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LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France.

ABSTRACT
A great number of methods for multichannel audio source separa-
tion are based on probabilistic approaches in which the sources are
modeled as latent random variables in a Time-Frequency (TF) do-
main. For reverberant mixtures, it is common to approximate the
time-domain convolutive mixing process as being instantaneous in
the short-term Fourier transform domain, under a short mixing fil-
ters assumption. The TF latent sources are then inferred from the
TF mixture observations. In this paper we propose to infer the TF
latent sources from the time-domain observations. This approach al-
lows us to exactly model the convolutive mixing process. The infer-
ence procedure relies on a variational expectation-maximization al-
gorithm. In significant reverberation conditions, our approach leads
to a signal-to-distortion ratio improvement of 5.5 dB compared with
the usual TF approximation of the convolutive mixing process.

Index Terms— Multichannel audio source separation, time-
domain convolutive model, time-frequency source model, non-
negative matrix factorization, variational EM algorithm.

1. INTRODUCTION

Audio source separation is the task that aims to recover a set of audio
source signals from one or several mixtures. When the sources are
recorded in an enclosed space, the reflections of sound on the sur-
faces and objects of the room induce reverberation in the recordings.
Modeling such reverberant mixtures basically involves two stages:
modeling the source signals and the way they are mixed together.

Source separation is commonly achieved in a Time-Frequency
(TF) domain because it provides a meaningful and often sparse
representation of the source signals. In this TF domain, many
approaches are based on probabilistic modeling and statistical in-
ference [1, 2]. Within such a framework, Non-negative Matrix
Factorization (NMF) techniques are popular to represent the spectro-
temporal characteristics of the sources [3, 4, 5, 6].

The propagation between a punctual source and a microphone
in a room can be characterized by a room impulse response referred
to as a mixing filter in the context of source separation. A signal
recorded by a microphone is thus generally represented as the convo-
lution of a source signal with a mixing filter. Modeling convolutive
mixtures in a TF domain is quite challenging. Therefore, most of the
methods rely on the assumption that the mixing filters are short com-
pared with the TF analysis window [7]. Under this hypothesis the
convolutive mixing process can be approximated as instantaneous in
each frequency band (see, e.g., [8], [9]). This assumption, although
widely used, remains one of the main limitations of reverberant au-
dio source separation methods. It prevents us from obtaining good
separation results in recordings with significant reverberation.
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Some methods working with TF source models have nonethe-
less investigated other mixture models. In [10] the authors intro-
duced spatial covariance matrices to model non-punctual sources.
They experimentally showed that the flexibility of this model helps
improving the performance of reverberant audio source separation.
The method presented in [11] considers a time-domain modeling of
the mixture while keeping a sparse constraint on the sources in the
TF domain. In [12] the time-domain convolution is approximated
by subband filtering in the Short-Term Fourier Transform (STFT)
domain. Finally it has been shown in [13] that convolution in the
time domain can be accurately represented in the TF domain by a
two-dimensional filter.

In this paper the sources are modeled in the Modified Discrete
Cosine Transform (MDCT) domain as centered Gaussian random
variables, whose variances are structured by means of an NMF
model. The convolutive mixing process is exactly modeled by stay-
ing in the time domain. We then use the time-domain observations
to infer the TF latent source variables1. Our inference procedure
relies on a variational expectation-maximization algorithm.

The models are introduced in section 2. The variational infer-
ence is presented in section 3. Oracle experiments are conducted in
section 4 and we finally draw conclusions in section 5.

2. MODELS

We denote sj(t) ∈ R, t = 0, ..., Ls−1, j = 1, ..., J , the j-th source
signal and aij(t) ∈ R, t = 0, ..., La, i = 1, ..., I , the mixing filter
between source j and microphone i. Let define T = Ls + La − 1.
The signal xi(t) recorded by the i-th microphone is represented for
t = 0, ..., T − 1 as:

xi(t) =

J∑
j=1

yij(t) + bi(t), (1)

where yij(t) = [aij ? sj ](t) is referred to as a source image, with ?
the discrete convolution operator, and bi(t) is an additive noise.

