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ABSTRACT gence [19, 20]. Therefore, MU rules became increasinglyulaop

Nonnegative matrix factorisation (NMF) witkrdivergence is a pop- when dealing with real world signals an_d in particular aL_BignaIs.
ular method to decompose real world data. In this paper we prdi°Wever, MU rules can be computationally demanding and are
pose mini-batch stochastic algorithms to perform NMF edfitly gene_rally outperforme_d by gradient descent l_)ased a_pmeanhen

on large data matrices. Besides the stochastic aspect,mhbatch ~ COnsidering cost functions based on the Euclidean distance
approach allows exploiting intensive computing deviceshsas gen- In this paper, we propose m|r_1|-ba_tch methods for acceldrate
eral purpose graphical processing units to decrease thegsing MU rules. These approaches are inspired by the work based-on o

; ; ; line learning for the Euclidean distance [4, 14] and on tlelsastic
time and in some cases outperform coordinate descent agproa ) ;
P average gradient approach (SAG) [21]. Besides, these agipes

Index Terms— Nonnegative matrix factorisation, GPGPU, can be run on devices with constraint memory allowing for@ia-

multiplicative rules, online learning tion of general purpose graphical processing units (GPGRIEN
dealing with matrices operations (which is essentially ¢hse in
1. INTRODUCTION MU rules), GPGPU significantly decrease the processing fime

ther compared to central processing units (CPU) and caredotm
Nonnegative matrix factorisation (NMF) is a popular dateaie-  CD based approaches even with Euclidean distance cost.
position method [1]. NMF indeed allows obtaining meanirigfie- This paper is organised as follows. The notations and the gen
compositions that are well suited to the underlying stmectnf the  eral NMF problem are introduced in Section 2. CD for Euclidea
processed data. Over the past years, owing to these ass&thdv distance and KL divergence are briefly described in Sectioin3
been used in a wide variety of applications ranging from &mdl-  Section 4 we propose mini-batch approaches for MU rules én th
ysis [1], to electroencephalogram decomposition [2, 3pdmpro-  general case of thg-divergence and consideration about GPGPU
cessing [4], blind source separation [5, 6], music trapsicm [7] implementation are exposed in Section 5. We present theriexpe
machine listening [8] or speech processing [9, 10]. ments results and discussion in Section 6 and conclusiengxar

When considering a large amount of data, applying NMF carposed in Section 7.

quickly become computationally demanding. Therefore,r dkie
years, a substantial amount of work has been dedicated tdethe 2 PROBLEM STATEMENT AND NOTATIONS
sign of fast and low complexity optimisation algorithms féMF.
These methods include the approaches based on coordisatentle consider the (nonnegative) matrix € RE*N. Without loss of
(CD) [11, 12] and the fast hierarchical alternating leastiasgs  generality we consider here thtis the time-feature space repre-
method (FastHALS) [11] where each coordinate is optimised S sentation of a time series wheé the number of frames and is

quentially. Other examples include the distributed apghea [13]  the number of features per frames. The goal of NMF [1] is to ind
that could allow one to take advantage of distributed comtipt  f5ctorisation forVv of the form:

architectures and more recently online approaches [4,rsfjried

the stochastic gradient approach [15] where the deconiposi V ~ WH 1)

updated on a subset of the data drawn randomly. Most of these

approaches focus on the minimisation of a least squareionitthat ~ whereW ¢ RFXK H e RKXN and K is the number of compo-

assumes a Gaussian noise model. nents in the decomposmon The NMF model estimation is lhsua
When considering real world signals, it is often the casettie  considered as solving the following optimisation problem:

noise model is not Gaussian but can be a Poisson distribatien

Gamma distribution in which case the generalised Kullbiaeioler min D(VIWH) st. W=>0,H>0 &)
(KL) divergence [16] and the Itakura-Saito (IS) divergefité] can
be more appropriate, respectively. whereD is a separable divergence such as:

CD-based approaches have been extended to the KL prob- .o
lem [11, 12] but to our best knowledge the IS problem was never
considered. The multiplicative updates rules (MU) firstaduced D(VIWH) Z Z (VIsnlWH]sn), C)
for the Euclidean distance [1] and later extended to the KL di f=1n=1
vergence [18] can be generalised to thelivergence that encom-

