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ABSTRACT

In this work we propose novel joint and sequential multimodal ap-
proaches for the task of single channel audio source separation in
videos. This is done within the popular non-negative matrix fac-
torization framework using information about the sounding object’s
motion. Specifically, we present methods that utilize non-negative
least squares formulation to couple motion and audio information.
The proposed techniques generalize recent work carried out on
NMF-based motion-informed source separation and easily extend
to video data. Experiments with two distinct multimodal datasets of
string instrument performance recordings illustrate their advantages
over the existing methods.

Index Terms— Audio source separation, Nonnegative matrix
factorization, Audio-visual objects, Motion, Multimodal analysis

1. INTRODUCTION

Several sounds in the real world are visually indicated through their
relation to the sound-producing motion. This paper focuses on sin-
gle channel audio source separation in audiovisual recordings of
such sound mixtures by leveraging the accompanying motion infor-
mation in the visual stream. Be it sound of people talking, play-
ing an instrument or scratching a surface, both the audio and visual
streams carry some common information about the physical inter-
action. In this study we attempt to identify, extract, and couple
features from both modalities that represent this shared knowledge.

In the past, numerous frameworks have been developed for the
task of single channel audio source separation, e.g. [1, 2]. The
part-based decomposition of audio spectra into its spectral patterns
and their activations obtained from nonnegative matrix factorization
(NMF) makes it a particularly appealing and popular method for
tackling this problem. In many cases, NMF-based frameworks have
been used in a supervised manner, where spectral patterns are first
learnt over clean examples. To perform source separation over a
single mixture without any training step, several non-supervised (or
blind) audio-only methods have been propounded. A generic Mel-
spectra based spectral pattern clustering approach was proposed by
Spiertz et al. [3]. Other methods involving shifted NMF or linear
predictive coding were introduced subsequently [4, 5].

Use of auxiliary information for assisting source separation has
also seen growing interest. Some examples include exploitation of
score information for musical recordings [6, 7], text for speech [8],
user-assistance [9], etc. For brevity, here we only elaborate on meth-
ods utilizing motion data.

In most cases, motion information is extracted from the video
images and utilized within various settings including NMF. Early
work by Fisher et al. [10] sought to learn a multimodal embedding
through mutual information (MI) maximization. This is then used
to tackle the task of user-assisted audio enhancement. However,

Parzen window estimation for computing MI is complex and may
suffer in quality when the data used to perform the estimation is lim-
ited. Some other works propose to do so in an unsupervised manner
using sparse representations [11], audio-visual independent compo-
nents [12], and onsets coincidence [13]. Some limitations of these
methods include multiple parameter tuning and performance degra-
dation in complex videos. Score information has also been used
along with joint AV processing for source separation and player as-
sociation in music videos [14]. Some recent studies [15], including
ours [16], demonstrate the advantages of using motion within the
NMF framework, however, their application to generic videos is
not straightforward.

This work stems from the following intuition: motion features
such as velocity, obtained from visual analysis, encode information
about the physical excitation of a sounding object. On the other
hand, for the audio modality, a representation of this excitation can
be found in the spectral component activation matrix obtained after
NMF decomposition. Thus, our hypothesis is that a set of audio ac-
tivations would be “similar” to the velocity of sound-producing mo-
tion. We establish the idea’s effectiveness for audio source separa-
tion through experiments on two very challenging multimodal string
quartet performance datasets involving video and motion capture
data. In particular, the proposed sequential and joint approaches
extend and improve upon earlier work (i) by making it indepen-
dent of specific inputs such as bow inclination in [16], or lip surface
signals in [15] (as a result we eliminate the need to provide a pre-
constructed motion activation matrix), and (ii) by showing applica-
bility of the proposed methods to complex videos.

The paper is organized as follows. We present an overview and
technical details of our approach in Section 2 and 3 respectively.
This is followed by experimental validation in Section 4 and con-
cluding remarks in Section 5.

2. OVERVIEW

The problem of single channel audio source separation consists in
obtaining an estimate for each of the J sources sj forming the ob-
served linear mixture x(t):

x(t) =

J∑
j=1

sj(t). (1)

Using NMF we can decompose the mixture magnitude or power
spectrogram V ∈ RF×N

+ consisting of F frequency bins and N
short-time Fourier transform (STFT) frames, such that,

V ≈WH, (2)

where W ∈ RF×K
+ and H ∈ RK×N

+ are interpreted as the nonneg-
ative audio spectral patterns and their activation matrices respec-
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tively. Here K is the total number of spectral patterns. Multiplica-
tive update rules for estimating W and H can be obtained by mini-
mizing a divergence cost function [17].

