with the EDS model
than with the constant-amplitude model.

D. Subjective evaluation

Using the 8 audio excerpts described in table I, we organized
subjective listening tests using the comparison category rating
(CCR) protocol described by the ITU-T [32]. This test is
considered more meaningful than a degradation category rating
test at low bitrate [32]. For each audio excerpt, the original
signal and two coded signals named A and B are presented.
They correspond to both systems under test in random order.
The listeners are asked to rate A compared with B on a five-
step scale, from -3 (much worse) to +3 (much better). 0 means
that both signals are of similar quality. The audio excerpts are
presented in a random order, and the test has a symmetric
structure, i.e. both A-B and B-A pairs are presented once. We
asked 16 listeners to rate the coded signals after a training
phase which introduced the typical degradations caused by
audio coding. All listeners were professionals of audio signal
processing and none of the authors were involved in the test.
The mean opinion scores (MOS) and the 95% confidence
intervals are presented in figure 6.
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Fig. 6. Relative Mean Opinion Score and 95% confidence interval on audio
excerpts described in table I.

The first conclusion is that the average differences between
both coding methods are quite small: mostly between -0.5/+0.5
on a -3/+3 scale. This result was predictable since the main
structure of both coding schemes is similar. Then, it appears
that the EDS modeling was significantly preferred on 3 audio
excerpts (1, 3 and 5), and for the other files, no significant
difference can be pointed out (absolute MOS lower than 0.5).
One can see that the sine model performs best on excerpt 6.
No systematic relationship between attack sharpness/density
and rating can be established. However, as expected, the EDS
model is clearly preferred on audio signals which exhibit fre-
quent and sharp onsets (++/+++). But on excerpt 4, which also
exhibits frequent and sharp onsets, no significant improvement
can be seen. On excerpt 6, which exhibits very sharp but rare
attacks, the EDS model is obviously ineffective.

A general trend can be pointed out: on audio signals with
frequent and sharp onsets, the EDS model is usually better,
and otherwise, both models are similarly efficient, despite a
lower number of sinusoids with the EDS model. However, two
exceptions can be found on excerpts 4 and 6, where the EDS
model is not as efficient as expected. This can be explained by
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the presence of transients with complex amplitude envelopes
(e.g. consonants in the singing voice, or plosive blows in
a flute). In these situations, the model presumably does not
efficiently match the signal.

V. CONCLUSION

In this paper, we present an alternative to classical si-
nusoidal modeling for low bitrate parametric audio coding,
using exponentially damped sinusoids. We propose an efficient
analysis/synthesis framework including a perceptual model
and a new entropy constrained quantization method. When a
fast algorithm is used, the analysis process has approximately
the same complexity as a standard sinusoidal model with a
fast Matching Pursuit algorithm, and thus will not lead to a
higher calculation load than with a state-of-the-art codec. The
design of the quantization stage is crucial in an audio coder,
because it generates a significant part of the distortion and
highly influences the rate-distortion efficiency of the global
coding process. Our method is not as efficient as a vector
quantizer, but it is much less complex to implement, and
the achievable resolution can be as low as desired with the
same complexity. We evaluate our method on real audio data
at a target entropy corresponding to an average bitrate of
20 kbits/s. Compared with a similar coding scheme using a
classical constant-amplitude sinusoidal model, our method is
slightly but significantly better in terms of perceived audio
quality. On most audio signals which exhibit frequent sharp
onsets, our method is clearly preferred. However, on specific
signals where the model does not seem to correctly match
some transient parts, our coding scheme is not as efficient as
expected and the classical scheme can perform better. Finally,
our study shows that the exponentially damped sinusoidal
model is an efficient tool for audio coding. We do not present a
complete parametric audio codec, but propose some solutions
for solving the main difficulties related to the implementation
of an EDS-model based codec. However, this solution could
be improved for instance by using a variable overlap at onsets,
depending on the temporal energy profile, and by developing
a specific hearing model for impulsive sounds.

