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ABSTRACT
In previous work [10], we have proposed a new signal repre-
sentation for audio coding, where the signal is decomposed
in a union of MDCT bases using matching pursuit. The re-
sulting coder gave better performance than a transform coder
at low bitrates but slightly worse at high bitrates. In this pa-
per, we propose an adaptive matching pursuit algorithm that
in the first iterations decomposes the signal into the redun-
dant union of MDCT bases, and then, when the residual en-
ergy decay becomes too low, switches to an orthogonal basis
(one of the MDCT bases). We investigate simple strategies
to determine in which iteration switching is near-optimal in
terms of rate-distortion. We present in this paper a prototype
audio coder based on this algorithm, that reaches the perfor-
mance of the previous approach at low bitrates and the one
of transform coding at high bit rates.

1. INTRODUCTION

When transparency or near-transparency is required, state-
of-the-art audio coders are mostly transform-based and gen-
erally use the Modified Discrete Cosine Transform (MDCT).
One example of such a coder is MPEG-4 Advanced Au-
dio Coding (AAC) [6] which is able to encode general au-
dio at 64 kbps per channel with a near-transparent quality.
However, MDCT-based coders are known to introduce severe
artefacts at lower bitrates and they are now outperformed by
other coders. These new coders are either purely parametric
(e.g. SSC [2]) or hybrid (e.g. HE-AAC [3], AMR-WB+ [7])
and allow better performance than transform coding at 24
kbps per channel or lower. However, parametric and hybrid
coders only model a subspace of the input signal and con-
sequently cannot reach transparent quality, even at high bi-
trates.

In [10], we have proposed a new signal representation
that allows better performance than transform coding at low
bitrates while allowing transparent quality at high bitrates.
This approach is related to transform coding : it could be
seen as a generalization of the transform approach since it is
based on a simultaneous use of a union of MDCT bases. This
allows us to use efficient scalable encoding techniques used
in transform coding (e.g. [4]), while producing a sparser de-
composition than the transform approach. In comparison, for
the same target SNR, there are less significant coefficients to
encode than in the transform case, but encoding the param-
eters of the significant coefficients (the significance map) is
more costly. In [10], we have showed that the tradeoff be-
tween the number of significant coefficients, and the coding
cost of these coefficients, significantly favors our approach

at low bitrates. However, at high bitrates, it is necessary to
encode a high number of coefficients in both approaches, and
the cost of encoding large significance map becomes pro-
hibitive: in this case our approach is outperformed by the
standard transform approach.

In this paper, we propose a new decomposition algorithm
that, under mild assumptions, provides the “best of both
worlds”: the same performance as the previous approach [10]
at low bitrates and the same performance as transform coding
at high bitrates. The signal is first approximated in the over-
complete set of time-frequency atoms used in [10] (union of
8 MDCT bases), and then the residual of this approxima-
tion is decomposed using an orthogonal transform (one of the
MDCT bases). The signal decomposition is performed on the
whole signal using a modified Matching Pursuit (MP) algo-
rithm, with an adaptive dictionary that is changed locally i.e.
the union of MDCT is reduced to one MDCT on a frame-by-
frame basis. The decomposition is then encoded using simi-
lar bitplane encoding methods as used in previous work [10].
The main issue is the design of an efficient strategy to decide
on the appropriate MP iteration, in a given frame, to switch
from the overcomplete to the complete dictionary.

A similar idea is found in image coding [9], where an
overcomplete set of 2D atoms is used to model the edges of
an image and the residual of this approximation is coded us-
ing a wavelet transform. However, this approach is based on
two different dictionaries and two different coding methods.
The image coder combines these two different approaches
in a rate-distortion way. What we propose is different as we
use a unique dictionary and a unique coding method, both are
adapted online using the novel switching procedure proposed
in this paper.

Another similar approach is found in audio coding [11],
where SSC is used to approximate a signal and the residual
is coded using a MDCT-based coder. A rate-distortion opti-
mization is used to allocate the available bit budget among
the two coders. However, the same remarks apply here. This
approach is based on two different paradigms, which is dif-
ferent from our approach as we propose a single paradigm
for the signal representation and the coding.

