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ABSTRACT

Probabilistic Latent Component Analysis (PLCA) is a tool

similar to Non-negative Matrix Factorization (NMF), which

is used to model non-negative data such as non-negative time-

frequency representations of audio. In this paper, we put

forward a trick to help the corresponding parameter estima-

tion algorithm to converge toward more meaningful solutions,

based on the new concept of brakes. The idea is to control the

convergence rate of the parameters of a PLCA-based model

within the estimation algorithm: the parameters which are

known to be properly initialized are braked in order to stay

close to their initial values, whereas the other ones keep a regu-

lar convergence rate. This is an effective way to better account

for a relevant initialization. In this paper, these brakes are

implemented in the framework of PLCA, and they are tested

in an application of multipitch estimation. Results show that

the use of brakes can significantly influence the decomposition

and thus the performance, making them a powerful tool to

boost any kind of PLCA-based algorithm.

Index Terms— PLCA, NMF, EM algorithm, multipitch

estimation.

1. INTRODUCTION

Factorizations of non-negative time-frequency representations

(TFR+) are used in many audio applications such as multip-

itch estimation, automatic transcription and source separation.

They require to put forward models of TFR+ and to find algo-

rithms to estimate the model parameters given an observation.

To this aim, many mathematical frameworks can be used, ei-

ther deterministic [1, 2] or probabilistic [3, 4, 5]. Those meth-

ods, though quite efficient, may also suffer from several flaws.

Indeed, depending on the model and algorithm considered, the

following problems are often faced:

• Unidentifiability of the model: several sets of parameters

can explain the same observation.

• Local optima: the algorithm may stay stuck in a sub-

optimal local optimum.
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• Relevancy of the solution: the optimal solution is not nec-

essarily the most meaningful one.

In order to overcome these problems, an often used solution is

the addition of penalty terms or priors on the parameters. For

instance, many studies have been conducted in order to enforce

sparsity or temporal continuity of a subset of parameters for a

given model [6, 7].

In this paper, we study a new idea, which, as well as the

addition of prior or penalty terms, helps parameter estimation

algorithms to converge towards meaningful solutions. The

idea is to slow down the rate of convergence of the parameters

that are well initialized, through the use of a brake1. By doing

so, it is ensured that after convergence, the estimates of the

braked parameters stay close to their initial values. The other

parameters — the value of which we have no prior knowledge

on — keep a regular convergence rate. In the same way a sled

turns right if only the right brake is used, this approach is a

simple way to affect the direction that the algorithm takes and

make it converge to a more relevant local optimum, by better

accounting for a proper initialization.

In order to explore this idea, we choose to focus on the

mathematical framework of PLCA with its basic model [4],

that we recall in section 2. In section 3, the brakes are in-

troduced in order to independently control the convergence

rate of different sets of parameters. Experimental studies are

then conducted in section 4, through the problem of multipitch

estimation. Finally, conclusions are drawn in section 5.

2. PLCA

PLCA [4] is a method for analyzing non-negative data: here

the non-negative coefficients that compose a TFR+
V of an

input audio signal. The observations V of coefficients Vft,

t ∈ J1, T K and f ∈ J1, F K being respectively time and fre-

quency indexes, are modeled as the histogram of the sam-

pling of J independent random variables (r.v.) (f, t). These

variables are drawn according to the probability distribution

PΛ(f, t), and the way this distribution is modeled induces the

1The word “brake” is a new term we put forward in this context, defined

in section 3.



wanted decomposition. The brakes, introduced in next section,

could be used for any observation model, but for the sake of

simplicity, only the basic model [4] is considered here. In

this model, a latent variable n ∈ J1, NK is introduced (it can

for instance represent a MIDI note), f and t are considered

independent conditionally to n and PΛ(f, t) is modeled as:

PΛ(f, t) =
∑

n

P (n, t)P (f |n). (1)

The set of parameters Λ is defined as {P (n, t), P (f |n)}n,t,f .

In this paper, we suppose that P (f |n) represents the basis

spectrum of note n (also called atom) and P (n, t) its time

activation.

Given an observation, the parameters can be estimated by

means of the Expectation-Maximization (EM) algorithm [8]. It

provides update rules for the parameters so that the likelihood

of the observations does not decrease at each iteration j:

P (n, t)j+1 ∝ P (n, t)j
∑

f

Vft

PΛj (f, t)
P (f |n)j (2)

P (f |n)j+1 ∝ P (f |n)j
∑

t

Vft

PΛj (f, t)
P (n, t)j (3)

where ∝ means "proportional to" (i.e. the parameters must be

normalized after their updates, so that the probabilities sum

to 1) and where PΛ(f, t) is defined in equation (1). From

now on and for the sake of clarity, we deliberately omit to

specify that a given distribution depends on the parameters Λ
and that the value of a parameter depends on the iteration j of

the algorithm. For instance, PΛj (f, t) is thus denoted P (f, t).

