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Abstract—Style transfer is the process of changing the style of
an image, video, audio clip or musical piece so as to match the
style of a given example. Even though the task has interesting
practical applications within the music industry, it has so far
received little attention from the audio and music processing
community. In this paper, we present Groove2Groove, a one-
shot style transfer method for symbolic music, focusing on
the case of accompaniment styles in popular music and jazz.
We propose an encoder-decoder neural network for the task,
along with a synthetic data generation scheme to supply it
with parallel training examples. This synthetic parallel data
allows us to tackle the style transfer problem using end-to-
end supervised learning, employing powerful techniques used in
natural language processing. We experimentally demonstrate the
performance of the model on style transfer using existing and
newly proposed metrics, and also explore the possibility of style
interpolation.

Index Terms—Style transfer, symbolic music, synthetic data,
deep learning, recurrent neural networks

I. INTRODUCTION

TARTING with the work of Gatys et al. [1] on neural style

transfer for images, style manipulation has become a very
popular research topic and has attracted numerous attempts
to extend it to other modalities, namely video [2], speech [3],
music [4] and text [5]. In its original definition, a style transfer
algorithm expects two inputs — a ‘content image’ and a ‘style
image’ — and produces an image depicting the same content
as the first input, but bearing the artistic style of the second
one. In other words, the goal is to transfer the style from one
image to another. A successful extension of this concept to
music would offer musicians and music producers a new tool
for repurposing existing material in a creative way.

More recently, especially in the context of language and
music processing, the term ‘style transfer’ came to be used
more generally to refer to any form of style transformation. In
particular, this includes a task which might be more aptly de-
scribed as style conversion or translation (as in [4], [6]-[10]),
where the goal is to convert an input to a target style known
in advance (or one of several such styles). The fundamental
difference is that the target style is no longer transferred from
one or a handful of examples, but usually learned from a large
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database. Such methods therefore typically suffer from a lack
of generalization to new target styles.

In the present work, we adhere to the traditional definition
of style transfer — dubbing it ‘one-shot' style transfer’ for
clarity — and apply it within the domain of symbolic music (i.e.
music represented as a set of events rather than a waveform).
Our goal is then to transform a song X so as to match the
style of a given song fragment Z, where both X and Z are
provided as MIDI.> We therefore understand style not as a
category (e.g. hip hop, jazz fusion, death metal), but rather as
a set of characteristics unique to a particular artist or even an
individual song (e.g. Africa by Toto).

Musical style is a broad term that may refer to any of the
numerous aspects of music, e.g. composition, arrangement,
performance or timbre [13]. This leads to the need for a
clear definition of style (i.e. what is transferred from X) and
content (what is retained from Z) in the style transfer task.
In this work, we are interested in accompaniment styles in
the context of jazz and popular music. This type of music is
often notated using chord charts, providing the basic harmonic
and rhythmic information for a song (an example can be
found at the top of Fig. 2). When performing the song, the
rhythm section of the band may use the chart as a basis
for an improvised accompaniment (‘comping’), choosing a
bass line, chord voicings, slight harmonic alterations, rhythmic
patterns, ornamentation and even instrumentation (e.g. piano
vs. keyboard) as appropriate for the style. Herein, we consider
the chord chart to be the content, and style then characterizes
the process of converting this chord chart to an accompani-
ment. The underlying assumption is that the chord chart is
independent of style; while this is not always realistic (for
instance, jazz songs typically use more complex harmonies
than some popular music genres), it allows us to develop a
principled approach.

Our task can then be more precisely formulated as follows:
Generate a new accompaniment for X in the style of Z. Note
that even though we expect the output to follow the same
chord chart as X, we do not assume this chart to be available.
Also, we assume Z to be a song fragment approximately 8
measures long. While such a fragment might not fully capture
the style of the entire song, it should manifest enough of its
key features to allow for meaningful extrapolation. Indeed,

' One-shot learning is the process of learning the concept of a class from a
single example, in order to either perform classification [11], or to generate
new samples from the class [12]. Style transfer can then be viewed as a one-
shot learning problem, where we aim to ‘learn’ the style from the style input
and transfer it to the content input.