The remainder of this paper is as follows. In section 2,
we introduce the signal model and notations. In section 3,
we recall the decomposition algorithm used in previous work
and describe the new approach. In section 4, we describe
how the decomposition is encoded. In section 5, we derive
an optimal parameter value for the adaptive decomposition
algorithm. In section 6, we present the results, and finally we
conclude in section 7.



2. SIGNAL MODEL

We proposed in [10] a signal model based on a union of 8
MDCT bases, where the window length ranges from 128 to
16384 samples (i.e. from 2.9 to 370 ms) in powers of 2. We
use the same model here : the smallest windows are needed
to model very sharp attacks while larger windows are useful
for modeling long stationary components. The signalf 2RN

is then decomposed as a weighted sum of functionsgγ 2 RN

plus a residual of negligible energyr

f = ∑
γ2Γ

αγ gγ + r (1)

whereαγ are the weighting coefficients. The set of functionsD = fgγ ;γ 2 Γg is called the dictionary and is a union ofM
MDCT bases (called blocks). The functionsg, called atoms
are defined as:
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where
u= n� pLm�Tm: (3)

andm is the block index,p is the frame index,k is the fre-
quency index,Lm is the half of the analysis window length
of block m (defined as power of twoLm = L02m), Pm is the
number of frames of blockm, Tm is a time offset introduced
to “align” the windows of different lengths (Tm= Lm

2 , see Fig.
1) andwm(u) is the sine window defined onu= 0; ::;2Lm�1.
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Figure 1:Analysis windows for M= 3 different MDCT win-
dow sizes. Dashed vertical lines indicate timeslots.

3. DECOMPOSITION ALGORITHM

In the case of the orthogonal transform (M = 1), D forms
a basis ofRN and the atomsfgγg are linearly independent.
The decomposition off overD is then unique, and is simply
obtained by projecting the signal on the atoms.

The dictionary is overcomplete whenM > 1: the dimen-
sion ofD is superior to the dimension of the signal, and the
decomposition off inD is not unique anymore. We are look-
ing for a sparse solution, where the signal is represented by
a small number of atoms. Finding an optimally sparse solu-
tion is a NP-hard problem if the dictionary is unrestricted [1].

Instead, it is possible to find a sub-optimal solution using
e.g. Matching Pursuit (MP) [8]. MP is an iterative algo-
rithm which selects the optimal atom at each iteration (see
Algorithm 1 in [10]). We present in the following a modified
version of this algorithm that allows us to reduce the size of
the dictionary adaptively.

Standard MP is performed globally on the whole signal.
To better adapt the model to the local statistics of the sig-
nal, we consider in the following temporal segments called
“timeslots” whose length is equal to the half of the maxi-
mum analysis window length (see Fig. 1). These slots group
coefficients in subsetsSq defined asSq =�αm;p;k j floor

�
p�P0

m+1
P0

m

�= q

�
(4)

with P0
m = 2M�m�1 is the number of frames of blockm in

each timeslot. Since the first and last frames of each block
are discarded in this scheme, it is necessary to fill the sig-
nal f with zeros at both sides before the decomposition to
avoid any problem at the edges. In the timeslotSq, the time
support of the largest scale atom includes all smaller scale
atoms. Consequently, we define the time supportUq of the
timeslotSq as the time support of the largest scale atom.