APPENDIX A

In the single-sinusoid case, the MSE over the current
analysis segment is defined by equation (15). The computation
of the integral gives

d(p, p̂) = a2
(

1−e−2|δ|

2|δ|

)
+ â2

(
1−e−2|δ̂|

2|δ̂|

)
− 2aâ(δ+δ̂)e−

|δ+δ̂|
2

(δ+δ̂)2+(ω−ω̂)2

[
e

(δ+δ̂)
2 cos[(1− τ)(ω − ω̂) + (ϕ− ϕ̂)]

−e
−(δ+δ̂)

2 cos[−τ(ω − ω̂) + (ϕ− ϕ̂)]
]

− 2aâ(δ+δ̂)e−
|δ+δ̂|

2

(δ+δ̂)2+(ω−ω̂)2

[
e

(δ+δ̂)
2 sin[(1− τ)(ω − ω̂) + (ϕ− ϕ̂)]

−e
−(δ+δ̂)

2 sin[−τ(ω − ω̂) + (ϕ− ϕ̂)]
]
.

(27)
This expression implies that δ and δ̂ have the same sign,
which means that the damping quantizer is symmetric around
0. Because this equation is not tractable for further calculation,

we develop it as a function of (ω− ω̂) and (ϕ− ϕ̂) in Taylor
series around 0. We get an approximation valid for small error
values, i.e. under a high resolution hypothesis:

d(p, p̂) ≈ a2h1(2δ) + â2h1(2δ̂)− 2aâh1(δ + δ̂)

+ aâ(ω − ω̂)2h2(δ + δ̂, τ) + aâ(ϕ− ϕ̂)2h1(δ + δ̂)

+ aâ(ω − ω̂)(ϕ− ϕ̂)h3(δ + δ̂, τ),
(28)

where functions h1, h2 and h3 are defined as:

h1(x) =
1−e−|x|

|x|

h2(x, τ) = e
−|x|

2

(
e
x
2 (x2−2x+2)−2e

−x
2

x3

)
+ e

−|x|
2

(
e
x
2 (1−x)−1

x2

)
τ +

(
1−e−|x|

|x|

)
τ2

h3(x, τ) = 2e
−|x|

2

(
e
x
2 (x−1)+e

−x
2

x2

)
− 2

(
1−e−|x|

|x|

)
τ.

(29)
The optimal choice for τ is the value that minimizes expres-
sion (28). It will appear in further calculation that, because
quantization cells are symmetrical, the mean distortion does
not depend on odd powers of (ω − ω̂) and (ϕ− ϕ̂), and thus
not on h3. Assuming that a and â have the same sign, which
means that the amplitude quantizer is symmetric around 0,
the minimum distortion is obtained when h2(δ + δ̂, τ) is a
minimum as a function of τ . It is quite easy to prove that h2
has a single minimum for the value of τ defined by equation
(17), and thus the distortion can be written as in equation (16)
with

h2(x) =
1

|x|

(
1− e−|x|

|x|2
− e−|x|

1− e−|x|

)
. (30)

We now focus on the calculation of the mean distortion over
all quantization cells. We note {p̂n}, n ∈ {0 . . . N − 1} the
reconstruction dictionary. Cn is the quantization cell associated
to the reconstruction value p̂n. The mean distortion over Cn
can be written as

dCn(p̂n) =

∫
Cn
ρP (p)d(p, p̂n)dp∫
Cn
ρP (p)dp

, (31)

where ρP (p) is the probability density function (PDF) of EDS
parameters. The overall mean distortion is

D = E[d(P, P̂ )] =
∑
n

ρn dCn
(p̂n), (32)

where ρn = proba{P ∈ Cn} =
∫
Cn
ρP (p)dp.