As already discussed, when dealing with only a single mixture,
without a training step as in the supervised case, the source sepa-
ration problem in the NMF framework reduces to assigning the ap-
propriate spectral patterns, i.e., each of the K components in the
columns of W, to the J sources. Here we propose methods to
guide this assignment through the use of associated source-specific
motion information. We discuss next each building block of our
approach depicted in Fig. 1.

Figure 1: Overview of our approach

3. TECHNICAL DETAILS

3.1. Motion Processing Unit

The motion data must be suitably processed to establish meaningful
cross-modal relations. To begin with, for image sequences extracted
from videos we assume that the spatial location of each moving AV
object is known (in a user-assisted manner or otherwise), as shown
through the bounding boxes in Fig. 2. Note that J audio sources
correspond to the same number of visual objects in the images. For
each such moving region we proceed as follows:

• First, motion trajectory segmentation is performed on the im-
age sequence using a state-of-the-art multicuts-based formula-
tion [18]. As shown in Fig. 2, here the idea is to cluster point
trajectories with respect to their motion similarity.

• Next, for each trajectory, we compute the velocity by taking
differences over consecutive frames in x-y directions.

• In the final step, average magnitude velocities over all trajecto-
ries in each cluster are computed frame-wise.

Thus, we get Cj motion clusters per audio source (each source
being associated to a different performer’s bounding box). Their
velocity vectors are resampled to match the N STFT frames and
arranged in the columns of a matrix M ∈ RN×C

+ where C =∑J
j=1 Cj .

3.2. Proposed parameter estimation techniques using NMF
and Nonnegative Least Squares

To illustrate the central idea of the methods given below assume
that the magnitude trajectory of a violinist’s bow velocity, given by

t

v

Motion

segmentation

Average cluster

velocities

Figure 2: Motion Processing Unit: For each bounding box in the
video (left), we compute motion segmentation using multicuts al-
gorithm [18] (centre) and finally, average velocities over each clus-
ter (right). Some clusters in pink, green, blue (foreground) and red
(background) are visible. The graph on the right is only a sketch.

mvbow ∈ RN
+ is known for a string quartet performance recording.

We can then try to determine a linear transformation αvbow ∈ RK
+

of the activation matrix H such that H>αvbow is similar to mvbow

with respect to `2-norm based reconstruction error. This can be
formulated as a nonnegative least squares (NNLS) cost function.
Ideally, we expect αvbow to be sparse. In other words, to be con-
centrated on a few coefficients which indicate that few activations
of spectral patterns are linked to bow velocity.

Thus, at this step of the algorithm, we determine this linear
transformation, denoted by αc, for each velocity vector mc ∈ RN

+

in M, where c = 1 · · ·C, with the expectation that the ones corre-
sponding to the sound-producing motion would be sparse as stated
in the illustrative example above.

Defining the nonnegative linear combination coefficient matrix
as A = [α1, . . . ,αC ], the following joint and sequential pathways
could be taken for determining A while minimizing the Frobenius
reconstruction error between M and H>A:

Sequential estimation

Two alternative schemes are considered here:

1. NMF + NNLS: After obtaining an NMF decomposition of
the audio mixture, we perform NNLS where the objective
is to determine A that best reconstructs M from the given
audio activations H. This can be written mathematically as:

minimize
A>0

‖M−H>A‖2F . (3)

The above formulation is equivalent to solving the NMF
problem with H held constant.

2. NMF + Sparse NNLS: Within the previous formulation,
concentration of αc on a few coefficients can be achieved
by incorporating a sparsity constraint. This can be achieved
through an `1-regularization term as follows:

minimize
A>0

‖M−H>A‖2F + µ‖A‖1, (4)

where µ is a positive constant. Equation (4) can be looked at
as a sparse-NMF formulation where the basis vectors (here
H>) are held constant [19].
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Joint NMF-Sparse NNLS

Here we propose a novel joint formulation where the cost func-
tions for audio factorization and sparse-NNLS are simultaneously
minimized:

C(W,H,A)= DKL(V|WH)+λ‖M−H>A‖2F+µ‖A‖1, (5)

where DKL(.|.) is the Kullback-Leibler divergence and λ is a reg-
ularization parameter. Note that it is trivial to minimize the cost
function in absence of scaling constraint: C(γW,H/γ,Aγ) <
C(W,H,A) where γ is close to zero. Therefore, we constrain the
columns of W = [w1, . . . ,wK ] to have unit norm:

minimize
(W,H,A)>0
‖wk‖=1, ∀k

DKL(V|WH) + λ‖M−H>A‖2F + µ‖A‖1. (6)

Details regarding the update rules for each variable and imple-
mentation are summarized in Algorithm 1. Specifically, we use
multiplicative update heuristics to derive rules for H, W and A
given on line (8), (10) and (13) of Algorithm 1 respectively. Update
rule for W is derived as in [19]. To avoid confusion and clutter
we use Λ = WH. Product � and exponents denote element-wise
operations, 1 denotes a matrix with all entries equal to one and size
given by context.

