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Pairwise Classification Strategies
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Abstract—Musical instrument recognition is an important as-
pect of music information retrieval. In this paper, statistical pat-
tern recognition techniques are utilized to tackle the problem in
the context of solo musical phrases. Ten instrument classes from
different instrument families are considered. A large sound data-
base is collected from excerpts of musical phrases acquired from
commercial recordings translating different instrument instances,
performers, and recording conditions. More than 150 signal pro-
cessing features are studied including new descriptors. Two fea-
ture selection techniques, inertia ratio maximization with feature
space projection and genetic algorithms are considered in a class
pairwise manner whereby the most relevant features are fetched
for each instrument pair. For the classification task, experimental
results are provided using Gaussian mixture models (GMMs) and
support vector machines (SVMs). It is shown that higher recogni-
tion rates can be reached with pairwise optimized subsets of fea-
tures in association with SVM classification using a radial basis
function kernel.

Index Terms—Feature selection, Gaussian mixture model
(GMM), genetic algorithms, inertia ratio maximization with fea-
ture space projection (IRMFSP), musical instrument recognition,
pairwise classification, support vector machine (SVM).

I. INTRODUCTION

THE NEED for multimedia content description has become
a major issue as larger and larger digital data has been

made available for millions of both amateur and professional
end-users. This has been particularly scoped out by the light of
MPEG-7 standardization effort [1]. As far as musical content is
concerned, it is desired to obtain score-like representations at
a high level of description, which implies the ability to extract
characteristics such as genre, rhythm, melody, playing instru-
ments, etc. One could then setup systems capable of executing
requests such as ”find Hard-bop Sax solo played in in data-
base.” Thus, musical instrument recognition capability stands
as a key feature of such systems. Knowing the instruments in-
volved in a given musical piece is in itself a useful information;
but furthermore, it may help discover other musical characteris-
tics such as genre (a piano, double bass and drums trio is likely
to be a jazz trio) or played notes (multipitch detection or source
separation could be easier knowing the playing instruments).

However, identifying instruments from complex mixtures
involving more than one playing at a time remains a very
difficult problem that has been addressed in a very few studies
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[2]–[6] with often important restrictions regarding the musical
content with respect to instruments involved and played notes.
Of course, such a goal is far more challenging, yet it is believed
that a great deal of work still has to be carried out in the so-called
monophonic or solo context wherein only one instrument is
played at a time. In fact, it is considered as an essential effort in
providing insights into musical instrument timbre and a basis for
handling real world polyphonic music as it may be conducted
under the most realistic conditions by using sound material
excerpted from commercial recordings. Indeed, directions have
been proposed to extend the processing from mono-instrument
to poly-instrument content either by means of prior musical
source separation (see [7] for example) or adapted classification
strategies [8].

While describing the timbre of musical instruments has
received early concern, especially in the musical acoustics and
psychoacoustics community [9]–[13], machine recognition of
musical instruments is a quite recent research area which came
into act in the last decade. The majority of studies handled
the problem using sound sources consisting of isolated notes
[14]–[22]. There are two main advantages in such approaches.
First, the simplification of signal processing stages concerned
with feature extraction, hence the ability to use more sophisti-
cated descriptors which are difficult to measure in the multinote
case (see Section II). Second, several public sound databases
of isolated notes are available and can easily be used for such
studies [23]–[26]. However, adopting these conditions imply
the loss of note-to-note transition information which is known
to be a particularly important aspect of timbre. Moreover, it
is still not very clear how to bring such work to useful user
applications since it is not practicable, given the current state
of the art, to proceed to note segmentation prior to instrument
recognition; except for percussive instruments [27].

Fewer studies dealt with musical phrases from real solo per-
formances [14], [28]–[36]. Much effort was primarily dedicated
to propose relevant features for musical instrument recognition
including temporal, spectral, and cepstral features as well as
their variation and statistics over a certain time or frequency
horizon. The effect of combining features was studied [30],
[33], [37], and feature selection techniques were considered (for
example, context dependent feature selection in a hierarchical
classification scheme in [14], backward and sequential feature
generation in [19], or recursive selection based on inertia ratio
maximization in [21] and [38]).

Various popular classification strategies were also studied
[39]. K-nearest neighborhood (KNN) algorithms were largely
used in early work on isolated notes [14], [19], [40]–[42].
Discriminant analysis was used as preprocessing in [14] and
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for classification in [42]. In [21], hierarchical Gaussian classi-
fiers were exploited after a Box–Cox transformation had been
applied to each feature. Neural networks were also examined in
a number of studies (see [43] for example). Also, multivariate
Gaussian models, Gaussian mixture models (GMMs), and
hidden Markov models (HMMs) were considered (see [19],
[20], [44], and [45] for example). For recognition on solo
phrases, GMM [29], [30], [32], HMM [31], and support vector
machines (SVMs) [32], [33], [46] were found successful.

In this paper, the focus is put on musical instrument recog-
nition on solo (unaccompanied) performance. All effort is em-
ployed to enhance the different parts of the recognition system,
and our main contributions are linked to the following.

• The sound database: a much larger and more varied
sound database with respect to instrument instances,
recording conditions and players is used (compared to
related studies).