; ; th th |; _
passes the Euclidean distance, the KL divergence and thizd§ d with [ is the element on the " column and the™ line of a ma

trix andd is a scalar cost function. Similarly I&f.,, and[.];. be the

This work was partly funded by the European Union under tha-FP n'" column and thef*” row of a matrix. A common choice for the
LASIE project (grant 607480). cost function is the-divergence [19]. Popular cost functions such as
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the Euclidean distance, the generalised KL divergencedhf]the
IS divergence [17] are all particular cases of thelivergence (ob-
tained forg = 2, 1 and0, respectively). The use of thdivergence
for NMF has been studied extensively in Févotte et al. [ROnost
cases the NMF problem is solved using a two-block coordidate
scent approach. Each of the factd¥sandH is optimised alterna-
tively. The sub-problem in one factor can then be considased
nonnegative least square problem (NNLS) [22]. Two différaor

proaches are considered here to solve these NNLS probldras:

coordinate descent approach [11, 12] and the MU rules [1].

3. NMF WITH COORDINATE DESCENT

The main idea in the coordinate descent (CD) method is totepda 12:

one coordinate at a time until convergence. Recently a rdatalted

FastHALS was proposed to solve the NMF with Euclidean normi4:

Algorithm 1 CD for the Euclidean norm (FastHALS)

Require: V € R, maxepoch
1: Initialise H, W with nonnegative random coefficients
2: for ep = 0; ep < maxepochdo
3:  ComputeW”w andw7X

4: forn=1;7 < Ndo
5: fork=1,»<Kdo
6: Update[H]., with (6)
7: end for
8: end for
9:  ComputeHH” andXHT
10: for f=1;j < Fdo
11: fork=1,»<Kdo
Update[W] s, with (7)
13: end for
end for

with CD [11] and an extension to KL was later proposed in Hsieh1s: end for

et al. [12]. Both these methods are described below and ackas
baseline for performance evaluation.

3.1. Euclidean distance

The goal in CD for NMF is to solve alternatively the set of orgiv
able sub-problems deriving from (3). Fgt, n) € [1, K] x [1, N]
solve (4). Then for(f,k) € [1, F] x [1, K] solve (5) (see also
Algorithm 1).

min 3 3 (V] — WHI o = Wi HIe)® st i > 0
oy

@

min 5 S (Msn — WHLgn — WllHl)? st Wge > 0

" ©)

A full pass through the data is referred to as an epoch to aawitl-
sion with local iteration (on the coordinate of the matricesn the
mini-batch in the next section). The number of epochs peréal by
the algorithm is controlled by a parameter. Each one vagiahb-
problem can be solved exactly. The solutions of these pnablead
to the following update rules [11]:

~ WTWH = WXk
WHHT — XHT T4,
T e R

where[.] ;. is the half-wave rectifying operat¢f+ = max(.,0).

3.2. Generalised Kullback-Leibler divergence

A similar approach can be applied to NMF with KL divergence ex
cept that now the sets of one variable sub-problems do na hav

closed form solution [11, 12]. However, the cost functiorestavice
differentiable, therefore, the sub-problems can be solvitil New-
ton method which lead to the following update rules [12]:

Xy
i i — A0 i) o
Zf [WH]2 I
1~ e
Wi | W — = [Z]k ) ©
[WH]Z | 4

16: return H, W

Algorithm 2 CD for the KL divergence

Require: V € R, maxepoch
1: Initialise H, W with nonnegative random coefficients
2: for ep = 0; ep < maxepochdo
Computew W and
4 forn=1;j < Ndo
5 fork=1,»<Kdo
6: repeat
7
8

Update[H]x., with (8)
[WH].,, < W[H].»,

9: until Convergence
10: end for
11: end for

12:  ComputeHHT”
13: for f=1;j < Fdo

14: fork=1,»<Kdo

15: repeat

16: Update[W] s, with (9)
17: [WH]f; — [W]f;H
18: until Convergence

19: end for

20: end for

21: end for

22: returnH, W

4. BETA-NMF WITH MULTIPLICATIVE UPDATES

The MU rules introduced in Lee et al. [1] for the Euclideartalise
were obtained using the heuristic which consists in exprgsthe
gradient of the cost function (2) as the difference betwepositive
contribution and a negative contribution. The MU rules there
the form of a quotient of the negative contribution by theites
contribution. These updates rules were later generalisélaet KL
divergence [18] and thg-divergence [20] leading to the following
expressions:

W7 [(WH)? 2 @ V]

H<+H
© T WTWH)

(10)



[(WH)" 2o V]HT (11  convergence speed in dictionary learning and by extension i
(WH)8—tHT ~ NMF [4, 14]. We propose to apply a similar idea to MU rules in

where® is the element-wise product (Hadamard product) and divi-order {0 take advantage of the wide variety of divergencesrea

sion and power are element-wise. The matrideandW are then by the5-divergence. Instead of selecting the mini-batch seqakyti

. - g on the original datd/ as in Section 4.1, we propose to draw mini-
updar:ed according to the alternating update scheme deglaniAl- batches ragndomly on a shuffled version/of‘l't?e ngini-batch update
gorithm 3.

of H still needs one full pass through the data so the mini-batche
Algorithm 3 Basic alternating scheme for MU rules are drawn fronb,..q, a random permutation ¢f, B]. On the other
hand, the shuffling o¥/ is then used to ensure that there is enough
data variability in each mini-batch and a single mini-bateim be

W Wqo

Require: V € RY*N, 8, maxiter

1: Initialise H, W with nonnegative random coefficients

2: for it = 0; it < maxiter do used to updati/. _ _

3 UpdateH with (10) ~ Two different strategies can be considered to updfite The

4: UpdateW with (11) first option is to updat&V for each mini-batch as described in Algo-

5: end for rithm 5. This approach is denoted asymmetric SG mini-batth M

6: return H, W rules (ASG-MU) adH andW are updated asymmetrically (the ftil

is updated once per epoch whil¢ is updated for each mini-batch).

4.1. Cyclic mini-batch updates The second option is to updaté only once per epoch on a randomly

] ) ) ) selected mini-batch. In practice as mini-batches are difaem a
The standard update scheme (described in Algorithm 3) resjtiie  random permutation ofl, B] updatingW on the last mini-batch
complete matri®/. When considering time series with a large num- sejected is equivalent to select a random mini-batch asitiesicin

ber of data points (or time series that are expending in timeing  Algorithm 6. This approach will be referred to as greedy S@imi
this algorithm can become prohibitive. Capitalising ongbparabil-  patch MU rules (GSG-MU).

ity of the divergence (3) it is possible to perform NMF on rrlo@itch _ - —
of data to reduce the computational burden or to allow foafr ~ Algorithm S Asymmetric SG mini-batch MU rules (ASG-MU)
computations [13]. Require: V € RY*Y, 3, maxepoch

When considering time series as defined above, each column: Initialise H, W with nonnegative random coefficients
([V]:n) of the matrixV contains all the features for a specific time 2: ShuffleV
frame and each rowV];.) represents a particular feature along time. 3: for ep = 0; ep < maxepochdo

The number of rows is then a parameter of the low-level remtes 4; b,nq + permutation of1, B]

tion and only the number of columns can increase while irginga 5 for b € b,,q do

the amount of data. Therefore, in contrast to the approamposed 6: UpdateH, with (10)

in Simsekli et al. [13] we decide to decompose the maitiin B 7 UpdateW with (11) (withH replaced byH;)

mini-batches of time frames that contain all the featuregife given 8: end for
frame (see also Figure 1). 9: end for

For each batch, the update of the activatiort$, correspond-  10: return H, W
ing to V;, can be obtained independently from all the other batches
with the standard MU rules (10). The update of the ba¥esn the : - -
other hand requires the whole matuxo be processed. The positive Algorithm 6 Greedy SG mini-batch MU rules (GSG-MU)
contribution of the gradient{* W) and the negative contribution of Require: V € RY**, 5, maxepoch
the gradientv_w are accumulated a|0ng the mini-batch&%. is 1: |nitia|iseH, W Wlth nOnnegatiVe l’andom CoeffiCientS
updated once per epoch with the standard MU rule (11) asidescr ~ 2: ShuffleV
in Algorithm 1. Note that this is theoretically similar toetlstandard ~ 3: for ep = 0; ep < maxepochdo