2Musical Instrument Digital Interface; https://www.midi.org/
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Fig. 1. The core idea of our approach. Starting from chord charts (here A, B),
we create synthetic accompaniments in different styles (here S,T") and use
them as training data for a neural network. The network is given the content
input AS (i.e. accompaniment for A in style S) and a single track of the
style input BT, and is trained to generate the corresponding track of the
target accompaniment AT

employing a previously heard accompaniment pattern in a
creative, improvised way is a skill possessed by many human
musicians, and one that we aim to mimic here.

Our work represents one of the first attempts at one-
shot style transfer for symbolic music accompaniments. We
propose Groove2Groove® — or Grv2Grv for short — a novel
end-to-end approach based on a neural network trained to
map the input fragments X and Z directly to the output. The
approach is summarized in Fig. 1.

Our major contributions are as follows:

o Unlike previous approaches to music style transfer, our
method relies exclusively on synthetic parallel training
data, which allows us to take advantage of the power of
supervised learning. Moreover, our new synthetic dataset
is unique in that it includes an unusually large number —
thousands — of cleanly labeled styles, which is essential
for generalization across styles. The dataset is available
from the project’s website.*

o We propose a novel beat-relative sequential encoding for
our model’s outputs, designed to be more robust in terms
of timing than previously used sequential representations.

o We carefully evaluate the proposed method in the one-
shot setting, showing that Grv2Grv is able to produce
accompaniments even in styles unknown ahead of time.

o We introduce a new set of objective evaluation metrics to
be used alongside existing metrics.

o We explore the possibility of controlling the output by
directly manipulating the learned style representation, and
demonstrate that it can be used for style interpolation.

o We are releasing the source code of our system.’

We also invite the reader to take a look at the live demo and
other resources available at the supplementary website.*

The rest of the paper is structured as follows. Related work
is briefly discussed in Section II; Section III describes the syn-
thetic data generation scheme which underpins our approach;
we present our proposed model and evaluation methods in

3The term groove is difficult to define, but often refers to the characteristic
rhythmic ‘feel’ of a piece, arising from the patterns employed by the rhythm
section. Hence, it encompasses many of the key style features which we are
considering here.

“https://groove2groove.telecom- paris.fr/

Shttps://github.com/cifkao/groove2groove

Sections IV and V, respectively; finally, experimental results
are given in Section VI.

II. RELATED WORK
A. Music style transformations

Music style transformations can take many different forms
depending on the definition of style. Moreover, they may differ
in whether and how they are conditioned on style.

The present work is most closely related to what we refer
to as style conversion or translation, where a piece of music
is converted to a given target style. This task is the focus of
several recent works,° covering melodies [9], instrumentation
[14], accompaniment [10], [15], [16], general arrangement
style [17]-[19], expressive performances [8] as well as timbre
[4], [20], [21]. These methods generally only allow for con-
version to a limited set of target styles (often a single one);
[14] should in principle support one-shot instrumentation style
transfer, yet unlike the present work, it is not validated in this
setting.

Another type of style transformation is the harmonization of
a given melody, or more generally, what could be referred to
as arrangement completion or inpainting, where a new track
is generated to complement a set of tracks given as input.
This sort of transformation has the advantage that it can be
learned from an unlabeled music corpus. For example, the
models proposed by [22], [23] enable harmonizing a given
melody in the style of Bach chorales. More recent works
achieve a form of one-shot style transfer by conditioning on
an example of the target style, e.g. to harmonize a melody in a
given piano performance style [24] or to generate a new kick
drum track for a given song based on patterns extracted from
a different recording [25]. While the focus of our work is also
on generating accompaniments, a key difference is that the
input to our Grv2Grv model is a full accompaniment rather
than a partial one, and the output does not retain any of the
original accompaniment tracks.