• The features: a wide selection of features is considered,
including new proposals, and their efficiency studied
through feature selection techniques, namely inertia ratio
maximization and genetic algorithms.

• The classification schemes: both GMM and SVM are
considered. For GMM, model orders are assessed with
a Bayesian information criterion (BIC). As for SVM,
different types of kernels are considered and their relative
performance discussed. Moreover, the influence of the
number of consecutive temporal observations to be used
for decision is studied.

Another contribution is that we argue that it is advantageous
to address the task of instrument recognition using a pairwise
classification (one versus one) strategy. We show, through ex-
perimental work, that performing instrument pairwise feature
selection and classification results in better recognition accu-
racy and enables better understanding of timbral differences.

The outline of the paper is the following. In Section II, we
give an overview of the feature set considered for classifica-
tion. Then, the feature selection algorithms used in this work
are presented in Section III. Following a concise description of
the theoretical background related to GMM, SVM, and classi-
fication by pairwise coupling (Section IV), we proceed to the
experimental studies to assess the efficiency of our recognition
system (Section V). Finally, we suggest some conclusions in
Section VI.

II. FEATURE EXTRACTION

Finding appropriate features to model the timbre of musical
instruments has received much concern toward obtaining a rep-
resentation of humans’ perception of musical sound [13], [47].
Our approach is more pattern-recognition oriented, in the sense
that we examine an important number of low-level features to
be automatically processed by a feature selection algorithm in
order to fetch the most efficient in discriminating the musical
instruments. Clearly, it can be then difficult to interpret some of
the low-level features obtained in terms of timbre modeling.

In marked contrast to other pattern recognition tasks such
as speaker identification, there has been no real consensus in
choosing a set of features amenable to successful instrument

recognition. Several studies show that MFCC alone turn out
to be inefficient for discriminating between certain instrument
classes (see [33] for example). In fact, many other features
have been proposed [14], [19], [39], [48] describing various
sound qualities. Also, automatic generation of high-level music
descriptors using genetic programming was attempted [49].
A number of these features become quite difficult to extract
when dealing with musical phrases. Typically, note attack
characteristics are not straightforward to evaluate since onset
detection is already intricate in our case.1 Thus, a set of features
which can be extracted in a quite simple and robust manner was
chosen. In the following, we present a brief description of the
features used. All of them are extracted on a frame basis.

A. Classical Features

Temporal: They consist of the following:

• autocorrelation coefficients (AC), which represent the
overall trend of the spectrum [48], they were reported to
be useful in [51];

• zero crossing rates (ZCR), which are useful for discrim-
inating periodic signals (small ZCR values) from noisy
signals (high ZCR values).

Cepstral: Mel-frequency cepstral coefficients (MFCCs) are
considered as well as their time first and second derivatives
which are estimated over a number of successive frames [52].

Spectral: These include a subset of features obtained
from the statistical moments, namely the spectral centroid
(Sc), the spectral width (Sw), the spectral asymmetry (Sa)
defined from the spectral skewness, and the spectral flatness
(Sf) defined from the spectral kurtosis. These features have
proven to be successful for drum loop transcription [27] and
for musical instrument recognition [33]. They are denoted by

Sc Sw Sa Sf . Their time derivatives ( ) are also
computed in order to provide an insight into spectral shape
variation over time. It is worth to note that Sc can be seen as a
quality of the vibrato playing technique since it embeds some
frequency modulation information [19]. A more precise de-
scription of the spectrum flatness is also used, namely MPEG-7
audio spectrum flatness (ASF) [1] which is processed over a
number of frequency bands. Indeed, this feature subset was
found to be very useful for our task [33]. Moreover, frequency
derivative of the constant- coefficients (describing spectral
“irregularity” or “smoothness”) are extracted as they were
reported to be successful by Brown [30]. Another useful feature
consisted in a measure of the audio signal frequency cutoff
( ) (also called frequency rolloff in some studies [48]). It
is computed as the frequency below which 99% of the total
spectrum energy is accounted.

Amplitude Modulation Features (AM): These features are
meant to describe the “tremolo” when measured in the fre-
quency range 4–8 Hz, and the “graininess” or “roughness”
of the played notes if the focus is put in the range 10–40 Hz
[19]. First, temporal amplitude envelopes are computed using
a low-pass filtering (10-ms half Hanning window) of signal

1note that onset detection for a differentiated transient/steady processing in
the recognition process is tractable at the cost of additional complexity in the
signal processing and decision stages, see [50] for further details
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Fig. 1. Amplitude spectrums of (a) alto sax and (b) Bb clarinet playing the same note A4 and the octave band filterbank. In the second subband, higher OBSI
will be measured for the Bb clarinet; in the third and forth subbands, higher OBSI for the alto sax.

absolute complex envelopes, then a set of six coefficients is
extracted as described in Eronen’s work [19], namely, AM
frequency, AM strength and AM heuristic strength (for the two
frequency ranges). Two coefficients are appended to the pre-
vious to cope with the fact that an AM frequency is measured
systematically (even when there is no actual modulation in the
signal); they are the product of tremolo frequency and tremolo
strength, as well as the product of graininess frequency and
graininess strength.

