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ABSTRACT

In this paper, we introduce a novel method for the automatic esti-
mation of downbeat positions from music signals. Our system relies
on the computation of musically inspired features capturing impor-
tant aspects of music such as timbre, harmony, rhythmic patterns, or
local similarities in both timbre and harmony. It then uses several
independent deep neural networks to learn higher-level representa-
tions. The downbeat sequences are finally obtained thanks to a tem-
poral decoding step based on the Viterbi algorithm. The comparative
evaluation conducted on varied datasets demonstrates the efficiency
and robustness across different music styles of our approach.

Index Terms— Downbeat Tracking, Music Information Re-
trieval, Music Signal Processing, Deep Networks

1. INTRODUCTION

Music is commonly organized through time as a function of pseudo-
periodic pulses or beats. These beats can in turn be grouped into
bars, depending on regular patterns of timing and accentuation
which altogether define the music’s metrical structure. The first beat
of a given bar, is known as the downbeat. The automatic estimation
of downbeat positions from music signals, a task known as downbeat
tracking, is thus a fundamental problem in music signal processing
with applications in automatic music transcription, music struc-
ture analysis, computational musicology, and computer music. The
level of current interest in this problem amongst the community is
illustrated by its recent inclusion in the MIReX evaluation initiative.

Yet, despite significant research effort, downbeat tracking re-
mains an open and challenging problem. A number of previous
approaches are limited in their scope: either they depend on hand-
annotated beat positions, which is not readily available for most mu-
sic recordings [1, 2]; or are applicable to only a few simple metrical
structures [3,4] and given musical styles [5,6]. Most of these systems
seek to characterize downbeats as a function of single attributes such
as chord/harmonic changes [7,8], rhythmic patterns [9,10], or the ex-
plicit presence of drums and other percussive sounds [11, 12]. Only
a few systems consider two or more features in tandem [6, 13–15],
usually in the form of standard spectral or loudness features. Further-
more, the likelihood of downbeats is often estimated directly from
low-level features, without further refining into higher-level repre-
sentations. When this is not the case, as in [16, 17], the estimations
depend on prior-decision-making, e.g. chord classification, which
can be prone to errors. Finally, almost all past approaches use prob-
abilistic dynamic models to exploit the sequential structure of music,
generally resulting in a more robust estimation [4–11, 15, 16].

Based on our understanding of the strengths and shortcomings of
past approaches, in this paper we propose a novel downbeat tracking
method that:

• Independently analyzes downbeat occurrences using six
different feature representations of harmony, timbre, low-
frequency content, rhythmic patterns, and local similarities in
both timbre and harmony.

• Uses deep neural networks (DNN) to learn higher-level rep-
resentations from which the likelihood of downbeats can be
robustly estimated.

• Implements a simple, yet-powerful model that leverages
knowledge of metrical structure to decode the correct se-
quence of beats and downbeats.

The resulting method is fully automated (needs no prior infor-
mation), and applicable to musical recordings covering a wide range
of styles and metrical structures. It significantly extends our previous
work in [2], which depends on knowledge of hand-annotated beat
positions, uses a smaller and less robust set of features, and relies
on heuristics for downbeat classification. To the best of our knowl-
edge, this is the first use of deep networks for downbeat tracking in
polyphonic music.

Figure 1 serves as an overview of the system and the structure
of this paper. Then, section 2 presents our feature extraction strate-
gies, including the synchronization of feature sequences to a grid
of musical pulses. Section 3 discusses the use of DNN for feature
learning and for assigning each pulse a probability of being a down-
beat. Feature-specific estimations are aggregated before passing to
the Viterbi algorithm in section 4, which can robustly classify down-
beat positions. Section 5 shows, via an evaluation on several public
datasets, the relative benefit of our main design choices, and how
our system clearly outperforms the current state of the art. Finally,
section 6 presents our conclusions and ideas for future work.