At every MP iteration, one atom is picked up, that can
belong to any timeslot. We thus definenq(i) the MP iterations
where the selected atom belongs to the timeslotSq. The
atom selected at iterationnq(i) decreases the energy of the
residual on the time supportUq. We thus define the SNR of
the timeslotSq as

SNRq(i) = 10 log10

0� jjRnq(i)
Uq

jj2jjR0
Uq
jj2 1A (5)

and the SNR decay of the timeslotSq as

DECq(i) = 10 log10

0� jjRnq(i)+1
Uq

jj2jjRnq(i)
Uq

jj2 1A (6)

with Rn
Uq

is the part of the residual at iterationn correspond-
ing to the time supportUq. Fig. 2 plots the decay curve
DECq(i) as a function ofSNRq(i), obtained with the stan-
dard MP for a timeslot of an audio signal and two dictio-
naries: one single MDCT with window length 2048 samples
and the union of 8 MDCT bases presented in Sec. 2. In the
first iterations, each atom of the overcomplete dictionary de-
creases significantly the SNR of the timeslot, but after some
iterations, the SNR decay becomes small and almost equal
to the one of the orthogonal dictionary at same SNR. This is
the same phenomenon as the one described in [8]: the atoms
extracted in the first iterations are the coherent structures of
the signal and after some iterations the residueRn converges
to a process called the dictionary noise. When coding such
a decomposition, there is a gain in the first iterations but af-
ter some point, it is less costly to encode an atom from an
orthogonal dictionary. Consequently, from a coding point of
view, it is better to decompose the first iterations in the union
of MDCT bases, and then to reduce the dictionary when the
decay becomes too low. The proposed modified MP is de-
tailed in Alg. 1.
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Figure 2:SNR decay in function of SNR for a timeslot

Algorithm 1 Adaptive MP

Require: f ; D = fgγ ;γ 2 Γg
Ensure: αγ

n= 0
R0 = f
αγ = 0;8γ 2 Γ
repeat

γopt= argmaxγ2Γ
��< r;gγ >��

c=< r;gγopt >
Rn+1 = Rn�c:gγopt
q is the timeslot index ofgγopt
if DECq < SWthen

remove all atoms in timeslotq except those from the
orth. dict.

end if
αγopt = αγopt+c

until only atoms from the orth. dict. remain in the dict.
Project the residualRn on the orth. dict.

4. CODING

As in [10], the coefficients are first interleaved in each times-
lot to produce a vector of coefficients per timeslot. Then, we
use a slight modified version of the coding algorithm used
in [10]: each vector of interleaved coefficients is encoded us-
ing an adaptive bitplane encoding algorithm that reduces the
size of the significance map after the switch.

We first recall the interleaving process used in [10]. To
simplify notations in the following, we introduce a new
frame indexp0 = mod(p�P0

m+1;P0
m) such that the frame

index starts at 0 in each timeslot. The mapping process be-
tween the coefficients of a timeslotαm;p0;k and the corre-
sponding vector valuesvi is then formalized as follows. First
we define a recursive functionr that performs a permutation
of the frames:

r(p0;M�1) = p0 (7)

and form< M�1

r(p0;m) =(r( p0
2 ;m+1) if p0 is even

r( p0�1
2 ;m+1)+P0

m+1 if p0 is odd
(8)

Then, values are mapped according to:

vi = αm;r(p0;m);k (9)

with
i = (kP0m+ p0)M+m (10)

Then, each vector of interleaved coefficients is encoded
using a bitplane encoding algorithm. In [10], the same algo-
rithm as in [4] was used. The basic principle of bitplane en-
coding is to send successively each bitplane starting from the
most significant bitplane. This is done using a scheme in two
passes: the significance pass and the refinement pass. The
significant pass transmits the subset of thej-th bitplane cor-
responding to thej-th most significant bits of the non already
significant coefficients. The significance pass also transmits
the sign of the new significant coefficients. The refinement
pass transmits the subset of thej-th bitplane corresponding
to the j-th most significant bits of the already significant co-
efficients. All existing bitplane encoding algorithms differ
essentially in the way they perform the significance pass. The
approach used in [4] and [10] is based on adaptive Golomb
codes: the significance pass does not transmit directly the
bits in the current significance map but instead transmits the
number of zeros between ones using adaptive Golomb codes.

