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ABSTRACT

In this paper we study the use of unsupervised feature learning
for acoustic scene classification (ASC). The acoustic environment
recordings are represented by time-frequency images from which
we learn features in an unsupervised manner. After a set of prepro-
cessing and pooling steps, the images are decomposed using matrix
factorization methods. By decomposing the data on a learned dictio-
nary, we use the projection coefficients as features for classification.
An experimental evaluation is done on a large ASC dataset to study
popular matrix factorization methods such as Principal Component
Analysis (PCA) and Non-negative Matrix Factorization (NMF) as
well as some of their extensions including sparse, kernel based and
convolutive variants. The results show the compared variants lead to
significant improvement compared to the state-of-the-art results in
ASC.

Index Terms— Acoustic scene classification, unsupervised fea-
ture learning, matrix factorization

1. INTRODUCTION

Acoustic Scene Classification (ASC) is the task of identifying in
which acoustic environment a sound was recorded using only the
audio signal. The interest for ASC has been increasing in the last
few years and is becoming an important challenge in the machine
listening community [1]. Acoustic scene classification has a variety
of real life applications such as robotic navigation [2] or forensics
[3]. Whilst many context aware devices only use visual information
to adapt to their current location, complementary information can be
given by analyzing the surrounding audio environment.

Many early works in ASC have tried to use various methods
from speech recognition or event classification methods. For in-
stance features like Mel Frequency Cepstral Coefficients (MFCC)
[4], linear predictive coefficients [5] or auditory filter features such
as Gammatones [6] have been widely explored. Another notable
trend in ASC is to use hand-crafted features designed to characterize
acoustic environments. The need for more specific features is moti-
vated by the fact that in general environmental sounds, the time and
frequency information is not as structured as for speech and music
signals This leads to more complex features such as expansion coef-
ficients based on a decomposition over a Gabor dictionary [7, 8] or
even minimum statistics of a spectrogram to describe the acoustical
background of a scene [9]. To our best knowledge the combination
of Histogram of Oriented Gradients (HOG) and Subband Power Dis-
tribution (SPD) image features, has provided the best results on the
LITIS Rouen data set [10].
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In this paper, we propose to learn features in an unsupervised
manner directly from time-frequency images. Automatically learn-
ing the features frees us from focusing on a specific aspect of the
signal, by having feature extraction capable of adapting to the data
specificities. Although some studies used feature learning in their
ASC systems [11, 12] the benefits in performance are not clear yet
when compared to hand-crafted features. We choose to focus on ma-
trix factorization techniques as they have proven effective to learn
features in previous works, while being simple. Matrix factorization
techniques do not require the data to be labeled, they are only used
to learn features from the decomposition of the data onto a learned
basis. The labels are only needed to train a classifier based on the
learned features. Moreover, in contrast to most deep learning tech-
niques, choosing the feature learning to be unsupervised while sepa-
rating it from the classification part, makes the system less demand-
ing in terms of tuning and training and allows for using unlabeled
data. After a series of preprocessing and pooling steps on the scenes
spectrograms, some well known matrix decomposition techniques
such as principal component analysis (PCA) and non negative matrix
factorization (NMF) are exploited in this work to automatically learn
relevant features. The regular PCA and NMF are then compared to
some of their popular extensions, including ones with sparsity con-
straints, kernels and convolution. Finally, our system is evaluated
on the LITIS Rouen dataset, the largest annotated ASC data base
available.

The rest of the paper is organized as follows. Section 2 describes
the general feature learning system. Section 3 details the different
matrix factorization techniques studied. Section 4 describes the data
set and our experiments, before Section 5 concludes the work.

2. FEATURE LEARNING SYSTEM

The feature learning system we propose for ASC can be decomposed
in four main steps: spectrogram extraction, pooling, feature learning
and classification. The general idea is to learn a dictionary from the
spectrograms in the training set and then use the projections of the
data on this dictionary as features for classification. In this section
we present the data preprocessing steps, the feature learning step in
the context of matrix decomposition and finally the use of the learned
features for classification.