full-gradient (FG) MU rules. 4 byna < permutation of 1, B]
- — 5: for b € b,.,q do
Algorithm 4 Cyclic mini-batch for MU rules 6: UpdateH, with (10)
Require: V € RY*N, 8, maxepoch 7:  endfor
1: Initialise H, W with nonnegative random coefficients 8: UpdateW with (11) (withH replaced byH, . ,1,,)
2: for ep = 0; ep < maxepochdo 9: end for
3 Initialise V"W = 0 andV*tW = 0 10: return H, W
4: forb=1;b< Bdo ] ] —
5 UpdateH, with (10) 4.3. Stochastic average gradient mini-batch updates
& V;W +f V;Wb SAG [21] is a method recently introduced for optimizing cfostc-
7 VW +=VTW, - h f functi hich is th h
8 end for tions that are a sum of convex functions (wi ich is the case)her
9 W YW SAG provides an intermediate between FG-like methods (ad us
10: end for viw in Section 4.1) and SG-like methods (as used in Section &A%

then allows to obtain similar convergence rate than FG nusthgth
a complexity comparable to SG methods.

We propose to apply SAG-like methods to update the dictionar
iesW in a mini-batch based NMF. Note that, as the full pass through
the data is needed to upddteit would not make sense to apply
When aiming at minimizing an Euclidean distance, it has beerSAG here. The key idea is that for each mini-batdhstead of us-
shown than drawing samples randomly can improve greatly théng the gradient computed locally to updaté we propose to use

11: returnH, W

4.2. Stochastic mini-batch updates
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the mini-batch data to update the full gradient negativeositive ~ Algorithm 8 Greedy SAG mini-batch MU rules (ASAG-MU)
contributions. In the case of MU rules, in order to preveptaldest Require: V € RixN’ 3, maxepoch

(and possibly outdated) values of the gradient from cauisistgbil- 1: Initialise H, W with nonnegative random coefficients
ties we use an averaging based on an exponential forgettaigrf 2: ShuffleV
Aef0,1]: 3: for ep = 0; ep < maxepochdo

VW <+ (1 =NV W+ AV oWy (12) 4 b,n4 < permutation of1, B]

n n . 5: for b € bypq do

VIW = (1 = NMVTW + AV W 13) UpdateH, with (10)
whereV .., W; andV;,., W, are the negative and positive contribu- 7 endfor ) ,
tion to the gradient oV calculated on the mini-batdh respectively. & UdpateV+W with (12) (withH replaced bHp,, 1)
Note that for\ = 1 this gradient update formulation is equivalentto 9:  UdpateV™W with (13) (withH replaced byH ., 1,

the SG approach described above. 0. W« S
Similarly as in Section 4.2, two different strategies carcbe- 11: end for

sidered to updat®/. The first option is to updaté/ for each mini-  12: return H, W
batch as described in Algorithm 7. This approach is denasgtha
metric SAG mini-batch MU rules (ASAG-MU). The second option cost in time of these transfers is high and transfering daiaften

is to updatew only once per epoch on the last mini-batch from theto and from the GPGPU internal memory can quickly overconge th
permutationb..,4, as described in Algorithm 8. This approach is benefits of GPGPU programming. One consequence of thisalimit
termed greedy SAG mini-batch MU rules (GSAG-MU). tion is that loop-based algorithms have to be treated realtgfully

Algorithm 7 Asymmetric SAG mini-batch MU rules (ASAG-MU) ﬁ;srxoganrsggalﬁno;lgvc\)/n;xtgfu?oicaPU internal memory insiée th
Require: V € RN, 3, maxepoch

1: Initialise H, W with nonnegative random coefficients

2: ShuffleV 5.1. Coordinate descent

3: for ep = 0; ep < maxepochdo

4: Drna < permutation of 1, B] The general CD scheme relies on iterations over the codedafahe
5. for b€ by,gdo factor. There is only limited performance gains in perforgihe full
6: UpdateH, with (10) nested loop section on the GPGPU (except that it would rethece
7 UdpateV ™~ W with (12) risk of unecessary memory transfer). The positive impaGRGPU
8 UdpateV "W with (13) computing on CD algorithms essentially resides in the dodpet to
9: W+ g;v‘“\f be performed at the beginning of each epoch. For Euclidestardie
10:  end for cost (Algorithm 1), the dot product&/”W (line 3), WZ X (line 3),
11: end for HHT (line 9) andXHT (line 9) are computed on the GPGPU, the
12: returnH, W rest is executed on the CPU side. For KL divergence ¥65wW

(line 3) andHH T (line 12) are computed on the GPGPU, the rest is
executed on the CPU side.