2. FEATURE EXTRACTION

The first task of our system is to represent the signal as a function
of six musical attributes contributing to the grouping of beats into a
bar, namely harmony, timbre, low-frequency content, rhythmic pat-
tern, and local similarity in timbre and harmony. This multi-faceted
approach is consistent with well-known theories of music organiza-
tion [18], where the attributes we chose contribute to the perception
of downbeats. Change in harmony or timbre content, for example
chord changes, section changes or the entrance of a new instrument
is often related to a downbeat position. The low-frequency content
contains mostly bass instruments or bass drum, both of which tend
to be used to emphasize the downbeat. Rhythmic patterns are fre-
quently repeated each bar and are therefore useful to obtain the bar
boundaries. Finally, by looking at timbre or harmony content in
term of similarity, we can observe longer-term patterns of change
and novelty that are invariant to the specific set of pitch values or
spectral shape. The similarity in harmony, for example, has the
interesting property of being key invariant and can therefore model



Fig. 1. Model overview. The signal’s timeline is quantized to a set of downbeat subdivisions herein called pulses. Six different features are
extracted from the signal and mapped to this temporal quantization: chroma, MFCC, ODF, LFS, CS and MS. Each feature is then used as
input to an independent DNN which gives each pulse the probability of being a downbeat after averaging the output of all 6 networks. Finally,
a Viterbi decoder is used to estimate the most likely downbeat sequence.

cadences and other harmonic patterns related to downbeat positions.
These attributes will be represented by chroma, mel-frequency cep-
stral coefficients (MFCC), low-frequency spectrogram (LFS), onset
detection function (ODF), MFCC similarity (MS) and chroma sim-
ilarity (CS) features respectively. To make this process invariant to
local and global tempo changes, we segment the signal into small
subdivisions of musical time and synchronize features accordingly.
More details are provided in this section.

Segmentation: To obtain an appropriate temporal quantization of
the audio signal, we need to have a high recall representation, in-
cluding the vast majority of downbeat pulses. We also want to avoid
variations in the inter-pulses duration when it is possible. Finally, it
is useful to be tempo independent.

To achieve these objectives we extend the local pulse informa-
tion extractor in [19]. We first use this technique to obtain a tem-
pogram of the musical audio. We then use dynamic programming
with strong continuity constraints, and emphasis towards high tempi.
It can therefore track abrupt tempo changes and find a fast subdi-
vision of the downbeat at a pulse rate that is locally regular. We
finally use the decoded path to recover instantaneous phase and am-
plitude values, construct the predominant local pulse (PLP) function
as in [19], and detect pulses using peak-picking. The recall rate for
downbeat pulses is above 95% for each dataset with this method,
using a 100 ms tolerance window.

The chroma, MFCC, LFS and ODF, described below, are first
computed frame by frame. They are then mapped to a grid with
subdivisions lasting one fifth of a pulse using interpolation. The CS
and the MS features are computed pulse by pulse because we believe
a higher temporal precision than the pulse level is not useful here.

Chroma: The chroma computation is done as in [20]. We down-
sample the audio signal at 5512.5 Hz and use a Hanning analysis
window of size 4096 and a hop size of 512 to compute the short-term
Fourier transform (STFT). We then apply a constant-Q filter-bank
with 36 bins per octave and 108 bins and then convert the constant-
Q spectrum to harmonic pitch class profiles. Circular shifting is done
to obtain the 36 bins chroma. The chromagram is tuned by finding
bias on peak locations and is smoothed by a median filter of length
8. It is finally mapped to a 12 bins representation by averaging.

MFCC: We compute the first 12 Mel-frequency cepstral coeffi-
cients using the Voicebox Toolbox [21], with a Hamming window
of size 2048, a hop size of 1024 and 32 Mel filters on a signal sam-
pled at 44100 Hz.

LFS: We down-sample the signal at 500 Hz, use a Hanning window
of size 32 and a hop size of 4 to compute the STFT and the spec-
trogram. We then remove spectral components above 150 Hz. The
signal is finally clipped so that all values on the 9th decile are equal.