We use here a slightly modified version of this algorithm.
The first bitplanes have the same size as the length of the
vectorvi , i.e M = 8 times the number of signal samples in
a timeslot. After the dictionary switch from overcomplete
to orthogonal, all remaining bitplanes contain only signifi-
cant coefficients from the reduced dictionary. Consequently,
the size of the significance map is reduced after the switch.
One bit per bitplane is added in order that the decoder knows
when the significance map size is reduced (“0” = full over-
complete dictionary, “1” orthogonal transform).

5. OPTIMAL SWITCHING PARAMETER

The proposed adaptive MP depends only on one parame-
ter SW, which is the energy decay per coefficient under
which it is better to switch from overcomplete to orthogo-
nal. Of course,SW can be estimated on-line, by comput-
ing at each iteration the most favorable rate-distortion con-
figuration. However, since the coefficients are not encoded
separately but in bitplanes, this technique leads to a signifi-
cant complexity increase (at each iteration, one has to “look
ahead” a large number of steps to decide on the best strat-
egy). Instead, we would like to compute a fixed value forSW
that is approximately optimal (in terms of rate-distortion),
without any additional computation in the MP loop.

In the following, we consider one particular slotSq, and
we suppose that the switch is done for that timeslot at the
iterationnq(iswitch). We make the assumption that the SNR
decayDECq in that timeslot is constant for the few itera-
tions following the switch (this is approximately verified if
the switch does not occur in the first iterations). Then, we
consider two cases: if at iterationnq(iswitch), we keep in the
overcomplete dictionary (no switch), the decay value would
beDECO

q ; if at iterationnq(iswitch), the dictionary is reduced
to an orthogonal dictionary (switch), the decay value would
be lower and equal toDECT

q . We now make the empirical
observation that there exists a simple relation betweenDECO

q

andDECT
q . We decompose a 20 seconds signal composed of

several audio types contents (monophonic, polyphonic) with
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Figure 3: Decay of the orthogonal dictionary as a function
of the overcomplete dictionary; the decay is computed on the
100iterations following the switch.

the adaptive MP and several values of the parameterSW.
We also decompose the same signal in the overcomplete dic-
tionary with the standard MP (no switch) as a reference to
computeDECO

q . In each timeslot, and for each parameter
value, we compute the mean of the decay on the 100 iter-
ationsnq(i) following the switch at iterationnq(iswitch) for
each case and we plotDECT

q in function of DECO
q . Fig. 3

shows the obtained values and a linear approximation. We
thus approximate the relation betweenDECT

q andDECO
q as:

DECt = γDECo with γ = 0:6.
Now, as we have supposed that the SNR decayDECq

in a timeslot is constant for the few iterations following
the switch, and if we neglect the influence of the neighbor-
ing timeslotsSq�1 andSq+1, the energy and the absolute
value of the coefficients have approximately the same de-
cay:DECO

q if we remain in the overcomplete dictionary, and
DECT

q if we switch to the orthogonal dictionary. As a bit-
plane corresponds to a division per two of the absolute value
of the coefficients, we are now able to compute the approxi-
mate number of coefficients per bitplane:

NbT = 20
DECT

q log210
(11)

for the orthogonal dictionary and

NbO = 20
DECO

q log210
(12)

for the overcomplete dictionary. As the major contributionto
the bitrate is due to coding the significance maps, in follow-
ing computations we neglect the sign and refinements bits.
Assuming that the coding cost for the significance map can
be estimated by entropy, we can then compute the average
rate per significant coefficient as

RT = 1
p
(�p log2(p)� (1� p) log2(1� p)) (13)
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Figure 4:Distortion per bits as a function of the SNR decay
for two dictionaries.

with p= NbT

Slen
for the orthogonal dictionary and

RO = 1
p̃
(�p̃ log2(p̃)� (1� p̃) log2(1� p̃)) (14)

with p̃ = NbO

MSlen
for the overcomplete dictionary. In short,

each coefficient in the bitplane after the switch iteration de-
creases the SNR byDECO

q dB at a cost ofRO bits if we re-
main the overcomplete dictionary, and decreases the SNR by
DECT

q dB at a cost ofRT bits if we switch to the orthog-
onal dictionary. Consequently, we decide to switch to the
orthogonal dictionary ifDECT

q =RT > DECO
q =RO. We are

now able to compute the optimal valueSWnumerically. Fig.
4 plotsDECT

q =RT andDECO
q =RO in function of DECO

q for
γ = 0:6. We finally find numerically the optimal parameter
value which is approximatelySW= 0:025 (numerical simu-
lations have shown that the exact value is not really critical).