Each signal sj(t) is represented by a set of TF synthesis coeffi-
cients {sj,fn ∈ R}f,n, (f, n) ∈ {0, ..., F − 1} × {0, ..., N − 1}:

sj(t) =

F−1∑
f=0

N−1∑
n=0

sj,fnψfn(t). (2)

In this work we use the MDCT for representing the source signals.
ψfn(t) ∈ R, t = 0, ..., Ls − 1, is thus an MDCT synthesis atom:

ψfn(t)=

√
2

F
w(t−nH) cos

(
2π

Lw

(
t−nH+

1

2
+
Lw
4

)(
f+

1

2

))
, (3)

1In [14] time-domain observations were also used for inferring TF
sources. However the convolutive mixture model was approximated in the
STFT domain which is not the case in our approach.
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wherew(t) is a sine-window defined byw(t) = sin(π(t+0.5)/Lw)
if 0 ≤ t ≤ Lw − 1, 0 otherwise, and H = Lw/2 is the hop size.
Note thatF = Lw/2. We choose the MDCT for mainly two reasons:
firstly we do not need to approximate the time-domain convolutive
mixing process in the TF domain, which is usually done for practi-
cal reasons in the STFT domain (see, e.g., [7]); secondly the STFT
is a redundant complex-valued transform so we need to deal with
twice more real valued coefficients than with an MDCT. Moreover
the MDCT exhibits the preservation of whiteness property [15]. It
is thus more appropriate than the STFT for assuming the indepen-
dence of the source TF points, as commonly done in audio source
separation. Note that expression (2) allows one to use different TF
resolutions for representing different sources. This can be useful for
separating tonal and transient components [16, 17]. This extension
is however let for future work as in this paper we choose the same
TF dictionary for all the sources.

In a similar way as in [16], the synthesis coefficients are modeled
as centered real-valued Gaussian random variables, whose variances
are structured by means of an NMF model:

sj,fn ∼ N (0, vj,fn = [WjHj ]fn), (4)

with Wj ∈ RF×Kj

+ , Hj ∈ RKj×N
+ andN (µ, σ2) is the real-valued

Gaussian distribution with Probability Density Function (PDF):

N(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
. (5)

In the single-channel coding-based informed source separation
method [18], the authors also use an MDCT along with a Gaussian
source model and a non-negative factorization of the source power.

From equation (2) a source image writes:

yij(t) = [aij ? sj ](t) =

F−1∑
f=0

N−1∑
n=0

sj,fngij,fn(t), (6)

where gij,fn(t) = [aij ? ψfn](t). We finally assume a white Gaus-
sian additive noise:

bi(t) ∼ N (0, σ2
i ). (7)

3. VARIATIONAL INFERENCE

Let x denote the set of observed time-domain variables {xi(t)}i,t,
s the set of TF-domain latent variables {sj,fn}j,f,n and θ the set of
parameters {σ2

i }i, {Wj}j , {Hj}j and {aij(t)}i,j,t. Our objective
is to estimate the latent variables in a Minimum Mean Square Error
(MMSE) sense:

ŝ = Es|x;θ? [s], (8)
where the model parameters are estimated in a Maximum Likelihood
(ML) sense:

θ? = argmax
θ

p(x;θ). (9)

The solution of (8)-(9) can be found by means of an Expectation-
Maximization (EM) algorithm [19]. However, according to the mod-
els defined in section 2, the posterior distribution p(s|x;θ) is Gaus-
sian but parametrized by a full covariance matrix of too high dimen-
sions to be implemented. We are thus resorting to a Variational EM
algorithm (VEM) [20] in order to factorize this posterior distribu-
tion. Let F be a set of PDFs over the latent variables s. For any PDF
q ∈ F and any function f(s), we note 〈f(s)〉q =

∫
f(s)q(s)ds.