B. New Features

Octave Band Signal Intensities (OBSI): The idea behind this
new feature set is to capture in a rough manner the power dis-
tribution of the different harmonics of a musical sound without
recurring to pitch-detection techniques. In fact, a precise mea-
sure of frequencies and amplitudes of the different partials is not
required for our task. One rather needs to represent the differ-
ences in harmonic structure between instruments. This can be
achieved by considering a proper filterbank, designed in such
a way that the energy captured in each subband vary for two
instruments presenting different energy distribution of partials.
Thus, we consider an octave band filterbank with triangular fre-
quency responses. Filter edges are mapped to musical note fre-
quencies starting from the lowest piano note A1 (27.5 Hz). For
each octave subband, the maximum of the frequency response is
reached in the middle of the octave subband. Important overlap
is kept between adjacent channels (half octave). We then mea-
sure the log energy of each subband (OBSI) and the logarithm
of the energy ratio of each subband to the previous
(OBSIR).

As a result, the energy captured in each octave band as well
as the energy ratio of one band to the previous will vary for two
instruments having different harmonic structures. Additionally,
in most cases, coarse locating of the fundamental frequency ( )
is achieved since its octave range can be deduced from the first
peak in the OBSI function. Fig. 1(b) gives an illustration of this

discussion with alto sax and Bb clarinet playing the same mu-
sical note A4. For example, one can easily observe that the Bb
clarinet has more energy in the second subband appearing in the
plot than the alto sax, while the atlo sax has more energy than the
Bb clarinet in the third and forth subbands. In fact, it is known
that the Bb clarinet is characterized by the prominence of its
odd harmonics and OBSI/OBSIR attributes allow us to describe
such a characteristic.

III. FEATURE SELECTION TECHNIQUES

In many classification tasks, a very high number of potentially
useful features can be considered. Often, some of these features
are “noisy” or redundant with others. Though it is sometimes
practicable to use all features for classification, it is clearly sub-
optimal to do so, especially if comparable performance can be
achieved using a reduced set of features. Consequently, feature
selection or transformation techniques are classically utilized
both to reduce the complexity of the problem (by reducing its
dimensionality) and to retain only the information that is rele-
vant in discriminating the possible classes.

Feature transform techniques [typically principal component
analysis (PCA) [53]] present the inconvenience of requiring that
all candidate features be extracted at the stage of test (before the
transform found during training is applied to them). Addition-
ally, the transformed features are difficult to interpret, which is
a major drawback if one expects to gain some understanding of
the classes (here related to musical timbre).

Therefore, feature selection is often preferred to feature trans-
formation, both to avoid extracting irrelevant features during
testing and to be able to exploit the resulting descriptors in an
intuitive way. By feature selection (FS), a subset of features is
selected from a larger set of candidates. The selected subset
is required to include the most relevant features, i.e., the com-
bination yielding the best classification performance. Several
strategies have been proposed by the statistical machine learning
community [54]–[56] to tackle the problem. They can be clas-
sified into two major categories: the “filter” algorithms use the
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initial set of features intrinsically, whereas the “wrapper” algo-
rithms relate the FSA to the performance of the classifiers to
be used. The latter are more efficient than the former, but more
complex. In this paper, we choose to exploit approaches that
were proposed in previous work on musical instrument recog-
nition, namely genetic algorithms (GAs) [41] and inertia ratio
maximization using feature space projection (IRMFSP) [21],
[34]. The efficiency of GA for feature selection has been argued
in several studies [57]–[62]. IRMFSP present the advantage of
being a simple and intuitive approach.

In the following, we present an overview of the IRMFSP algo-
rithm and GAs. The particularity of our approach is to proceed
to class pairwise feature selection (see Section III-C).

A. IRMFSP

Feature selection is made iteratively with the aim to derive
an optimal subset of features among , the total number of
features. At each step , a subset of features is built by
appending an additional feature to the previously selected subset

. Let be the number of classes, the number of feature
vectors accounting for the training data from class , and the
total number of feature vectors ( ).

Let be the th feature vector (of dimension ) from
class , and be, respectively, the mean of the vectors of
the class and the mean of all training vectors

.
Features are selected based on the ratio (also known as the

Fisher discriminant [63]) of the between-class inertia to the
“average radius” of the scatter of all classes defined as

(1)

The principle is quite intuitive as we would like to select fea-
tures that enable good separation between classes with respect
to the within-class spreads. Thus, the selected additional feature
corresponds to the highest ratio .

Using such a criterion may result in redundant feature subsets,
wherein the same signal properties are embedded in a number
of features still entailing high -values. Then, as described in
[21], the algorithm has been modified to take into account the
nonredundancy constraint by introducing an orthogonalization
step at each feature selection iteration. In summary, at each it-
eration:

• the ratio is maximized yielding a new feature subset
;

• the feature space spanned by all observations is made or-
thogonal to .

The algorithm stops when the ratio measured at iteration
gets much smaller than , i.e., when for a chosen

, which means that the gain brought by the last selected feature
has become nonsignificant. This provides a convenient means
for implicitly selecting the number of useful features when the
size of the feature subset to be selected is not a constraint.