3. TAKING CONTROL OF THE CONVERGENCE

RATE

Many works have been done in order to influence the con-

vergence rate of NMF-based algorithms (e.g. [9]), but their

goal is to study or improve the overall convergence speed. In

this section, we suggest to independently control the conver-

gence rate of different sets of parameters ({P (n, t)}n,t and

{P (f |n)}f,n for instance in the case of basic PLCA model)

in order to influence the result of an optimization algorithm,

without looking at the resulting global speed convergence. A

simple idea to do so is to compute a weighted mean between

the optimal solution of the M step and the value of the parame-

ters at the previous iteration. Equations (2) and (3) would then

become:

P (n, t) ∝ P (n, t)





∑

f

Vft

P (f, t)
P (f |n) + β1

brake



 , (4)

P (f |n) ∝ P (f |n)

[

∑

t

Vft

P (f, t)
P (n, t) + β2

brake

]

, (5)

where β1
brake and β2

brake are two positive coefficients, that we

call brakes. They indeed act as a brake on the convergence,

since the larger they are, the more the value of the parameters

at a given iteration is close to the previous iteration. If the two

brakes are set with different values (for instance β1
brake = 0 and

β2
brake > 0), they will act as a “steering wheel”, and then influ-

ence the direction in which the algorithm goes. The parameters

may then converge towards a different local minimum than if

no brakes were use, as shown in next section. For instance,

one use that can be put forward is to brake the parameters

which are known to be well initialized. In this way, it is more

likely that, after convergence, they will not be far from their

initialization.

There is a formal way to introduce the brakes in the frame-

work of PLCA, so that equations (4) and (5) are directly de-

rived from the EM algorithm. The reader is referred to ap-

pendix A for further explanations.

4. EXPERIMENTAL STUDY AND APPLICATION

In this section, we study how the use of brakes can influence

the decomposition algorithm. To do so, we chose to address

the problem of multipitch estimation. The purpose of this

section is not to provide new state of the art algorithms but to

show that the use of brakes can improve the performance of

existing methods, whether they are naive or sophisticated. By

doing so, we hope that other researchers will be able to use

brakes in order to improve the parameter estimation algorithm

of their own models, whatever the problem considered.

From now on, the TFR+ used is the absolute value of

the constant-Q transform (CQT) with 3 bins/semitone, for

frequencies from 27.5 to 7040 Hz and with a time step of 10

ms. Besides, only piano signals are considered since for the

piano, the assumption that each note can be modeled by a

single basis spectrum is a reasonable assumption. In all the

following multipitch estimation applications, the dataset used

is a subset of the MAPS database [10] composed of nine 20s

excerpts. It is denoted as DBeval. For each of the following

algorithms, in order to set the values of the brakes when they

are non-zero, another subset of MAPS of the same size is used

as a training dataset.

4.1. Blind PLCA

The model of the first conducted experiment is similar to the

one put forward in [11]. It concerns blind PLCA, i.e. when

no knowledge is provided on the nature of the atoms P (f |n)
or the activations P (n, t). To do so, P (n, t) is initialized

with a uniform distribution and P (f |n) is initialized with

some random distribution. Since the total number of different

notes in an input signal is also unknown, we consider that

all MIDI notes might be present and the number of atoms

used to model them is thus set to 88 (the total number of keys

on a piano). Moreover, 4 additional atoms are reserved to



model the possible presence of noise, which makes a total of

N = 92 atoms. Fig. 1 illustrates how the use of a brake on

P (f |n) can influence the decomposition. In fact, in a given

musical excerpt, it is unlikely to have all the 88 MIDI notes

(especially if the signal is short), and N is then overestimated.

If we let the algorithm converge without using brakes, all the

atoms available will be used to model the input data, with for

instance several atoms used to model a single note. If one

wants to model each note by a single atom, it is possible to

slow down the convergence rate of the basis spectra. In this

way, the algorithm is informed that the solution for P (f |n)
must be close to initialization, i.e. that the lowest possible

number of atoms must correspond to note spectra (harmonic

spectra), the others keeping their initial shape.

It is interesting to note that temporal activations become

then much sparser, as well as the overall energy of the atoms

P (n) =
∑

t P (n, t): many atoms are never activated and the

overestimation of N is no longer a problem. However, it can

be noticed that with the use of brakes, the convergence of the

log-likelihood is slower.