Then for any q ∈ F and parameter set θ, the log-likelihood can be
decomposed as:

ln p(x;θ) = L(q;θ) +DKL(q||p(s|x;θ)), (10)

where L(q;θ) =
〈
ln
(
p(x,s;θ)
q(s)

)〉
q

and DKL(q||p(s|x;θ)) =〈
ln
(

q(s)
p(s|x;θ)

)〉
q

is the Kullback-Leibler (KL) divergence be-

tween q and the posterior distribution p(s|x;θ). L(q;θ) is called
the variational free energy and can be further decomposed as
L(q;θ) = E(q;θ) +H(q) where

E(q;θ) = 〈ln p(x, s;θ)〉q, (11)

and H(q) = −〈ln q(s)〉q is the entropy of distribution q. Since the
KL divergence is always non-negative, the variational free energy is
a lower bound of the log-likelihood. The variational EM algorithm
consists in iterating two steps until convergence: the E-step where
we compute q? = argmaxq∈F L(q;θold) and the M-step where we
compute θnew = argmaxθ L(q?;θ) = argmaxθ E(q?;θ).

In this work we will use the mean field approximation where we
assume that the density q can be factorized as:

q(s) =

J∏
j=1

F−1∏
f=0

N−1∏
n=0

qjfn(sj,fn). (12)

3.1. Source estimate under the variational approximation

q(s) as defined in (12) aims to approximate the posterior distribution
p(s|x;θ). Under this approximation the j-th TF source estimate is:

mj,fn = 〈sj,fn〉q? . (13)

The j-th time-domain source estimate is then obtained for t =
0, ..., Ls − 1 by inverse MDCT:

ŝj(t) =

F−1∑
f=0

N−1∑
n=0

mj,fnψfn(t). (14)

From the current mixing filters, we also define the estimate of the
j-th source image seen by the i-th microphone for t = 0, ..., T − 1:

ŷij(t) = [aij ? ŝj ](t) =

F−1∑
f=0

N−1∑
n=0

mj,fngij,fn(t). (15)

3.2. Variational free energy

From equations (1) to (7), the complete data log-likelihood
ln p(x, s;θ) = ln p(x|s;θ) + ln p(s;θ) writes:

ln p(x, s;θ) = −1

2
(IT + JFN) ln(2π)

− 1

2

I∑
i=1

T−1∑
t=0

[
ln(σ2

i ) +
1

σ2
i

(
xi(t)−

J∑
j=1

yij(t)

)2
]

− 1

2

J∑
j=1

F−1∑
f=0

N−1∑
n=0

[
ln(vj,fn) +

s2j,fn
vj,fn

]
. (16)

We are interested in computing the variational free energy L(q?;θ)
= E(q?;θ) +H(q?). From (11) and (16) we have:

E(q?; θ) = −1

2
(IT + JFN) ln(2π)− 1

2

I∑
i=1

T−1∑
t=0

[
ln(σ2

i )

+
ei(t)

σ2
i

]
− 1

2

J∑
j=1

F−1∑
f=0

N−1∑
n=0

[
ln(vj,fn) +

m2
j,fn + γj,fn

vj,fn

]
,

(17)
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wheremj,fn is defined in (13), ei(t) =
〈(
xi(t)−

∑J
j=1 yij(t)

)2〉
q?

and γj,fn = 〈(sj,fn −mj,fn)
2〉q? . From (6), (12) and (15), ei(t)

is given by:

ei(t) =

(
xi(t)−

J∑
j=1

ŷij(t)

)2

+

J∑
j=1

F−1∑
f=0

N−1∑
n=0

γj,fng
2
ij,fn(t).

(18)

From (12) and after having identified q(s)? at the E-step we will
have to compute the entropy H(q?) = −〈ln(q?(s))〉q? .