B. Feature Selection With Genetic Algorithms (GAFS)

In this approach, the feature space is searched randomly under
the guidance of a fitness function. The randomization of the
search enables the algorithm to look for the features to be se-
lected in the neighborhood of the optimal solution. Genetic al-
gorithms belong to the family of evolutionary strategies (ES)
highly inspired by natural processes [64], [65]. From an initial
population of randomly generated chromosomes (each chromo-
some representing a candidate subset of features), a GA simu-
lates an evolution process (which is actually a search) so that
after a number of generations or iterations, the resulting more
evolved chromosomes correspond to near optimal subsets of
features. Evolution is represented by basic genetic operators
which are fitness evaluation, selection and recombination. At
each iteration, the algorithm selects the best two parent chro-
mosomes with respect to the chosen fitness criterion for recom-
bination. New chromosomes are thus created and integrated to
the initial population. This process is repeated until some con-
vergence condition is met. The different aspects of the algorithm
we use are further explained in the following.

1) Encoding and Initialization: Chromosomes consist of bi-
nary digit strings (gene sequences) where each bit codes for the
selection of a particular feature (1 for feature selected and 0 for
feature not selected). The length of the chromosome is thus the
total number of initial features and each gene codes for a spe-
cific feature. At the initialization stage, chromosomes are gen-
erated randomly. Alternatively, the number of selected features
can be controlled in the random generation process [62].

2) Fitness Evaluation: This is a critical operation in GAFS,
since the relevancy of features being selected is measured at this
stage. It is important to use fitness functions that best translate
the potential classification performance resulting from the se-
lected features. Ideally, one would use the recognition accura-
cies found with classification based on the considered chromo-
somes, but this would be computationally too expensive. The
idea developed below is thus to consider more fit the feature
subsets that result in the most separable class probability densi-
ties. These densities will be assumed to be Gaussian in our case.

For instance, in a 2-class situation, it is proposed to use for a
chromosome C and corresponding feature subset

, the fitness function defined by

(2)

where and are, respectively, the mean
vectors and the determinants of the diagonal covariance ma-
trices of the multivariate Gaussian distributions that we fit to
the data and . The idea is thus to consider more fit the
feature subsets that result in the most separable class probability
densities which are assumed to be Gaussian.

The selection of chromosomes is then performed thanks to
this fitness measure, yet it is made using probabilistic consid-
erations. The algorithm selects the chromosomes that are prob-
ably the most fit. The concept is again inspired by natural pro-
cesses where not necessarily the most evolved species survive
into next generations, some merely have the chance to persist.
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Thus, the actual selection is made by the so-called rank-based
roulette-wheel rule enabling the more fit chromosomes to be
more probably selected [65].

Note that we do not constrain the final subset of features to
have a predetermined size. However, in order to avoid too large
feature-set solutions, the fitness is penalized such that the new
function is given by

where is zero if the size of is still smaller than a
maximum chosen number and else linearly increasing with the
extra number of features.

3) Crossover and Mutation: Crossover allows information
exchange between two potentially fit chromosomes to give rise
to a new one (an offspring) which is a hybrid version of the
parents. This is how new candidate features are explored in
the search space. Another genetic operator, mutation, is used
to recover efficient features that could have been lost during the
search. Mutation is performed with low probability as in natural
processes.

C. Class Pairwise Feature Selection

Our main contribution to feature selection resides in that we
perform it class pairwise. The idea is to fetch the subsets of
features which are the most effective in discriminating between
all possible pairs of classes. Subsequent classification is then to
be performed in a one versus one scheme using as many 2-class
classifiers as instrument pairs based on different feature subsets.

Not only is the approach more efficient in terms of recog-
nition success, but also it is very convenient from an analysis
point of view. In fact, it makes the optimization of classifica-
tion performance more straightforward in the sense that it helps
finding remedies to instrument confusions (see Section V). For
example, if bad recognition accuracies are found for a given in-
strument because of frequent confusions with instrument , it
is reasonable to consider optimizing only the classifier. In
addition, better understanding of instrument timbral differences
is made possible in the form of interpretations such as “Instru-
ment has characteristics and quite different from instru-
ment ,” where ”characteristics and ” are deduced from the
subset of features selected for the pair .

The pairwise solution remains practicable even when a
higher number of instruments are considered since hierarchical
classification, wherein instruments are grouped into families,
is commonly used with success in this case [14], [19], [21].
The number of combinations to be considered at a time is then
reduced to classes at the same level of taxonomy, which rarely
exceed four classes.

Hereafter, we will denote classic -class feature selection
( ) by 1-IRMFSP and use the notation C -IRMFSP and
C -GAFS for pairwise feature selection. Note that in our study,
genetic algorithms are only used in the class pairwise approach.

IV. THEORETICAL BACKGROUND ON CLASSIFICATION

A. GMMs

The GMM has been widely used in the speech/speaker com-
munity since its introduction by Reynolds for text-independent

speaker identification [66]. It was also successful for musical
instrument recognition [19], [30]. We give here a concise
overview of the model since it is well known in the literature.
In such a model, the distribution of the -dimensional feature
vectors is described by a Gaussian mixture density. For a given
feature vector , the mixture density for the class is defined
as

(3)

where the weighting factors are positive scalars satis-
fying . The probability density is then a
weighted linear combination of Gaussian component den-
sities with mean vector and covariance matrix

given by

(4)

The parameters of the model for the class , denoted by
, are estimated using the well-

known expectation-maximization (EM) algorithm [67]. Classi-
fication is usually made using the maximum a posteriori prob-
ability (MAP) decision rule which in virtue of Bayes rule, can
be written as

(5)

where is the number of possible classes, is given in
(3), is the test feature vector observed at time , and is the
total number of observations considered.