In order to quantify the benefits of using the brake on

P (f |n) in the framework of blind PLCA, a multipitch eval-

uation is performed on DBeval. After convergence of the al-

gorithm, at time t0, a note n0 is considered to be active if

P (n0, t0)dB > maxn,t P (n, t)dB − Amin where Amin is a de-

tection threshold. The pitch of each atom P (f |n) is estimated

using a simple spectral sum. The quality of the resulting note

activation estimation can then be quantified through the three

classical measures of Recall, Precision and F-measure [10].

In Fig. 2, the average F-measure w.r.t. Amin is illustrated,

whether the brake is used or not. It can be seen that the brake

can significantly improve the results, and at the same time can

reduce the necessity of a fine tuning of the Amin threshold.

4.2. Harmonic PLCA

The second experiment is very similar to the previous one, with

the same number of atoms used (N = 92). The only difference

is that we add some knowledge on the nature of the signals

to be analyzed by initializing the 88 first atoms as harmonic

spectra. The coefficients of P (f |n) are thus set to a very low

value ǫ for frequencies between theoretical harmonics of note

n ∈ J1, 88K. Moreover, its spectral envelope is decreasing

w.r.t. frequency, as usually observed in note spectra of acoustic

instruments. This model and its initialization is thus similar

to what is proposed in [12]. The four atoms used to model

noise and activations are initialized in the same way as in the

previous experiment.

Here again, a brake can be applied on the basis spectra

since we can consider that they are properly initialized. In

practice, we can notice that this induces sparser activations

after convergence of the algorithm, as well as for blind PLCA.

Here again, the use of brakes is evaluated through the same

application of multipitch estimation on DBeval. In this case, it
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Fig. 1. Blind PLCA: illustration of the use of a brake on basis

spectra (β1
brake = 0 and β2

brake = 250). The input signal is an 8s

excerpt from the BWV 850 Bach’s Prelude. The same random

initialization of P (f |n) has been used in the two experiments.

is no longer necessary to estimate the pitch of each harmonic

atom, since it has been established during initialization. Re-

sults are shown in Fig. 3, and the use of brakes again appears

to be beneficial in terms of F-measure.

4.3. BHAD

Until now, only the basic PLCA model [4] has been considered.

Though, as shown in this section, it is also possible to apply the

principle of brakes to any kind of PLCA-based model, by using

the same approach as in section 3. Here, we want to apply

it to the Blind Harmonic Adaptive Decomposition (BHAD)

[13]. It is a more sophisticated model which allows modeling

harmonic notes having time variations of pitch and spectral

envelope. The evaluation conducted in [13] has also shown that

BHAD was at the state of the art for multipitch estimation. In
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Fig. 2. Study of the influence of a brake on basis spectra in the

framework of blind PLCA: average F-measure w.r.t. Amin for

two multipitch estimation algorithms. When the brake is used,

β1
brake = 0 and β2

brake = 250.
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Fig. 3. Study of the influence of a brake on basis spectra in the

framework of harmonic PLCA: average F-measure w.r.t. Amin

for two multipitch estimation algorithms. When the brake is

used, β1
brake = 0 and β2

brake = 250.

this model, each column of an input CQT is first decomposed

into a smooth spectrum (noise) and a polyphonic harmonic

spectrum. This last component is modeled as a weighted

sum of various harmonic spectra, each one having its own

pitch (denoted by a hidden variable i) and a time-dependent

spectral envelope. In order to consider any number of active

notes at a given time, all possible pitches are considered, with

possible zero weights. The spectral envelope of each harmonic

spectrum of pitch i at time t is encoded via a set of coefficients,

which we call envelope coefficients and which are denoted

Ph(z|i, t) in [13].

The BHAD model is a very expressive model, and it is thus

necessary to constrain the parameter estimation algorithm so

that it gives relevant solutions. In [13], a sparse prior is added

to the weights of the harmonic spectra and it is shown that the

performance is improved when BHAD is applied to multipitch

estimation. Here, in order to constrain the decomposition,

a brake on the envelope coefficients is added: we force the

spectral envelopes of the harmonic spectra to be close to their

initialization (decreasing in frequency). Results of multipitch

estimation on DBeval are shown in Fig. 4. They show that

the use of brakes in the BHAD model can also significantly

improve the performance.
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Fig. 4. Study of the influence of a brake on envelope coeffi-

cients in the framework of BHAD: average F-measure w.r.t.

Amin for two multipitch estimation algorithms. When the brake

is used, βbrake = 10.