3.3. E-step

Under the mean-field approximation, we can show that the densities
qjfn(sj,fn) which maximize the variational free energy satisfy [20]:

ln qjfn(sj,fn) = 〈ln p(x, s;θ)〉( ∏
(j′,f′,n′)6=(j,f,n)

qj′f′n′

). (19)

From (16) we can develop this expression. After computation we
find that q?jfn(sj,fn) = N(sj,fn;mj,fn, γj,fn) where:

γj,fn =

(
1

vj,fn
+

I∑
i=1

1

σ2
i

T−1∑
t=0

g2ij,fn(t)

)−1

; (20)

mj,fn = mj,fn − γj,fndj,fn; (21)

dj,fn =
mj,fn

vj,fn
−

I∑
i=1

1

σ2
i

T−1∑
t=0

gij,fn(t)

(
xi(t)−

J∑
j′=1

ŷij′(t)

)
.

(22)

Note that the parameters mj,fn have to be updated in turn2.
Entropy of the distribution: From (12) and the variational dis-

tribution q?jfn(sj,fn) we identified, we can show that:

H(q?) =
JFN

2

(
1 + ln(2π)

)
+

1

2

J∑
j=1

F−1∑
f=0

N−1∑
n=0

ln(γj,fn). (23)

Preconditioned conjugate gradient method: We can show that
dj,fn = ∂(−L(q?;θ))/(∂mj,fn). Therefore, we clearly see from
(21) that the update of mj,fn corresponds to going in the opposite
direction of the derivative dj,fn with a step size γj,fn. When the
derivative is zero, it is clear that we achieve a fixed point of the algo-
rithm. Therefore, for the sake of computational efficiency, we will
use the preconditioned conjugate gradient (PCG) method [21] in-
stead of the coordinate-wise update (21). We define d and m the
column vectors of size JFN with entries dj,fn and mj,fn respec-
tively. We also define the diagonal preconditioning matrix D of size
JFN × JFN and entries γ−1

j,fn. The order of the coefficients in-
dexed by j, f, n for constructing these vectors and this diagonal ma-
trix does not matter as long as it is kept identical. The E-step finally
corresponds to updating γj,fn according to (20) and updatingmj,fn

with the PCG method summarized in Algorithm 1.

3.4. M-step

The M-step aims to maximizeE(q?;θ) in (17) with respect to (w.r.t)
the parameter set θ. Zeroing the derivative ofE(q?;θ) w.r.t σ2

i leads

2mj,fn appears several times in the right-hand side of (21) and it can be
shown that its contributions add up to zero.

Algorithm 1: PCG method for the update of mj,fn at the E-step

1: Initialize d from (22) and ω = D−1d
2: while stopping criterion not reached do
3: Compute κ the column vector of size JFN with entries

κj,fn =
ωj,fn

vj,fn
+

I∑
i=1

1
σ2
i

T−1∑
t=0

gij,fn(t)×
J∑

j′=1

F−1∑
f ′=0

N−1∑
n′=0

ωj′,f ′n′gij′,f ′n′(t)

4: µ = (ωTd)/(ωTκ)
5: m←m− µω
6: Compute d from (22)
7: dp = D−1d
8: β = −(κTdp)/(ωTκ)
9: ω ← dp + βω

10: end while

to the following update with ei(t) given by (18):

σ2
i =

1

T

T−1∑
t=0

ei(t). (24)

Up to an additive term which does not depend on the NMF
parameters, we can recognize in (17) the Itakura-Saito (IS) diver-
gence [3] between vj,fn = [WjHj ]fn and the posterior mean of
the source power spectrogram 〈s2j,fn〉q? = m2

j,fn + γj,fn. There-
fore the source parameters are updated by computing an NMF on
P̂j =

[
m2
j,fn + γj,fn

]
fn
∈ RF×N+ with the IS divergence. It can

be done with the standard multiplicative update rules given in [3].
We can re-write the function to be maximized w.r.t the mixing

filters as:

C(aij) =−
1

2

I∑
i=1

1

σ2
i

[∥∥∥∥xi − J∑
j=1

F−1∑
f=0

N−1∑
n=0

mj,fnTfnaij

∥∥∥∥2
2

+

J∑
j=1

F−1∑
f=0

N−1∑
n=0

γj,fn
∥∥Tfnaij

∥∥2
2

]
. (25)

with Tfn ∈ RT×La a Toeplitz matrix [21] containing the TF atoms
ψfn(t), xi a column vector of size T and entries xi(t) and aij a
column vector of size La and entries aij(t). The convolution oper-
ation is thus expressed thanks to the multiplication of a vector with
a Toeplitz matrix. Zeroing the gradient of C(aij) is equivalent to
solving the following positive definite linear system of equations:[( F−1∑

f=0

N−1∑
n=0

mj,fnTfn

)T( F−1∑
f=0

N−1∑
n=0

mj,fnTfn

)

+

F−1∑
f=0

N−1∑
n=0

γj,fnT
T
fnTfn

]
aij

=

[ F−1∑
f=0

N−1∑
n=0

mj,fnT
T
fn

(
xi −

∑
j′ 6=j

F−1∑
f=0

N−1∑
n=0

mj′,fnTfnaij′

)]
.

(26)

Let introduce the following definitions:

. εij(t) = xi(t)−
∑
j′ 6=j ŷij′(t) for t = 0, ..., T − 1;

. TM{τ(k)}: A symmetric Toeplitz matrix of size M × M
formed from the sequence {τ(k)}M−1

k=0 .
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We can show that (26) can be re-written as:[
TLa{r̂

ss
j (k)}+TLa

{
F−1∑
f=0

N−1∑
n=0

γj,fnr̂
ψψ
fn (k)

}]
aij = r̂sεij , (27)

where r̂ssj (k) =
∑Ls−1−k
t=0 ŝj(t)ŝj(t+ k), r̂sεij (k) =

∑Ls−1
t=0 ŝj(t)

εij(t+k), r̂sεij =
[
r̂sεij (0), r̂

sε
ij (1), · · · , r̂sεij (La−1)

]T
and r̂ψψfn (k) =∑Ls−1−k

t=0 ψfn(t)ψfn(t + k). Compared with (26), this formula-
tion involves simpler and faster operations such as inverse MDCTs,
convolutions and cross-correlations. The linear system (27) can be
solved by matrix inversion. However, for the sake of computational
efficiency in the case of long mixing filters and numerical stability
we choose to use the PCG method [21]. As it is rather common for
solving positive definite linear systems and due to space limitations
we do not detail the algorithm here but its structure is identical to
Algorithm 1.

4. EXPERIMENTS

Our experiments are conducted from the audio tracks without effects
provided by the Musical Audio Signal Separation (MASS) dataset
[22]. We consider 8 stereo mixtures created by simulating mixing
filters with the Roomsimove toolbox [23]. The mixtures duration
ranges from 12 to 28 seconds. We considered several reverberation
times3: T60 = 32, 64, 128, 256 or 512 ms. It results in a total num-
ber of 40 mixtures. The number of sources per mixture ranges from
3 to 5. The omnidirectional microphone spacing was set to 1 m, and
the distance between the source and the center of the microphone
pair to 2 m. The sources directions of arrival range from -45◦ to
45◦. As the MASS dataset provides stereo sources, each one is first
converted to mono, downsampled to 16 kHz and filtered with the as-
sociated RIRs to create a source image. We finally sum all the source
images to create a mixture.

We compare our approach with the baseline method [8]4. In-
deed, our work is comparable to [8] in the sense that it performs
multichannel audio source separation using an NMF source model
and a punctual convolutive mixture model. The key difference is that
in this method, the authors infer the TF latent sources from TF obser-
vations (with an EM algorithm and using the STFT). Therefore they
approximate the convolutive mixing process in the STFT domain as-
suming short mixing filters. In our work, the inference is done from
the time-domain observations, the convolutive mixture modeling is
thus exact. For both methods we use a half-overlapping TF analy-
sis/synthesis sine window of 128 ms (2048 points at a sampling rate
of 16 kHz). The NMF order is arbitrarily fixed to Kj = 10 for all
the sources. For both algorithms the parameters are initialized from
oracle values computed on the true source signals and from the true
mixing filters. Indeed, this work aims to compare the best perfor-
mance achievable by the two approaches. The (V)EM algorithms are
run for 100 iterations from the oracle initializations. The PCG algo-
rithms for the proposed method are run for 10 iterations. We evaluate
the source separation performance in terms of reconstructed source
images. We use standard energy ratios: the Signal-to-Distortion Ra-
tio (SDR), Signal-to-Interference Ratio (SIR), Signal-to-Artifact Ra-
tio (SAR) and source Image-to-Spatial distortion Ratio (ISR). These
criteria expressed in decibels (dB) are defined in [24]. We used the
BSS Eval Toolbox available at [25] to compute these measures.