2.1. Time-frequency representation

We choose to use the constant Q-transform (CQT) as our time-
frequency representation as it has proven to give good results in
ASC when used to extract image-based features [10]. The CQT is
computed using P = 134 frequency bands from 0 to 22050 Hz
covering slightly more than the audible frequency range. Each CQT
is built from a T = 30 s recording of an acoustic environment using
60 ms windows without overlap resulting in a P x 500 image.
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2.2. Spectorgram pooling

In the context of ASC, it is possible to perform the feature learn-
ing on either the full spectrogram image, time frequency slices (a
group of consecutive frames) or individual frames. Classifying di-
rectly individual frames has shown to be a limited solution [13] as
they lack the crucial temporal context needed to describe acous-
tic scenes. Using the full time-frequency representation to learn
the features can lead to unreasonable computation times. There-
fore, to reduce the dimensionality of the data, we start by dividing
each time frequency image into m non-overlapping g-seconds long
slices, with m = T/q. The CQT image S of a T-seconds long
recording is now considered as a set of consecutive shorter spec-
trograms S = [So,...,Sm—1]. We use S; to denote the g-s long
spectrogram slice starting ¢ X ¢ seconds after the beginning of the
recording. Then, to further reduce the dimensionality while keeping
some temporal information, we perform a pooling on each of the m
spectrogram slices. Each recording is represented by a set of vec-
tors 8 = [So, ..., Sm—1] Where s; is a vector of size P (number of
bands) obtained by averaging the slice S; over time. The vectors in
s will be used as the inputs of the feature learning step. Our system
uses ¢ = 2-s long slices leading to m = 15 slices per example.
This choice is a compromise between computation time and having
enough information to learn relevant features. Many more temporal
integration techniques could be use in addition to the mean [14]. In
our system, we choose to perform the pooling only using the average
over time to keep the focus on the matrix factorization techniques.

2.3. Unsupervised feature learning

The feature learning is unsupervised, meaning the basis vectors in
the dictionary are learned from the data in an unlabeled training set.
The data in the test set is then projected on the same dictionary. After
extracting the set of vectors s for each of the /V training examples,
we stack them horizontally to build the training data matrix V of size
P x mN. The different matrix factorization methods we propose to
use for feature learning aim at decomposing the data matrix V such
that V =~ WHy,.. The matrix W of size P x K contains the K dic-
tionary elements and Hy, of size K x mN contains the projections
of each data vector on the elements of W. The test set data is decom-
posed on the fixed dictionary W learned on the training set, which
gives us the test set activation matrix Hye.

2.4. Feature pooling and classification

In order to have only one feature vector per example, we introduce
a second pooling step on the learned features. We build the feature
vector for each T-second long example by averaging its correspond-
ing m projection vectors leading to one mean projection vector of
size K. This last step allows us to have a single feature vector for
each acoustic scene recording in the training and test set. To sum-
marize, the final feature vector for each data example is the averaged
projections of each of its averaged CQT slice on the learned dictio-
nary W. Therefore, the features describe the scene as a whole with-
out discarding the temporal context. Finally, a regularized logistic
regression model trained on the learned features is used to classify
the test-set data.

3. MATRIX FACTORIZATION TECHNIQUES FOR
FEATURE LEARNING

The main motivation behind using matrix factorization is to automat-
ically decompose data, regardless of what it represents, into mean-

ingful parts without the need of predefining a dictionary. There ex-
ists a wide variety of different matrix factorization methods which
mainly extend the formulation given in Section 2.3. In this section,
we briefly present different variations of matrix factorization meth-
ods we intend to compare such as nonnegativity constraints, sparsity,
non-linearity and convolution. The presented variants are mainly
extensions of PCA, a common factorization method to whiten or re-
duce the dimension of data, or extensions of NMF, known to provide
part based decompositions of nonnegative data.

3.1. Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is a well known data de-
composition technique [15], to decompose nonnegative data into
positive dictionary elements. In NMF, the goal is to find a decom-
position that approximates the data matrix V such as V ~ WH with
W e RiXK and H € Rf *N Here, P represents the feature di-
mension, /N the number of data points in V and K the number of
basis vectors. NMF is obtained solving the following optimization
problem:

min Dg(V|WH) s.t. W H > 0 (1)

where Djg represents the S-divergence. We use the common multi-
plicative update rules [16] to optimize the problem for three different
B-divergences: Euclidean (8 = 2), Kullback-Leibler (3 = 1) and
ITtakura-Saito (5 = 0).