We now focus on the calculation of dCn(p̂n). As we consider
only one quantization cell, we temporarily omit index n. We
assume that parameters are quantized with scalar quantizers.
Thus, the 4D quantization cell can be seen as the product
of 4 scalar quantization cells. Furthermore, it was shown in
[25] that, in scalar entropy-constrained quantizers under a
high resolution hypothesis, the reconstruction values are in
the center of the cells. It is also reasonable to assume that
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ρP (p) is constant over C. Thus, we get

dC(p̂) ≈
1

∆a∆ω∆δ∆ϕ

∫ â+∆a
2

â−∆a
2

∫ δ̂+∆δ
2

δ̂−∆δ
2

∫ ω̂+∆ω
2

ω̂−∆ω
2

∫ ϕ̂+∆ϕ
2

ϕ̂−
∆ϕ
2

a2h1(2δ)

+ â2h1(2δ̂)− 2aâh1(δ + δ̂) + aâ(ω − ω̂)2h2(δ + δ̂)

+ aâ(ϕ− ϕ̂)2h1(δ + δ̂) da dδ dω dϕ,
(33)

where ∆a, ∆δ , ∆ω and ∆ϕ denote the widths of scalar quan-
tization cells respectively for amplitude, damping, pulsation
and phase. The calculation of this integral gives

dC(p̂) ≈ â2h1(2δ̂)

+
(

∆2
a

12 + â2
) [

h̃1(2δ̂+∆δ)−h̃1(2δ̂−∆δ)
2∆δ

]
+ â2

(
∆2

ϕ

12 − 2
)[

h̃1

(
2δ̂+

∆δ
2

)
−h̃1

(
2δ̂−∆δ

2

)
∆δ

]
+ â2

∆2
ω

12

[
h̃2

(
2δ̂+

∆δ
2

)
−h̃2

(
2δ̂−∆δ

2

)
∆δ

]
,

(34)

where h̃1 and h̃2 are antiderivatives of h1 and h2.
The previous expression can be simplified by using Taylor

series expansions in ∆δ because under a high resolution
hypothesis ∆δ is supposed to be small. Keeping only terms in
O(∆2

a), O(∆2
δ), O(∆2

ω) and O(∆2
ϕ), we get

dC(p̂) ≈ 1
12

[
h1(2δ̂)∆

2
a + â2h1”(2δ̂)∆

2
δ

+ â2h2(2δ̂)∆
2
ω + â2h1(2δ̂)∆

2
ϕ

]
,

(35)

where h1” is the second order derivative of h1.
At this step, one can verify the consistency with the results

given in [8]: with a constant-amplitude sinusoidal model, the
mean distortion over each quantization cell is given by

dC ≈ 1

12

[
∆2
a + â2σ∆2

ν + â2∆2
ϕ

]
, (36)

with σ = T 2

12 for a rectangular analysis window. ν stands
for the non-normalized pulsation. In our model, we use a
normalized version of the pulsation, which means ω = Tν and
thus ∆2

ω = T 2∆2
ν . Furthermore, a constant-amplitude sinusoid

corresponds to δ = 0, and thus ∆δ = 0, h1 = 1 and h2 = 1
12 .

Finally, we get the same expression for dC .
As parameters are assumed to be quantized with scalar

quantizers, the 4D QCD can be factorized with 4 scalar
functions, whose values at the reconstruction points are:

gA(p̂) =
1

∆a
, g∆(p̂) =

1

∆δ
, gΩ(p̂) =

1

∆ω
, gΦ(p̂) =

1

∆ϕ
.

(37)
Thus, using the result of equation (35), the mean distortion
defined by equation (32) can be written as

D ≈ 1
12

∑
n ρn

[
h1(2δ̂n)
g2A(p̂n)

+
â2nh1”(2δ̂n)

g2∆(p̂n)

+
â2nh2(2δ̂n)

g2Ω(p̂n)
+

â2nh1(2δ̂n)

g2Φ(p̂n)

]
.

(38)

Assuming that ρP (p) is constant over each quantization cell
leads to the following approximation:

ρn ≈ ρP (p̂n) ∆n, (39)

where ∆n is the volume of quantization cell Cn, yielding

D ≈ 1
12

∑
n ρP (p̂n)

[
h1(2δ̂n)
g2A(p̂n)

+
â2nh1”(2δ̂n)

g2∆(p̂n)

+
â2nh2(2δ̂n)

g2Ω(p̂n)
+

â2nh1(2δ̂n)

g2Φ(p̂n)

]
∆n.