ODF: We use four band-wise onset detection functions (ODF) as
computed by [4]. We compute the STFT using a Hanning window
of size 1024 and a hop size of 256 for a signal sampled at 44100
Hz. We then compute the spectrogram and apply a 36-bands Bark
filter. We use µ-law compression, with µ=100, and down-sample the
signal by a factor of two. An order 6 butterworth filter with a 10 Hz
cutoff is used for envelope detection. A weighted sum of 20% of the
envelope and 80% of its difference is done to compute the ODF that
are then mapped to 4 equally distributed bands.
CS and MS: The chroma are computed as before, but they are then
averaged to obtain a pulse synchronous chroma. We then compute
the cosine similarity of the pulse synchronous chroma. The same
process is used with the MFCCs to get our last feature.

3. FEATURE LEARNING

Downbeats are high-level constructs depending on complex patterns
in the feature sequence. We propose that the probability of a down-
beat can be estimated using a DNN F (X1|Θ), whereX1 is the input
feature vector, and Θ are the parameters of the network. In our im-
plementation, F is a cascade of K simpler layer functions of the
form:

fk(Xk|θk) =
1

1 + e−(XkWk+bk)
, θk = [Wk, bk] (1)

where Wk is a matrix of weights, bk is a vector of biases, and Xk is
the output of layer k − 1 for k > 1, and the input feature vector for
k = 1. Furthermore, we apply softmax regularization to the output
of the last layer, thus resulting in:

P (X1|Θ) =
efK∑M

m=1 e
fK [m]

(2)

The dimensionality of the output layer, M , corresponds to the
number of classes we want to detect, in this case two: downbeat and
no-downbeat. Thus the network’s output represent the conditional
probability of a one pulse of being a downbeat and its complement,
while the output of intermediate layers can be seen as feature detec-
tors. In our implementation we use a DNN composed of four fully
connected layers (K = 4) of 40, 40, 50 and 2 sigmoid units re-
spectively [22]. The network is pre-trained with stacked Restricted
Boltzmann Machines and 1-step Contrastive Divergence [23]. The
fine tuning is done with backpropagation by minimizing the cross
entropy error using mini-batch gradient descent. The pre-training
learning rate is 0.1 and the fine tuning learning rate is 1. The mini-
batch size is 1000 and we use momentum. For the first 5 epochs it is
of 0.5 and then it is 0.9. Our training set contains an equal amount of



Fig. 2. Chroma feature representation through the network. (a):
The chroma feature. The black rectangle represents the temporal
context for one pulse (at 12.5 sec). (b-c-d): Units of layers 1, 2 and 3.
(e). Output of the last layer, for the chroma feature (continuous bold
curve) and all the features (dotted curve). The annotated downbeats
are represented by the light-blue dotted lines.

features computed at downbeat and non-downbeat position. In our
implementation we use early-stopping and dropout regularization, in
order to prevent overfitting and feature co-adaptation [24]. We use
6 independent networks, each trained on one feature used as input.
The input temporal size is of 9 pulses around the one to classify for
the chroma, ODF, LFS and MFCC features and of 12 pulses before
and 12 pulses after the one to classify for both the MS and the CS
features.

As it is important for the following decoding process to reduce
estimation errors, we use an average of the 6 observation probabil-
ities obtained by the 6 independent networks. The average, or sum
rule is indeed in general quite resilient to estimation errors [25].

Figure 2 illustrates the ability of DNN to learn powerful features
and produce a robust downbeat estimation. The sequence of chroma
feature vectors as well as the output of each layer of the network
are displayed for five seconds of audio. The chroma representation,
figure 2.(a), is clearly refined into a set of downbeat detectors as we
advance trough the layers of the network. In the third layer, fig-
ure 2.(d), we can observe that there is a clear distinction between
outputs activated at downbeat positions and outputs activated at non-
downbeat positions. The downbeat positions are indicated by dotted
light-blue lines. The strength of the resulting features allows the last
layer of the network to robustly estimate downbeat probabilities by
means of a simple regression. Finally, the output of the chroma-
specific network is averaged with that of the other five networks,
resulting in the dotted curve in figure 2.(e). It can be seen how this
aggregation generally de-emphasizes the probability of false posi-
tives, while maintaining the high probability of correct estimations,
thus increasing the robustness of the representation, and facilitating
the decoding process in the next section.