B. Classification by Pairwise Coupling

When addressing a -class classification problem through
multiple 2-class classifications, one is confronted with the
problem of coupling the pairwise decisions at the stage of test.
This issue was addressed by Hastie and Tibshirani [68] who
formalized a method to perform optimal coupling.

From the set of probabilities
estimated for each pair at a given ob-
servation , an estimate of the probabilities

is deduced assuming for
the model

(6)

where . The proposed algorithm finds that
minimizes the average weighted Kullback–Leibler distance
between and , i.e.

(7)
with the number of training examples used to train the pair

classifier. This is done by means of a gradient ap-
proach. Classification can then be made using the usual MAP
decision rule [63].
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When considering GMM for classification with a pairwise
strategy, we use the Hastie–Tibshirani approach to couple the
decisions obtained with every pair of GMM as follows. For a
given test observation , and a given class pair , we
compute the likelihood of each class and ,
and compute and

. The previous method is then
used to estimate assuming the model (6) for .

C. Support Vector Machines (SVMs)

SVMs have been used successfully for various classification
tasks, including speaker identification, text categorization,
face recognition, etc., but also recently in musical instrument
recognition [32], [33], [46]. SVMs are powerful classifiers
arising from structural risk minimization theory [69] with very
interesting generalization properties [70]. Another advantage
of these classifiers is that they are discriminative by contrast
to generative approaches (such as GMM) assuming a partic-
ular form for the data probability density which is often not
consistent.

Considering two classes, SVMs try to find the hyperplane that
separates the features related to each class with the maximum
margin. Formally, the algorithm searches for the hyperplane

that separates the training samples which
are assigned labels ( ) so that

(8)

under the constraint that the distance between the hyper-
plane and the closest sample is maximal. Vectors for which the
equality in (8) holds are called support vectors.

In order to allow the algorithm to find nonlinear decision sur-
faces, the concept of kernel functions was introduced. Then,
SVMs map the -dimensional input feature space into a higher
dimension space where the two classes become linearly sepa-
rable, using a Kernel function such that

where is a map to the high dimension space .
A great advantage of the approach resides in that one does not
need to know explicitly, since one only needs to know how to
compute ; all computations can be made using the
expression of and the problem is still solved in the
low dimensional space. Interested readers are referred to [70]
for further details.

SVMs are by essence 2-class classifiers. Nonetheless, they
can be used to perform -class classification using either the
one versus one or one versus all strategies. In this paper, a one
versus one strategy (or class pairwise strategy) is adopted and
classification is then performed using a “majority vote” rule ap-
plied over all possible pairs.

V. EXPERIMENTAL STUDY

A major difficulty in the evaluation of automatic musical
instrument recognition, and especially in the case where solo
phrases are considered, is the lack of publicly available sound
databases. As a consequence, the comparison between different
proposed technologies is not straightforward. As a matter of

fact, each study uses specific experimental conditions and
evaluation protocols. In particular, it is important to avoid direct
comparison with work on isolated notes which represents a
significantly different problem.

In our work, in order to assess the generalization capability
of the recognition system, a great deal of effort has been dedi-
cated to obtain enough variation in sound material with regard
to recording conditions, performers, and instrument instances.

This section presents a number of experiments to illustrate the
adequacy of the feature selection (IRMFSP versus genetic algo-
rithms), of the classification approach (GMM versus SVM) and
classification strategy ( -class versus pairwise comparison) to
obtain a robust musical instrument recognition system. In order
to monitor the performance of our algorithm, a reference (or
baseline) system has been built (see Section V-B).

A. Experimental Parameters

1) Sound Database for Solo Phrase Recognition: Ten
instruments are considered, namely, alto sax, bassoon, Bb
clarinet, flute, oboe, trumpet, french horn, violin, cello and
piano. This choice is made so that all instrument families are
represented. Moreover, potentially similar instruments (within
the same family) are used so as to avoid simplification of the
problem as it is much easier to discriminate the harp from the
alto sax than discriminate the Bb clarinet from the alto sax, for
example.

Sound samples were excerpted from compact disc (CD)
recordings mainly obtained from personal collections. The
content consisted of classical music and jazz from both studio
and live performance, or educative material for music teaching.
Additionally, alto sax, Bb clarinet and trumpet solo phrases per-
formed by three amateur players were recorded at the Télécom
Paris studio. The selection of recording excerpts used in the
training set was randomly made under the constraint that at
least 15 min of data could be assembled. Whenever this was not
possible, at least 2 min of data were kept for testing (in the worst
case) and the rest was used for training in order to provide tight
confidence ranges on the estimation of recognition accuracies.
Ideally, never would the same CD-recording provide excerpts
for both training and test sets, but in some cases, it was not
possible to do so without lacking of material either for training
or testing. However, it was made sure that samples used for
testing were never extracted from tracks whose any part was
included in the training set. Table I sums up the properties of
the data used in our experiments. The diversity of the sound
database properties used in studies on instrument recognition
on solo phrases (including ours) is illustrated in Table II which
highlights the difficulty to directly compare their respective
performances.