(40)

The sum can be approximated by an integral, and we get
equation (18).

APPENDIX B

The set of quantizers which minimizes the mean distortion
defined by equation (18) under the entropy constraint H(I) ≤
H is approximately reached when the constraint is saturated.
This optimization problem can be conveniently solved with a
Lagrange optimization technique. The Lagrangian functional
is defined as

L = D + λ [H(I)−H] , (41)

where λ is the real-valued Lagrange multiplier. The Euler-
Lagrange equations give the optimal QCD expressions as
functions of λ:

∂L
∂gA

= 0 ⇔ gA(a, δ) ≈
(

ln(2)h1(2δ)
6λ

) 1
2

∂L
∂g∆

= 0 ⇔ g∆(a, δ) ≈ a
(

ln(2)h1”(2δ)
6λ

) 1
2

∂L
∂gΩ

= 0 ⇔ gΩ(a, δ, ω) ≈ a
(

ln(2)h2(2δ)
6λ

) 1
2

∂L
∂gΦ

= 0 ⇔ gΦ(a, δ, ϕ) ≈ a
(

ln(2)h1(2δ)
6λ

) 1
2

.

(42)

The optimal value for λ can be obtained from the constraint.
Equation (19) can be rewritten as

H ≈ h(P ) +
∫
ρP (p)

× log2

(
a3 ln(2)2 h1(2δ) h1”(2δ)

1
2 h2(2δ)

1
2

(6λ)2

)
dp.

(43)

Defining the following constant:

H0 = h(P ) +
∫
ρ∆(δ) log2

(
h1(2δ) h1”(2δ)

1
2 h2(2δ)

1
2

)
dδ

+ 3
∫
ρA(a) log2(a)da,

(44)
where ρA(a) and ρ∆(δ) are respectively the marginal PDFs
of amplitude and damping, the optimal value for λ is

λ ≈ ln(2)

6
2

H0−H
2 (45)

and the optimal QCDs are finally given by equation (21).

APPENDIX C

In the multiple-sinusoids case, we write the mean distortion
as

D = E[d(P, P̂)] =
∑
k

∑
n

µ(ω̂k,n) ρk,n dCk,n
(p̂k,n), (46)

where Ck,n stands for the n-th quantization cell for component
k, associated to the reconstruction value p̂k,n. We define
ρk,n = proba{P ∈ Ck,n} =

∫
Ck,n

ρP (p) dp, and µ(ω) is
the perceptual weight depending on the pulsation. Like in
[8], we assume that the total distortion is simply a linear
combination of the distortions per component, and we do
not take the cross-terms into account. This assumption is
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valid when the components do not significantly overlap in
the frequency domain, which is usually the case in parametric
audio coding, where the signal is modeled by a relatively small
number of sinusoids.

We apply the calculation developed in appendix A to
dCk,n

(p̂k,n) and get the expression of the mean distortion:

D ≈ 1
12

∑
k

∑
n µ(ω̂k,n)ρP (p̂k,n)

[
h1(2δ̂k,n)

g2Ak
(p̂k,n)

+
â2k,nh1”(2δ̂k,n)

g2∆k
(p̂k,n)

+
â2k,nh2(2δ̂k,n)

g2Ωk
(p̂k,n)

+
â2k,nh1(2δ̂k,n)

g2Φk
(p̂k,n)

]
∆k,n,

(47)
where ∆k,n is the volume of quantization cell Ck,n. The sum
on n can be approximated by an integral, and we get equation
(24).

Minimizing the distortion under the entropy constraint de-
fined by equation (25) can be achieved in the same way as
in the single-sinusoid case. We obtain the QCDs defined by
equations (26) with

Hµ = 2

∫
ρΩ(ω) log2 (µ(ω)) dω. (48)
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Nationale Supérieure des Télécommunications, ENST2005E007, Paris,
France, Apr. 2005, in French.

[30] R. Huber and B. Kollmeier, “PEMO-Q - a new method for objective
audio quality assessment using a model of auditory perception,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 14, no. 6, pp. 1902–1911,
Nov. 2006.
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