4. TEMPORAL DECODING

As previously done in the literature, we use the Viterbi algorithm
to decode the sequence of downbeats. This algorithm is mostly a
function of four parameters: the state space, the probability of an
observation given a certain state and the initial and transition proba-
bilities. We use an equal distribution of initial probabilities; there are
two distinct states: downbeat and non-downbeat; and the probability
of observations given those states are the aggregated outputs of the
DNN, as explained in section 3. The main focus is then the transi-
tion matrix which encodes the temporal model we use. We attempt
to take into account that changes in time signature are possible albeit
unlikely and that there can be downbeat observation errors or pulse
tracking inconsistencies.

In our model, states correspond to downbeats and non-downbeats
in a specific metrical position. For example, the downbeat in 4/4
and in 5/4 correspond to different states. Likewise, the first non-
downbeat in 3/4 is different from its second non-downbeat, and
different to any other non-downbeat in a different meter.

Then we assign high transition probabilities to moving sequen-
tially across beats of the same meter, medium probabilities to mov-
ing from the last beat of a given meter to the downbeat of another,
and low probabilities for non-consecutive changes within and with-
out meter groups.

We allow time signatures of {2,3,4,5,6,7,8,9,10} beats per bar.
Since there are mainly 3 or 4 beats per bar in most datasets, we assign
a higher transition probability to moving from the last beat of a given
meter to the downbeat of these two meters.

5. EVALUATION AND RESULTS

5.1. Methodology

We use the F-measure, the most used evaluation metric for downbeat
tracking [8,9,16] computed from the evaluation toolbox in [26]. This
measure is the harmonic mean of precision and recall rates. Correct
detections occur when estimated downbeat positions fall within a
tolerance window of +- 70 ms from an annotated downbeat position.

We evaluate our system on nine different datasets, presented in
table 1. In our evaluation we use a leave-one-dataset-out approach,
whereby in each of 9 iterations we use 8 datasets for training and val-
idation, and the holdout dataset for testing. This evaluation method
is considered more robust [27]. 90% of the training datasets is used
for training the network and the 10% is used to set the parameters
value.

5.2. Results and discussion

In our tests, we start by evaluating different configurations of the
proposed system, in order to asses the effectiveness of our feature
extraction, decoding and feature learning strategies. In figure 3 and
throughout the discussion, these configurations are numbered to fa-
cilitate reference.

Is it important to use several features? To focus on the effect
of feature design, we ran a simplified version of our system without
Viterbi decoding. Instead we perform simple peak picking on the
aggregated output of the networks. For this experiment we add one
feature at a time. The order of features added, described in figure
3(a), is not of crucial importance to assess if they have a significant
impact on the performance. The F-measure results, evaluated on the
whole data, are shown as the first 6 boxplots in figure 3(b). We can
see a consistent increase in the F-measure as we add features. We
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Fig. 3. Model comparison. (a): Description of the 9 compared configurations. (b): F-measure boxplots of the configurations. (c): Tukey’s
HSD of the configurations. Higher ranks correspond to higher results.

performed a Friedman’s test and a Tukey’s honestly significant crite-
rion (HSD) test with a 95% confidence interval. As shown in the first
6 configurations of figure 3(c), the increase in performance is signif-
icant in each case. Additional Student T-tests were performed also
indicating statistical significance for each feature added, illustrating
the importance of each feature and their complementarity. Adding
all features results in a staggering average increase over 18 points in
F-measure, when compared to any individual feature, and of over 9
points when compared to any combination of 2 features.

Is temporal modelling useful? For this experiment, we use all
features with peak picking (configuration 6), with the Viterbi algo-
rithm and a simple model of only one possible time signature of
8 pulses per bar (configuration 7), and with the Viterbi algorithm
and the more complex assumptions detailed in section 4 (configura-
tion 8). Figure 3(b) shows that the simple temporal assumption in
configuration 7 gives an important boost in performance but more
complex assumptions give both an increase in average performance
and a decrease in variance. Figure 3(c) shows that this improvement
is statistically significant. This clearly indicates the importance of
temporal modelling for downbeat tracking, whereby estimations in-
cluding information from the local context of a downbeat outperform
the instantaneous estimations of configuration 6.