5. GPGPU IMPLEMENTATION FOR ACCELERATED

UPDATES
5.2. Multiplicative updates

Over the past years, GPGPU become increasingly populari-in sc
entific computing as they allow one to drastically improve@x By design, the MU rules essentially rely on matrices opera¢ind
tion speed on computationally intensive functions such asipu-  therefore appear as a good match for GPGPU programming. The
lation on large matrices. Owing to these assets, GPGPU gmogr only looping in MU rules is related to iterating on epoch and o
ming played a central part in the recent success of deegmggand  mini-batch, all the rest (the core of the optimisation alion) can
many GPGPU programming packages have emerged among whidbe executed on GPGPU. Therefore, for each variation on the MU
Theano [23], Torch7 [24] or tensorflow [25]. During this wosle  rules described above, the portion of code running on theBPiG
decided to use Theano which is a python library and therefdoers ~ the following: cyclic mini-batch MU (Algorithm 4, lines 5-&nd 9),
flexible integration within a full scientific programmingafmework. ~ ASG-MU (Algorithm 5, lines 6-7), GSG-MU (Algorithm 6, lines

The latency in data transfers to and from the GPGPU internaand 8), ASAG-MU (Algorithm 7, lines 6-9) and GSAG-MU (Algo-
memory is a critical aspect in GPGPU programming. Indeed theithm 8, lines 6 and 8-10).



6. EXPERIMENTS Figure 3-b and depends largely of the forgetting factom the KL
divergence casg = 2 seems already too large. The asymetric algo-
6.1. Experimental setup and corpus rithms (ASG-MU and ASAG-MU) decrease the cost functiondast
than other MU rules and to a lower value. However, in the cdise o

The NMF algorithms are evaluated on a subset of the ESTERisorp the Euclidean norm cost they are still outperformed by the CD

ESTER is a corpus for automatic speech recognition compoted
data recorded on broadcast radio [26]. The subset of ESTER us

for evaluation is composed of 6 hours and 11 minutes of wgini 7. CONCLUSIONS
data [10], 132 constant Q transform [27] coefficients areaekéd ] o )
16ms frames resulting inE82 x 1 394 375 data matrixV. In this paper we proposed mini-batch stochastic approsfiebe

Two different platforms are used to run the CPU code and thdlU rules and compared their performance with CD when aviglab
GPU codé. The CPU code runs on Inf8lXeor® E5-2687W with  for the divergence considered. The GPGPU was used to tak@-adv
16 cores at 3.10GHz and 64GiB, processing is accelerated witt2ge of the particular mini-batch structure and to effidiedeal with
Intel® math kernel library (IntéP MKL) to fully exploit the 16 the matrices manipulations. In every case, the GPGPU atloee

cores. The GPU code runs on NvifiaTesla S2050 with 3Gig ducing the computation time. When considerjng the Euchidearm
internal memory. The host computer is equipped with 4 fitel COSt, the proposed ASGTMU and ASAG-MU improved the standard
Xeor® X5670 with 6 cores at 2.93GHz each (24 core in total) andMU performance and bring the MU rules closer to CD. When con-
192GiB of RAM. The access to the GPGPU platform is mutualisecfidering other cost functions (the KL divergence and theil@rd
so there is no guarantee to access all the 24 cores at onda with 9ence), the CD is inefficient or simply has not been derivecape
limited waiting time. Therefore it was decided to run the Cpast MU is the most credible approach to perform NMF. The proposed
of the code on a single core without IfRIMKL acceleration to ~ @pproaches then provide significant reduction in commriaiime
ensure consistent hardware setup from one experiment themo ~ @nd obtain lower cost than standard NMF.
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