Algorithm 1 Joint NMF-Sparse NNLS

1: Input: V,M,K, λ ≥ 0, µ ≥ 0
2: W, H, A initialized randomly
3: H← diag(‖w1‖, . . . , ‖wK‖)H
4: A← diag(‖w1‖−1, . . . , ‖wK‖−1)A
5: W←Wdiag(‖w1‖−1, . . . , ‖wK‖−1) . Normalize
6: Λ = WH
7: repeat

8: H← H�
W> (V �Λ−1

)
+ λAM>

W>1 + λAA>H
9: Λ = WH

10: W←W �
(Λ−1 �V)H> + W �

(
1(W � (1H>)

)
1H> + W � (1(W � ((Λ−1 �V)H>)))

11: W←Wdiag(‖w1‖−1, . . . , ‖wK‖−1)
12: Λ = WH

13: A← A�
λHM

λHH>A + µ
14: until convergence
15: return W,H,A

3.3. Audio spectral pattern assignment and reconstruction

Once we obtain A, which contains αc for each of the C veloc-
ity clusters, the k-th basis vector is assigned to the jth source if
argmaxc αkc belongs to the jth source cluster. Once these assign-
ments are made, each source is reconstructed by element-wise mul-
tiplication of the soft mask, given by (WjHj)./(WH) where “./”
stands for element-wise division, with the mixture spectrogram fol-
lowed by an inverse STFT. Here Wj and Hj are the submatrices
for spectral patterns and their activations assigned to the jth source
by the above-mentioned scheme.

4. RESULTS AND DISCUSSION

The performance of the proposed methods is evaluated through tests
with two distinct multimodal datasets. General implementation de-
tails common to all experiments are detailed below. Some sepa-
ration results and supplementary material is made available on our
companion web page.1 We evaluate with the following techniques
(See Section 3.2):

• LS: NMF + NNLS;
• spLS: NMF + Sparse-NNLS with µ = 5;
• JLS Rand: Joint NMF-Sparse NNLS with W and H initial-

ized randomly, λ = 0.01 and µ = 0.1;
• JLS NMF: Joint NMF-Sparse NNLS with W and H initial-

ized using the output obtained after applying NMF to the mix-
ture, λ = 0.01 and µ = 0.1.

Hyperparameter values were decided after a crude grid-search using
an example mixture.
General Implementation Details. For all the experiments audio
spectrogram is computed with a Hamming window of size 4096 (92
ms) and 75% overlap. Thus, we have a 2049×N matrix where N
is the number of STFT frames. Code provided by Févotte et al. [22]
is used for standard NMF algorithms. LS and spLS formulations are
implemented using publicly available sparse-NMF code [19], with
sparsity set to zero for LS.
Evaluation metrics. We report Signal to Distortion Ratio (SDR)
expressed in dB, computed using the BSS EVAL Toolbox version
3.0 [23]. NMF for each of the methods is run for 200 iterations.
For each mixture, all methods are run 5 times with different random
initializations and the reconstruction is performed using a soft mask.
SDR is averaged over all runs and mixtures of each set.

4.1. Experiments with Motion Capture Data

These experiments are performed with the publicly available
Ensemble Expressive Performance (EEP) dataset2 [20] which
contains multimodal recordings of string quartet performances.
We construct mixtures from four excerpts labeled from P1 to P4,
exactly as in [16], using the available sources, namely: Violin,
Viola and Cello. The acquired multimodal data consists of audio
tracks and motion capture for each musician. Bow velocity
descriptor for each source is used as a substitute for the velocities
extracted from moving regions. This is meant to validate the
proposed factorisation schemes with “ideal” motion features before
considering the more challenging video scenario as described in
Sec 3.1. Thus in this simple case, total number of clusters in M
is equal to the number of sources in each mixture (C = J). For
all the proposed methods the number of audio components is set to
(15× J), e.g. K = 30 for mixtures with 2 sources.

Setup: We evaluate over the following sets of mixtures:

1. Set 1: 4 trios of violin, viola and cello;

2. Set 2: 6 two-source combinations of the three instruments
for pieces P1 - P2;

3. Set 3: 3 two-source combinations of the same instrument
from different pieces, e.g., a mix of 2 violins from P1 & P2.

We compare with the following earlier works:

1goo.gl/y7A5az
2http://mtg.upf.edu/download/datasets/eep-dataset
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Mixtures LS spLS JLS Rand JLS NMF sMcNMF Mel NMF
Set 1 - 4 trios 1.23 1.27 0.82 1.95 1.35 1.22
Set 2 - 6 duos different instruments 4.54 4.52 3.89 5.70 3.88 5.08
Set 3 - 3 duos same instrument 0.86 0.80 0.55 0.93 2.29 -0.89

Table 1: MoCap Dataset [20]: SDR for different methods averaged over mixtures of each set. Best SDR is displayed in bold.