2) Signal Processing: Previous work on instrument recog-
nition has shown that a 32-kHz sampling frequency is not pe-
nalizing for classification performance [30], which led us to
down-sample the input signal to this frequency in order to re-
duce the computational load. Additionally, the signal was cen-
tered with respect to its temporal mean, and its amplitude was
normalized with respect to its maximum value. The analysis
was performed over sliding overlapping windows. The frame
length was 32 ms and the hop size was 16 ms for the extraction
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TABLE I
SOUND DATABASE – SOURCES, TRACKS, AND FRAME NBR ARE, RESPECTIVELY,
THE TOTAL NUMBER OF DISTINCT SOURCES, THE TOTAL NUMBER OF TRACKS

FROM CDs, AND THE NUMBER OF 32-ms TEST FRAMES USED FOR TEST; TOTAL

TRAIN AND TOTAL TEST ARE THE TOTAL DURATIONS OF, RESPECTIVELY,
TRAIN AND TEST MATERIAL IN SECONDS

TABLE II
SOUND DATABASE – CLASSES IS THE NUMBER OF INSTRUMENT CLASSES

STUDIED (WHEN AT LEAST TWO INSTANCES WERE AVAILABLE) SOURCES IS

THE NUMBER OF DISTINCT SOURCES USED; TRAIN AND TEST ARE,
RESPECTIVELY, THE TOTAL LENGTH OF THE TRAINING DATA, AND

TOTAL LENGTH OF TEST DATA, IN SECONDS; MINIMUM AND MAXIMUM

DURATIONS ARE GIVEN

of all features except tremolo and roughness. Longer analysis
length (960 and 480-ms hopsize) was used for the latter so as to
measure the AM features properly. All spectra were computed
with a fast Fourier transform (FFT) after Hamming windowing.
Frames consisting of silence signal were detected thanks to a
heuristic approach based on power thresholding then discarded
from both train and test data sets. The frequency ratio for the
constant- transform was 1.26. A total of 160 feature coeffi-
cients were considered including elements from all feature sub-
sets described earlier.

All features were rescaled in order to homogenize the highly
varying dynamics of the different feature subsets in such a way
that all coefficients were confined in the range [0,1]. This is
done by normalizing the features with respect to scale factors
deduced from their “ceiled” maximum values (estimated during
training). Such a preprocessing has proven to be successful for
better classification [34].

B. Baseline System

The baseline system follows a classic -class GMM ap-
proach where the model orders for each class vary in
the set {8,16,32,64,128,256} and are selected using a Bayesian
information criterion (BIC) [71]. For this reference system,
1-IRMFSP was used for feature selection, and a MAP criterion
used for decision. Scoring was performed as follows: for each
test signal, a decision regarding the instrument classification
was taken every s ( overlapping frames of
32-ms duration). The recognition success rate is then, for each
instrument, the percentage of successful decisions over the total
number of -second test segments.

TABLE III
FEATURE SUBSETS AND THEIR CODES (COLUMN ONE); FEATURE SUBSET SIZES

(COLUMN TWO); FEATURES SELECTED USING 1-IRMFSP (COLUMN THREE)

TABLE IV
BASELINE SYSTEM: 10-CLASS GMM CLASSIFICATION WITH 1-IRMFSP

(COLUMN TWO); ONE VERSUS ONE GMM CLASSIFICATION WITH 1-IRMFSP
(COLUMN THREE) AND C -IRMFSP (COLUMN FOUR)

The results of this baseline systemobtained on ourdatabaseare
given in column two of Table IV. The average accuracy is 75%.
Although acceptable results are obtained for some instruments as
the violin for example (89%), the recognition of others remains
unsatisfactory (as for the french horn successfully classified only
55% of the time). We will show that the average accuracy can be
improved with our approach.

C. Experiment 1, Feature Selection

1) -Class Feature Selection: An overview of the different
feature subsets used in our experiments is presented in Table III
together with the 19 features selected through the 1-IRMFSP
approach (column three) using a convergence condition de-
termined by 10 . The efficiency of the OBSI/OBSIR
attributes is confirmed since they are largely represented in the
subset of selected features. Features describing the spectral
shape (Sc, Sw, Sa, Sf) as well as ASF coefficients were found
very useful. Only the first four MFCCs were selected.

2) -Class Feature Selection and Pairwise Classifica-
tion: Column three of Table IV provides the recognition
accuracies obtained with 1-IRMFSP and a one versus one
GMM classification (as described in Section IV-B). It can
be noticed that the pairwise classification does not bring any
significant improvement compared to the reference system.

3) Pairwise Feature Selection and Pairwise Classifica-
tion: Recognition accuracies obtained with one versus one
GMM classification based on C -IRMFSP are given in column
four of Table IV. Substantial improvement in recognition ac-
curacy (up to for the french horn) is achieved with
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TABLE V
FEATURES SELECTED BY THE C -IRMFSP ALGORITHM FOR A FEW EXAMPLES. “FR” STANDS FOR FREQUENCY AND “ST” FOR STRENGTH

C -IRMFSP for all instruments except the bassoon. The
average improvement is seven percentage points.