3.2. Sparse matrix factorization

Sparsity is often desired in matrix factorization in order to provide
a more robust and interpretable decomposition. We look into using
a sparse version of the PCA which can provide sparse dictionaries
or sparse activations and an NMF with a sparsity constraint on the
activation matrix.

3.2.1. Sparse PCA

There are many different formulations for the Sparse PCA model. In
our work we use the one presented in [17] which considers sparse
PCA as a dictionary learning problem. In the context of sparse dic-
tionary learning, the matrices W and H are the solution of the fol-
lowing optimization problem:

K
min||V — WH[S + 23" [lacfst [befo =1 @)

k=1

where we set A = W and B = H to get sparse basis vectors and
to get a sparse activation matrix, we set A = H” and B = W7,
The vector by is the row in B and aj, the column in A indexed by k,
1<k<K.

3.2.2. Sparse activations with sparse NMF

As for sparse PCA there are many ways of enforcing sparsity in
NME. We use the sparse NMF formulation presented in [18], it is
based on an optimization through multiplicative updates using the
Euclidean distance. It was then extended in [19] for the other (-
divergences. A li-norm constrains the activation matrix H while a
unit [>-norm constraint is forced on the dictionary elements. The
matrices W and H are the solution of the following problem

. Wi 2
RSB ILN v (BRSO DITNE

where wy, is the dictionary element indexed by k, 1 < k < K.
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3.3. Kernel-based non linear matrix factorization

Another possible variation of matrix factorization techniques is to
decompose the data in a transformed feature space. Given a fea-
ture mapping function ¢ from the original space to the transformed
space, the desired decomposition approximates the data ®(V) in the
transformed space: ®(V) ~ WogH. Our experiments include the
use of Kernel PCA [20] (KPCA) and Kernel NMF [21] (KNMF),
two kernel extensions of PCA and NMF for which we use a Gaus-
sian kernel function.

3.4. Convolutive NMF

The convolutive NMF presented in [22] is an extension of the NMF,
suited to decompose spectrograms. It extracts 2D basis vectors cor-
responding to groups of consecutive time frames. By doing so, con-
volutive NMF allows us to decompose the spectrogram of a scene in
different slices, containing time-frequency images of acoustic events
occurring during the scene. If one takes a spectrogram S of size
P x T, with P frequency bands and 7' time frames, the convolu-
tive NMF searches for a decomposition in K different 7 time frames
long spectrogram slices. We search for the following approximation
of S

ity t—
S ~ Z W, H, @)
t=0

where W, € RiXK and the k*" column of W; corresponds to the
time frame ¢ of the 2D dictionary element indexed by k, 1 < k < K.
Applying the operation ¢ — to H shift its columns ¢ indexes to the
right while putting the first ¢ columns to 0. Since the convolutive
NMEF is primarily suited for decomposing time-frequency images,
we will not directly apply it on the previous data matrix V. Instead,
we extract a different 3D dictionary W; for each audio example 7 in
the training set. The W are concatenated to build a global dictionary
W = [Wy,..., Wy]. Since the size of the global dictionary is too
high, we perform a K-means clustering on W in order to build a
reduced dictionary W, containing the K. cluster centers. The feature
vector learned for a given data example is obtained by decomposing
its spectrogram on W and computing the average of the projection
vectors over time (the average of each row in H).

4. EXPERIMENTAL EVALUATION

4.1. The dataset

The unsupervised feature learning variants considered are evaluated
on the LITIS Rouen data set [13]. To our knowledge it is the largest
publicly available dataset for ASC. It contains 25 h of urban audio
scenes recorded with a smart-phone, split into 3026 examples of 30 s
without overlap forming 19 different classes. Each class corresponds
to a specific location such as in a train station or at the market.