6. RESULTS

We have tested our algorithm on the same signals as used
in [10], these are 4s-long signals sampled at 44.1 kHz: bag-
pipe, glockenspiel, harpsichord, horn, orchestra, violin. We
compare three coders based on three different signal repre-
sentations. First, the two coders compared in previous work
[10], these are a transform coder based on a single MDCT
(M = 1) with an analysis window length of 2048 samples,
and the overcomplete approach coder with the standard MP
in a union of 8 MDCT bases. These two coders are com-
pared with the novel coder proposed in the paper, based on
the modified MP with an adaptive dictionary that switches
from 8xMDCT to 1xMDCT (with length 2048 samples). We
remark that contrary to [10], the evaluation measure is based
here on SNR as the decomposition algorithm is based on
SNR too. More relevant objective measure for audio cod-
ing such as PEMO-Q [5] or even listening tests are planned
for future work. The results are shown on Fig. 5.

It clearly shows that the performance of the new coder
is the same as the previous approach at low bitrates and the



2 4 8 16 32 64 128 256
0

20

40

60

Bitrate (in kbps)

S
N

R
 (

in
 d

B
)

 

 

1xMDCT
8xMDCT
Switch 0.025

Figure 5:Mean SNR for six signals in function of the bitrate
for 3 coders: transform coder with 1xMDCT, standard MP
with 8xMDCT, adaptive MP from 8xMDCT to 1xMDCT with
a switch parameter value of SW = 0.025.

same as transform coding at high bitrates. Preliminary tests
also seem to indicate that the approximate switching scheme
presented above is very close to the optimum. Fig. 1 com-
pare the computation time needed to code the six files with
the three approaches: the single MDCT coder, the proposed
adaptive MP coder and the standard MP coder (with a pre-
cision of 60 dB). Though it is still much slower than a sin-
gle MDCT, the new approach is faster than the previous ap-
proach.

MDCT Adaptive MP MP (60dB)
Bagpipe 0.03 3.51 129.03

Glockenspiel 0.03 2.87 56.49
Horn 0.03 7.20 21.65

Orchestra 0.03 3.85 133.28
Trumpet 0.03 4.78 61.77
Violin 0.03 4.62 123.35

Table 1: Normalized computation times on a Core 2 Duo
2.0GHz laptop (in seconds/seconds)

7. CONCLUSION

The scalable audio coder previously proposed in [10] gave
better performance than transform-based coding at low bi-
trates but slightly worse performance at high bitrates. The
signal representation was based on a standard Matching Pur-
suit decomposition in a redundant union of MDCT bases.
We have showed that the energy decay in this overcomplete
dictionary is high on the first iterations and becomes almost
equal to the decay of an orthogonal dictionary after some it-
erations. As it is less costly to encode atoms in an orthogonal
dictionary, it is better from a coding point of view to decom-
pose the residual in an orthogonal dictionary when the en-
ergy decay becomes too low. We thus have proposed a mod-
ified MP which switches from an overcomplete dictionary to

an orthogonal dictionary when the energy decay is below a
threshold. We have then derived an optimal switching pa-
rameter value. Finally, we have shown experimentally that
the resulting coder reaches the performance of the previous
approach at low bitrates and the performance of a transform
coder at high bitrates.

This study also raises some questions: first, it is not clear
whether there is a fundamental reason for such a simple (ap-
proximate) relationship betweenDECO

q andDECT
q . Second,

this leads to wonder if there are more signal-independent
techniques to perform the switch near the optimum. Fi-
nally, further studies will have to study whether the rate-
distortion optimization as performed here, with distortion as
mean quadratic error, is also optimal from a perceptual point
of view.
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