Note that, for C -IRMFSP, a different model is computed
for the same instrument class with respect to the instrument
class it is confronted with, since a specific subset of fea-
tures is selected for the pair ( , ). The model order of
each GMM is also assessed using a BIC approach with

.
Pairwise IRMFSP was performed (with the same conver-

gence criterion 10 ). On average, the same number
of features (19) is selected. While the same feature subsets
(OBSI/OBSIR, Sc, Sw, Sa, Sf, ASF) remain the most efficient,
more features are selected by the algorithm for specific pair
combinations where more attributes are necessary for better
discrimination. Spectral “irregularity” coefficients ( ) were
considered particularly useful for combinations involving the
Bb clarinet versus another wind instrument and otherwise rarely
selected. AM features were particularly consistent when dealing
with wind instruments, especially with the Bb clarinet and the
french horn. A maximum of four autocorrelation coefficients
(among 49) were selected for the pair Bb clarinet/flute. Zero
crossing rate was selected 18 times (out of 45) and frequency
cutoff 21 times. As for delta-cepstrum attributes, only energy
temporal variation ( C ) and energy acceleration ( C ) were
found efficient for only a few combinations. On the contrary, in
other cases, a number of features are found not useful for given
instrument pairs; hence, they are not selected. This results in
sizes of selected feature subsets ranging from nine (for the
piano/violin pair, for which only the three first MFCC, the
spectral moments and the fifth and eighth OBSI coefficients
were selected) to 44 (for Bb clarinet versus flute). Examples of
class pairwise feature selection results are presented in Table V.
All selected feature subsets were posted on the web [72] for
interested readers to look into it in depth.

4) Genetic Algorithms for Feature Selection: A tentative to
improve feature selection was made using genetic algorithms
also performed in a pairwise fashion (denoted by C -GAFS).
We use the fitness measure described in Section III-B. Two vari-
ants are tested: a classic one with totally random initialization
and an alternative approach with assisted initialization, where
we introduce an evolved chromosome in the initial population,
among the randomly generated other initial chromosomes, in

order to obtain a set of features more fit than the IRMFSP one.
This is achieved by introducing at the initialization stage a chro-
mosome constructed with genes obtained with the C -IRMFSP
algorithm findings (with 10 ).

The GAFS algorithm often introduced autocorrelation coef-
ficients (AC) in the subset of the most relevant features. These
were hardly selected by IRMFSP. The average number of se-
lected features is 33.

To test the performance of feature selection algorithms, basic
linear SVM classification is used. Recognition accuracies thus
found are presented in Table VI. Note that these results are to
be compared intrinsically rather than with Table IV. IRMFSP is
tested with two stop criteria, 10 [column two, denoted by
IRMFSP (10 )] resulting in an average of 19 selected features
and 10 [column three, denoted by IRMFSP 10 )] for
38 selected features on average. Results obtained with classic
GAFS and GAFS with assisted initialization are given, respec-
tively, in columns four and five. As expected, IRMFSP (10 )
provides the best overall performance since more features are
selected on average. The average improvement in recognition
accuracies is 4% compared to IRMFSP (10 ). Although the av-
erage recognition rate is 73% with features selected using GAFS
with random initialization, this algorithm remains less efficient
than IRMFSP (10 ) except for the recognition of the oboe,
the trumpet and the violin. When testing GAFS with assisted
initialization, some improvement is often observed compared
to IRMFSP (10 ) yet more features are selected and this ap-
proach performs better than IRMFSP(10 ) only for alto sax. It
is believed that the used fitness measure was not always optimal
because it is based on the assumption that the data has Gaussian
distribution (see Section III-B2). As a result, the selected set of
features, although fit with respect to the chosen fitness function,
do not satisfy the properties we are requiring. This confirms the
importance of a judicious choice of the fitness function to be
used in GAFS. A promising candidate, that is being studied, is
the estimate of the SVM classifier success [73].

5) Optimization of Feature Selection by Fusion: This situ-
ation allows us to show the flexibility of the pairwise classifi-
cation approach. A major advantage is that we can still exploit
only the improved feature subsets in order to optimize a classi-
fication system performing better than the one using IRMFSP
(10 ), by altering only a few classifiers among all the pairs.
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TABLE VI
CLASSIFICATION PERFORMANCE WITH C -IRMFSP (COLUMNS TWO AND

THREE), C -GAFS (COLUMNS FOUR AND FIVE)

TABLE VII
PARTIAL CONFUSION MATRICES FOR CLASSIFICATIONS, FROM LEFT TO RIGHT

BASED ON C -GAFS – C -IRMFSP AND (OPTIMIZED FEATURE SETS).
READ ROW CONFUSED WITH COLUMN

The following example is illustrating the procedure. Looking at
the confusions made by the classification based on C -GAFS
and C -IRMFSP (10 ) (given in Table VII), one can work out
that the alto sax was confused with the violin 35% of the time
with IRMFSP, and only in 31% of the cases using GAFS.