4.2. Evaluation protocol

All experiments use the training-test splits suggested by the authors
of the dataset to guaranty comparable results. The classifier is a
multi-class linear logistic regression. In order to compute the results
for each training-test split we use the mean average F1 score. The
final F1 score is the average value of F1 over the 20 splits. In each
split 80% of the examples are kept for training and the other 20 %
for testing. A log compression is applied to spectrograms before the
pooling step when we use the PCA and its variants. For the differ-
ent NMF extensions, we tried using a log(1 + z) type compression

since negative data points are not permitted but better results were
obtained a square root compression. Because the focus is on feature
learning, the classifier is kept linear to permit easier comparisons
between the tested techniques. Better results could probably be ob-
tained by using a non linear kernel but this is left for future works.
Finally, when we claim a method significantly outperforms another
one, statistical significance is asserted via a cross-validated student
t-test (p < 0.05).

PCA NMF
Variants Tested | Max K | Tested | Max K
Non modified o 128 0 1024
Sparse basis o 128 X X
Sparse activations o 128 o 1024
Kernel-based o 1024 0 256
Convolution X X o 1024

Table 1: Summary of the variants tested for PCA and NMF. Max K
specifies the highest dictionary size tested for each technique.

4.3. Results for the basic matrix factorizations

The first results presented in Table 2 are obtained using the basic
PCA and NMF to learn the features. We also indicate the results
when using Independent Component Analysis (ICA) [23] and Fac-
tor Analysis (FA) which are two other popular data decomposition
techniques. Because the input data points are of dimension 134, we
can not search for a higher number of components for PCA or ICA
but NMF has no such limitations.

K =128 | K=256 | K =512 | K =1024
PCA 89.8 - - -
ICA 90.0 - - -
FA 90.0 - - -
NMF g =2 87.9 89.7 89.4 89.9
NMF 3 =1 88.4 90.1 89.6 90.3
NMF 5 =0 88.7 90.5 90.2 90.7

Table 2: F1 scores for PCA, ICA, NMF and Factor Analysis on
different dictionary sizes K

As shown in Table 1, none of the average F1 scores obtained for
PCA, ICA, factor analysis and NMF significantly stands out. The
classification results reaching up to a 90.7% F1 score but are still
far from improving the 92.8% state-of-the-art F1 score results on
the dataset [10]. The scores obtained are promising but indicate the
need for more complex decompositions capable of better capturing
the specificities of the data.

4.4. Influence of sparsity

The results when adding sparsity constraints for PCA and NMF are
presented Table 3. The A parameter is the regularization parameter
controlling the influence of the /1 norm constraints in equations (2)
and (3). For Sparse NMF the results are given for the Euclidean
distance (8 = 2) as it gave the best results.

The scores for sparse PCA with sparsity constraints on the basis
vectors show that enforcing more sparsity on the dictionary leads to

6447



Sparse PCA with sparse basis vectors
K A=0|A=01]A=025| A=05| A=1
128 90.0 89.0 88.7 88.5 86.8
Sparse PCA with sparse activations
K A=0|A=01]A=025| A=05 ]| A=1
128 90.0 90.0 89.1 82.6 65.2
Sparse NMF
K A=0|A=01]A=025 | A=05 | A=1
128 88.5 88.2 88.0 86.7 87.1
256 89.9 90.8 90.6 90.1 90.1
512 91.2 92.0 93.3 91.9 91.1
1024 92.0 93.1 94.1 92.1 91.8

Table 3: F1 scores for Sparse NMF and Sparse PCA for different
dictionary sizes K and sparsity constraints A

decreasing performance. A possible explanation is that the basis vec-
tors, regardless of the dictionary size, can not exceed P dimensions
and forcing them to have more coefficients set to 0 may lead to dis-
carding important information. In Sparse NMF, adding the sparsity
constraint on the activation matrix allows us to reach better results
when using a higher number of dictionary elements (K=1024). For
lower values of K, adding sparsity to the activation matrix in the
PCA and NMF decompositions decreases the results. The sparsity
on the activation matrix enforces each data point to be explained by
only a few basis vectors and thus often leads to a more realistic de-
composition, where each scene is only explained by a few basis vec-
tors. The best result for sparse NMF is a 94.1% F1 score obtained
with A = 0.25. It is a significant improvement over the 92.0% F1
score obtained with A = 0 and over the 92.8% F1 score obtained by
the state-of-the-art method on the same dataset [10].