Mixtures LS spLS JLS Rand JLS NMF Mel NMF
Duos 6.94 6.94 5.30 7.14 5.11
Trios 3.30 3.26 1.79 3.24 2.18
Quartet 0.97 1.00 -0.76 0.67 1.01

Table 2: URMP Video [21]: SDR for different methods averaged
over mixtures of each set. Best SDR is displayed in bold.

1. Mel NMF [3]: This is a unimodal approach where basis vec-
tors learned from the mixture are clustered based on the simi-
larity of their mel-spectra. We take help of the example code
provided online for implementation.3 Like in all the pro-
posed methods K is set to (15× J).

2. Soft Motion Coupled NMF (sMcNMF) [16]: Audio and
motion activations are coupled through a soft `1 constraint.
The motion activations utilize quantized bow inclination. We
retain the original parameter settings with number of basis
vectors set to 4 for each instrument.

Since the MoCap data is sampled at 240 Hz, each of the selected
descriptors is resampled to match the N STFT audio frames.
Discussion: From Table 1 we see that the joint approach with audio-
NMF initialization outperforms all the other methods for the first
two sets. Indeed, when compared with its random version, it seems
to converge both faster and better. Moreover, it appears that spar-
sity for sequential NNLS does not provide significant improvements
over LS. As expected, spLS attempts to concentrate weight on a few
coefficients, but these are not very different from those yielded by
LS. Also, as we are only interested in maximum values for com-
ponent assignment, any existing differences are not visible in the
reconstruction.

When confronted with sources having similar motion, the per-
formance of the proposed methods is deemed to degrade. In this
respect, EEP dataset is particularly challenging where we find mul-
tiple mixture segments with similar motion. In such cases infor-
mation such as bow inclination (used by sMcNMF) proves to be
quite useful. It is worth mentioning that for some mixtures, all the
proposed methods outperform the baselines by a large margin.

4.2. Experiments with Videos

In this second series of experiments, we apply the proposed meth-
ods to videos. As no standard dataset exists for such a task, we
consider the only publicly available example video from the URMP
dataset [21].4 We are provided with video recording of a string
quartet performance and the separate audio tracks for each player.
We consider a 5 sec. excerpt from 30-35s and compute the motion
trajectory segmentation for each moving region bounding box (as
depicted in Fig. 2) using publicly available binary from [18] with

3http://www.ient.rwth-aachen.de/cms/dafx09/
4The full dataset is yet to be released. Sample video 32- The Art

of the Fugue can be found at http://www.ece.rochester.edu/
projects/air/projects/datasetproject.html

default parameter setting. The calculated velocity trajectories are
resampled to match N STFT frames. We consider all two, three
and four source combinations, denoted by Duos (6 mixtures), Trios
(4 mixtures) and Quartet (1 mixture) in Table 2. We compare only
with Mel-NMF as sMcNMF or the other NMF-based methods are
not designed to deal with generic videos. As in the previous case,
K is set to (15× J) for all methods.
Discussion: Efficacy of the proposed methods is seen from the re-
sults in Table 2, with particular emphasis on good initialization for
the joint approach. For the quartet with one mixture, though we
see that Mel-NMF performs better, it is a particularly difficult case
where none of the methods work consistently well over all five runs
and the SDR variance is high.

Unlike the previous experiment, here we have multiple veloc-
ity clusters to choose from, which makes the problem considerably
more difficult. We note that the methods deal reasonably well with
low velocity unrelated/noisy clusters as they are not strongly re-
lated to any audio activation. Interestingly, it is possible to identify
motion trajectory clusters responsible for the sound of each source
using A. As indicated by argmaxc αkc, for each source we can
determine the velocity cluster with maximum audio component as-
signments. These localization results are illustrated in Fig.3 for a
mixture of violin and cello. This provides additional evidence for
our hypothesis and the proposed estimation methods.

Figure 3: Localization results for the first frame of cello and violin.
The clusters corresponding to the hand i.e. the bowing motion (in
white) have been identified in both cases.

5. CONCLUSION

To summarize, we have proposed novel visually-assisted methods
for source separation in audiovisual recordings. This was done by
exploiting features encoding physical excitation information in both
modalities. In addition to demonstrating the usefulness of this idea
through sequential techniques, we present and derive algorithm for
an original joint formulation. While the extension to audio denois-
ing is straightforward, in their current form the methods cannot deal
with high amplitude noisy visual motion. This can possibly be alle-
viated through group sparsity constraints over A.

For the particular case of musical mixtures, score informa-
tion would prove to be very beneficial in guiding source separa-
tion. It can certainly be incorporated within the present framework,
which will be a topic for further study. Several other loss functions
and non-linear methods for establishing similarity could be experi-
mented with for better performance and wider applicability.
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