Thus, we replace the feature subset found by IRMFSP by the
one found with GAFS for the discrimination between the pair
(alto sax, violin) which results in smaller confusion between
these two instruments compared to the results with IRMFSP
(alto sax is now confused with violin 29% of the time). The
same process is repeated for all situations where GAFS provides
better discrimination between a pair of instruments, yielding
a hybrid set of features consisting of pairwise chosen subsets
compiled from the best of C -GAFS and C -IRMFSP. Pre-
liminary results, found using the same test set, show that some
improvement of the recognition accuracy (compared to the orig-
inal found by C -IRMFSP) can thus be achieved.2 The opti-
mization is not always successful since all confusions should be
optimized jointly. In fact, a given feature subset may result in
instrument being less confused with instrument and at the
same time being more confused with (see the confusions for
the pair (alto sax, trumpet) for example). Nonetheless, substan-
tial improvement is achieved for individual instrument classes
using an optimization that is not practicable in a ten-class clas-
sification scheme wherein a unique set of features is used that
cannot be altered without changing all recognition accuracies.

D. Experiment 2, SVM Kernels

For all the following experiments, we keep unchanged the
features selected pairwise in the previous experiments (those

2these results are considered as preliminary since we unfortunately lack a
development set to be used to perform the optimization of the features selected.
This led us to exploit, in the optimization, the confusions found over the test set,
to illustrate the proposed procedure.

TABLE VIII
CLASSIFICATION RESULTS WITH SVM USING LINEAR, POLYNOMIAL

(d = 2; . . . ; 5) AND RBF KERNELS WITH OPTIMIZED FEATURE SUBSETS.
BEST SCORES ARE GIVEN IN BOLD

compiled from C -GAFS and C -IRMFSP (10 ) in Sec-
tion V-C5 ) to study aspects related to classification.

We examine here the efficiency of SVM classification for mu-
sical instrument recognition on solo phrases using different ker-
nels. Three types of kernel are examined, linear (or no kernel),
polynomial, and radial basis function (RBF). The used polyno-
mial kernel has the form

As for the RBF kernel, it is given by

The recognition accuracies obtained with the different ker-
nels are given in Table VIII. The RBF kernel is the most suc-
cessful with an average accuracy of 87%. When using the poly-
nomial kernel, increasing the degree from 2 to 4 results in in-
creased performance. A degree greater than 4 is not efficient
since the performance remains unchanged for increased compu-
tational load. The fourth-degree polynomial kernel is the most
interesting polynomial kernel as it results in the best individual
and average accuracies and performs better than the RBF kernel
for the recognition of the bassoon. It is worth to note that the
piano is very easily discriminated from other instruments since
its recognition accuracy is already 99% without any kernel. Fi-
nally, note that GMM were more successful for the recognition
of the alto sax (73% with GMM). The previous thus suggests
combining the different classifiers [74] for better overall perfor-
mance.

E. Experiment 3, Changing the Decision Length

The last experiment is concerned with the influence of the
decision length on the recognition accuracy. So far, 30
successive overlapping 32-ms frames have been considered in
classifying a given test signal i.e., the decision length has been
0.47 s. Table IX presents the recognition accuracies obtained
using longer decision lengths.

We considered the cases 60 ( s) and 320
( s). High accuracies are found. The average is 88% with 1-s
segments ( 60) and 93% with 5-s segments ( 320). The
recognition of the piano is always successful from 0.5-s decision
lengths on and so it is for the Bb clarinet with 5-s decisions.
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TABLE IX
CLASSIFICATION PERFORMANCE FOR DIFFERENT DECISION LENGTHS USING

THE OPTIMIZED FEATURE SUBSETS AND SVM WITH A RBF KERNEL

VI. CONCLUSION

Machine recognition of musical instruments on solo per-
formance has been addressed. A number of potentially useful
signal processing features have been studied. New features
were proposed, namely octave band signal intensities and
octave band signal intensity ratios that prove highly efficient for
the recognition task. inertia ratio maximization using feature
space projection and genetic algorithms have been considered
for feature selection.

Moreover, we have shown that it is very advantageous to
perform feature selection class pairwise, looking for the sub-
sets of features that enable the best discrimination between
any possible pair of instrument classes. It entails much better
recognition accuracies and allows us to optimize simple 2-class
schemes for better overall performance. Furthermore, it is
an interesting starting point for studying timbral differences
between instruments. In fact, it guides one to natural formu-
lations of the relations existing among them by establishing
simple binary comparisons. Nevertheless, some higher level
characterization of the selected low-level features is needed to
gain better understanding of these relations.

Two types of classifiers were studied, GMM and SVM, that
were exploited in a one versus one scheme. SVM with a RBF
kernel gave the best results (on average 12% improvement was
achieved compared to our baseline system). Further improve-
ment of the recognition accuracies was obtained using a larger
number of observations for decisions, which resulted in high
recognition performance (93%).

Future work will consider alternative feature selection tech-
niques better adapted to SVM classification. Furthermore, hi-
erarchical classification wherein instruments are grouped into
families will be envisaged. The recognition of typical instru-
mental ensembles (solos, duets, trios, etc.) will be introduced
at a high level of taxonomy. As for classification, probabilistic
outputs for SVM will be considered together with a time dy-
namic approach.
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