5. CONCLUSIONS

In this paper, we have introduced a new way of helping a pa-

rameter estimation algorithm converge towards a more mean-

ingful solution in the framework of PLCA-based models. This

is done by slowing down the convergence rate of parameters

that are properly initialized — the other ones keeping a regular

convergence rate —, in order to better account for the initial-

ization. In other words, it is a simple way to introduce prior

knowledge on the signals to be analyzed. A major advantage

of the use of brakes is that they are easily implemented and

that they do not increase the complexity, even if they can also

slow down the overall convergence of the algorithm. Three

multipitch estimation algorithms have been tested with and

without brakes, and it appears that brakes have significantly

improved the performance in all cases. In future work, we plan

to theorize the use of brakes for other kind of mathematical

frameworks ([1, 3, 5]).

The Matlab implementation of the algorithms used in this

article as well as the database DBeval can be found online:

http://www.benoit-fuentes.fr/publications.

A. THEORETICAL INTRODUCTION OF BRAKES

In PLCA, observations V are the outcome of a generative pro-

cess, and equations (2) and (3) result from the EM algorithm

applied to this process. In order to formally introduce the

brakes in equations (4) and (5), while remaining in the frame-

work of the EM algorithm, one needs to slightly change the

generative process of V (below, italics represent the addition

of brakes to classic PLCA):

• ∀(f, t) ∈ J1, F K × J1, T K, set Vft = 0.

• Repeat J times:

– draw (n, t) according to P (n, t),

– draw f according to P (f |n),

– set Vft = Vft + 1.

• Repeat β1
brake times:



– draw (n0, t0) according to P (n0, t0) and do nothing

with those variables.

• For each n, repeat β2
brake times:

– draw fn according to P (fn|n) and do nothing with

this variable.

In this last step, n is no longer a random variable. The notation

fn (r.v. representing a frequency) is used because different

r.v. names are needed depending on the value of n. β1
brake and

β2
brake are integer values defining the strength of two brakes:

one on parameters P (n, t) and one on parameters P (f |n).

The main difference with classic PLCA is that some additional

“virtual” variables linked to no observation are drawn, thereby

making the estimation algorithm slower. We can now derive

the EM algorithm. Firstly, the joint log-probability of hidden

and observed variables is calculated (we denote x̄ the set of all

drawn variables x):

LΛ

(

f̄ , t̄, n̄, n̄0, t̄0f̄1, · · · , ¯fN

)

=

ln
(

P
(

f̄ , t̄, n̄, n̄0, t̄0f̄1, · · · , ¯fN

))

=

J
∑

j=1

ln (P (nj , tj)) + ln (P (fj |nj))

+

β1

brake
∑

j=1

ln
(

P
(

n0
j , t0

j

))

+
∑

n

β2

brake
∑

j=1

ln
(

P
(

fn
j |n

))

. (6)

Then, if we remember that Vft corresponds to the number of

times (f, t) is observed, the conditional expectation

QΛ = E

[

LΛ

(

f̄ , t̄, n̄, n̄0, t̄0f̄1, · · · , ¯fN

)

|f̄ , t̄; Λ
]

is given by:

QΛ =
∑

f,t

∑

n

VftP (n|f, t) [ln (P (n, t)) + ln (P (f |n))]

+ β1
brake

∑

n,t

P (n, t|−) ln (P (n, t))

+ β2
brake

∑

n

∑

f

P n(f |−) ln (P (f |n)) . (7)

The notation P (x|−) is used to mean that the probability is an

a posteriori probability but that the hidden variable x depends

on no observation. Moreover, notation P n(f |−) means that

the probability depends on the value of n.

In the E-step, posterior probabilities are calculated with

respect to the current values of the parameters due to Bayes’

theorem:

P (n|f, t) =
P (n, t)P (f |n)

P (f, t)
, (8)

P (n, t|−) = P (n, t), (9)

P n(f |−) = P (f |n), (10)

where P (f, t) is given by equation (1). In the M-step, QΛ is

maximized with respect to the parameters, under the constraint

that all probability distributions sum to one:

P (n, t) ∝
∑

f

VftP (n|f, t) + β1
brakeP (n, t|−), (11)

P (f |n) ∝
∑

t

VftP (n|f, t) + β2
brakeP

n(f |−). (12)

By merging the E and M steps, one can deduce the multiplica-
tive updates given by equations (4) and (5). It can be noticed
that if we multiply V , β1

brake and β2
brake by a same positive

scalar, the update rules do not change. It is thus unnecessary
to fix β1

brake and β2
brake to integer values, as well as it is not

necessary to multiply an input TFR+
V by a scaling factor so

that its coefficients are integers.
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