Is feature learning really necessary or helpful? For this ex-
periment, we keep all the features and the Viterbi algorithm and
compare feature learning by the DNN (configuration 8) with a
linear-regression method (configuration 9). Using DNN enable a
twelve points increase in performance, which is statistically sig-
nificant. This illustrates the power of learning higher-level feature
representations in a data-driven fashion. The shallow architecture
is less able to classify the pulse and some of the (perceptively) cor-
rect results (100% or 66,7%) tend to move towards phase error or
inconsistent segmentations.

We then compare our system to 3 reference downbeat tracking
algorithms [1]1, [15] and [16]. These systems do not require cross-
validation. Results are shown in table 1. We can see a significant
increase in performance with our method across all datasets. The
difference in the overall result is statistically significant. [1] seems
efficient but may be held back by the hypothesis of constant time sig-
nature that can propagate beat estimation errors easily. [16] is able
to deal with change in time signature with a tradeoff coefficient be-
tween flexible and constant meter, but it also means that sometimes
the results can be a little inconsistent with constant meter songs. In-
corporating more cues may improve performance. Finally, [15] per-
forms a global estimation of the meter of the song with an efficient
visualisation of the output but may be best used by manually adjust-
ing the parameter values while looking at the estimated downbeats.

1Since it needs the meter, we feed it with the annotated number of beats
per bar

Datasets F-measure
Reference NT [15] [1] [16] #8 Mean
RWC Class [28] 60 29.9 21.6 32.7 45.4 32.4
Klapuri [4] 40 47.3 41.8 41.0 61.8 48.0
Hainsworth [29] 222 42.3 47.5 44.2 59.4 48.4
RWC Jazz [28] 50 39.6 47.2 42.1 65.4 48.6
RWC Genre [30] 92 43.2 50.4 49.3 62.2 51.3
Ballroom [31] 698 45.2 50.3 50.0 73.6 54.8
Quaero [32] 70 56.9 69.1 69.3 76.5 68.0
Beatles [33] 179 65.3 66.1 65.3 82.2 69.8
RWC Pop [28] 100 69.8 71.0 75.8 81.3 74.2

Mean 48.7 51.7 52.2 67.5 55.0

Table 1. Downbeat detection results. F-measure with a 70 ms precision
window. For [15], [1], [16] and our system (#8 for configuration 8 in figure
3). Results are shown per dataset and as a mean across datasets or algorithms.
NT stands for the number of tracks per dataset.

We can see that there are relatively less increase in F-measure in the
Popular music datasets (Pop and Quaero), about 10 points, because
a simple feature model can already give good results. But when
we face more complicated datasets, where there are less clues, more
change in time signature, soft onsets or where there is not always
percussion, such the as Classical, Jazz or Klapuri subset datasets,
the increase is bigger, about 19 points. The biggest boost is obtained
with the Ballroom dataset, about 25 points, because in this music the
rhythm part, along with the timbre content, give very important cues
for the downbeat estimation while the harmonic part is a little less
informative than in the other datasets. The results overall are rela-
tively lower for the classical music dataset and for songs where there
are expressive timings. In this case it is difficult to distinguish clear
and objective bar boundaries, and even to robustly estimate pulses.
To illustrate this point, we evaluated our system on the RWC Classi-
cal dataset with the ground truth beats as input and the F-measure is
considerably higher at around 85%.

6. CONCLUSION

In the present work, we have proposed a new approach to downbeat
tracking. It is shown that deep neural networks trained on multiple
musically inspired features can take advantage of the multi-faceted
and high-level aspect of downbeats. The comparative evaluations
over a large number of musical audio files have demonstrated that
this novel paradigm significantly outperforms the previous state of
the art. Future work will consider more sophisticated temporal mod-
els such as Conditional Random Fields to incorporate temporal con-
text more freely and automatically infer an optimal combination of
features.
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