3The reverberation time is defined as the time it takes for the sound energy
to decrease by 60 dB after extinction of the source.

4Except that the NMF parameters are updated as in [9] using multiplica-
tive update rules thanks to a change in the choice of the latent variables.

SDR ISR SIR SAR
T60

(ms)
ref. new ref. new ref. new ref. new

32 16.7 16.0 24.3 23.0 24.4 23.0 18.6 18.6
64 14.9 15.6 21.5 22.6 22.4 22.6 17.1 18.5

128 11.8 15.3 17.6 22.3 18.8 22.6 14.6 18.2
256 8.5 13.8 13.7 20.5 14.7 21.3 12.0 16.7
512 6.3 11.8 10.9 18.1 11.8 19.2 10.1 14.6

Table 1. Average source separation results in dB according to the
reverberation time T60. ”Ref.” denotes the baseline approach with
TF approximation of the convolutive mixing process and ”new” is
the proposed method with exact convolutive mixture modeling.

The results are presented in Table 1. Interestingly, we see that
when T60 = 32 ms the baseline approach leads to slightly better per-
formance than the proposed one, the short mixing filters assumption
being verified. In [8] the filters length is assumed to be equal to the
STFT analysis window length. Therefore the filters are here over-
parametrized which can be favorable in an oracle setting. Neverthe-
less, for all the other reverberation times, the proposed method with
exact convolutive mixture modeling performs better. The longer the
reverberation time, the better it performs compared with the base-
line. Indeed, for T60 = 64 ms the proposed method leads to an SDR
improvement of 0.7 dB while for T60 = 512 ms the improvement
reaches 5.5 dB. Informal listening tests confirm this improvement.
While for the baseline method the reverberation seems to be spread
over the estimated sources, leading to strong interferences at high
T60, the separation quality of the proposed method is much more
constant when the reverberation time increases. Audio examples and
Matlab code are available from our demo web page [26].

As in this work we added the time-domain dimension in the for-
mulation of the source separation problem, our method is more com-
putational demanding. Moreover the computational load increases
with the length of the mixing filters. For example, on a 28 seconds
long mixture of 3 sources, for the previously mentioned reverbera-
tion times in ascending order, one iteration of the VEM algorithm
takes about 33, 37, 47, 69 and 111 seconds respectively, with a 3.70
GHz processor. While one iteration of the EM algorithm for the
baseline method takes around 1 second.

5. CONCLUSIONS

In this paper we presented a new method for multichannel audio
source separation based on exact convolutive mixture modeling.
Within this framework, TF latent sources are inferred from the time-
domain mixture observations. We showed that this approach, under
significant reverberation, considerably improved oracle performance
compared with the usual TF approximation of the convolutive mix-
ture. Future work will aim to confirm these results on live-recordings
and also evaluate the method on professionally produced music. We
will also have to investigate a more realistic blind initialization
procedure. The initialization is indeed crucial for an EM algorithm.

As shown in [16] for single channel source separation, using
the generative time-domain source model (2)-(4) allows one to use
TF dictionaries with multiple resolutions for modeling the sources.
This could be useful for harmonic/percussive multichannel source
separation for example. This extension is let for future work.

We also believe that modeling the mixture in the time-domain
is a promising approach for incorporating probabilistic priors on the
mixing filters. Indeed, they exhibit a simple specific structure in time
as they correspond to room impulse responses [27].
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