4.5. Influence of non-linearity

We now look at the influence of using kernel extensions of the PCA
and NMF. A Gaussian kernel was used for both the Kernel PCA and
Kernel NMF. The o parameter for the Gaussian kernel function is
tuned using cross-validation on a sub-set of the data. The results of
our experiments are presented in Table 4.

] \K:128 K=25 | K=512 | K=1024

KPCA 91.6 93.3 94.3 95.6
KNMF 78.1 84.1 - -

Table 4: F1 scores for Kernel PCA and Kernel NMF compared to
NMF and PCA on different dictionary sizes K

Since the data is decomposed in a transformed feature space,
this allows us to build larger over-complete dictionaries with Kernel
PCA than with the regular PCA. For KNMF, the computation time
gets too prohibitive for high values of K, preventing us from provid-
ing results for K above 256. Indeed, the presence of the Gram ma-
trix ®(V)T®(V) € RV*¥ in the multiplicative update rules makes
KNMF much more complex then NMF when N >> P . By us-
ing the KPCA with 1024 components, we obtain a 95.6% F1 score
which significantly outperforms the previous results for PCA and the
state-of-the-art method.

4.6. Results with the convolutive NMF

As we have mentioned, since the convolutive NMF is applied on full
spectrograms, the feature learning architecture is different from the
previous experiments and was described in Section 3.4. The spec-
trograms are decomposed using 2D dictionary elements of 4 con-
secutive time frames (7 = 0.25 s). We considered decomposing on
longer slices (8 or 16 consecutive frames) but it did not provide bet-
ter results. Each example in the training set is approximated by a
dictionary of 80 slices leading to a total training dictionary of size
80N before clustering. The results shown in Table 5 are given for
different number K. of cluster centers obtained after applying the
K-means to W. The convolutive NMF and regular NMF are com-
pared using the same type of feature learning architecture. The NMF
+ clustering method uses the regular NMF to learn a separate basis
of 5 vectors on each 2-s spectrogram slice. Similarly to convolutive
NME, the concatenation of all basis is clustered to keep a dictionary
of size K. used to extract the projection features. The best results
were obtained with the Itakura-Saito divergence (8 = 0) for both
methods.

K.=256 | K. =512 | K. =1024 |
Convolutive NMF 90.5 92.6 94.5
NMF + clustering 90.1 92.2 93.7

Cluster centers

Table 5: F1 scores for convolutive NMF and NMF with clustering
in function of the dictionary sizes K.

The convolutive NMF appears to be a well suited model to an-
swer the specific difficulties of ASC. In fact, it decomposes an acous-
tic scene as a superposition of different short acoustic events. Con-
trarily to the regular NMF, because we consider slices of the spectro-
gram, the time-frequency structure of acoustic events is less altered.
The results with the NMF + clustering technique shows that an im-
portant part of the improvement obtained with the convolutive NMF
has to be attributed to the change of architecture compared to the
other methods presented. The results obtained with NMF + cluster-
ing, up to a 93.7 % F1 score, are slightly improved when using the
convolutive NMF, reaching a 94.5% F1 score. In line with the Sparse
NMEF and the Kernel PCA it also significantly improves the previous
state-of-the-art result on the data set.

5. CONCLUSION

In this paper we have studied and compared different popular matrix
factorization methods to perform unsupervised feature learning for
acoustic scene classification. Our experiments on the largest avail-
able ASC dataset compare the use of extensions of the regular PCA
and NMF such as sparsity, kernels and convolution. The classifi-
cation scores show that these different variants of matrix factoriza-
tion all allow us to get improved results. We manage to outperform
the previous state-of-the-art results on the LITIS Rouen dataset with
Sparse NMF (94.1% F1-score), Kernel PCA (95.6% F1-score) and
convolutive NMF (94.5% F1-score). In the future we intend to com-
bine some of the good performing matrix factorization variants pre-
sented to take advantage of more then one of the sparsity, kernel or
convolution extensions at time. For instance, methods have already
been developed to introduce sparsity in kernel PCA or in convolutive
NME.
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