Finally, one-shot style transfer methods have been proposed
for audio, but these focus mostly on low-level acoustic features
(‘sound textures’). Grinstein et al. [26] adapt the classic image
style transfer method of Gatys et al. [1] for audio, but without
specific focus on music. Approaches proposed for music
so far [27], [28] employ more traditional signal processing
techniques, combining signal decomposition with musaicing
[29] (concatenative synthesis).

B. Related supervised methods

One-shot style transfer is seldom addressed using end-to-
end supervised learning as in the present work, presumably due
to the lack of suitable parallel training data. To our knowledge,
the only existing example of such an approach is the work of
Zhang et al. [30] on Chinese typeface transfer, exploiting the
large number of Chinese characters combined with a relatively
wide range of available typefaces. In our case, this approach
is made possible by our synthetic data generation scheme,

%Even though these works often use the term ‘style transfer’, we avoid
doing so for the reason stated in the introduction.
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Fig. 2. 8-bar excerpts of BIAB-generated accompaniments in two different styles (top: Jazz Swing, bottom: Progressive Rock) visualized as piano rolls
(non-quantized). Both correspond to the chord chart displayed above them. Drums are not included. A 16™ note grid is shown for reference.

allowing to obtain an unlimited number of examples in a large
number of styles.

The present work builds and extends upon our previous
(non-one-shot) style translation work [10], which relied on
synthetic data in a similar manner. The crucial difference
between the two works lies in the fact that the former was
limited to translation to a fixed set of target styles (only
those included in the synthetic training dataset). In contrast,
the present work adds the possibility to condition the model
on unseen (non-synthetic) target styles via short examples, and
introduces a data generation scheme necessary for training and
evaluating a model with such conditioning.

Other, minor limitations of [10] were that:

1) it only considered accompaniments consisting of bass and
piano and required training a separate model for each;
2) it ignored velocity information (dynamics).
Grv2Grv removes these limitations 1) by introducing the capa-
bility to produce any given combination of tracks — including
drums — with a single model, and 2) by modeling velocity.

III. DATA GENERATION

In order to apply supervised learning to the style transfer
task, we need a parallel dataset consisting of triplets of musical
fragments (A%, BT, AT) where A® denotes the content input
in some source style S, BT is the style input, serving as an
example of the target style T, and A7 is the target, combining
the content A with the target style 7. We obtained such a
dataset by generating accompaniments using RealBand from
the Band-in-a-Box (BIAB) package.” However, unlike in prior
style conversion work, care must be taken here to ensure
that the training, validation and testing sections of the dataset
contain disjoint sets of styles, which allows to monitor and
evaluate the performance of the model on the one-shot style
transfer task.

Thttps://www.pgmusic.com/

A. Chord chart generation

The first step was to acquire chord charts to use for ac-
companiment generation. Although chord charts in the BIAB
format are available, we chose to create a new set of synthetic
chord charts to use as input for BIAB. The main, purely practi-
cal motivation is that of complete control over the generation
procedure, allowing to create a dataset that is balanced and
diverse at the same time. The same cannot be easily achieved
with existing BIAB files, as the closed file format effectively
prevents automatic analysis and manipulation. Moreover, using
a fully synthetic dataset enables us to release it publicly for
reproducibility and to foster future research on musical styles.

We obtain the chord charts by sampling from a chord
language model (LM) estimated on the iRb corpus [31], which
contains chord charts of over a thousand jazz standards. For
this purpose, each chord symbol is represented as a token
composed of the chord’s root expressed in relation to the
song’s main key (e.g. I, bVII), the chord’s quality (e.g. min6,
7b9), and its duration. We separate songs in major keys from
songs in minor keys, and train a smoothed bigram LM on each
of the two. A bigram LM models the conditional probability
of a token given the previous token, and hence allows for
sampling new token sequences in a Markovian fashion. This
yields chord sequences similar to those from the iRb corpus,
but the smoothing allows for producing unexpected chord
transitions occasionally, increasing the diversity of the data.

Although the distribution of chords generated by the LM
may not be appropriate for all musical styles, we assume
that it will be sufficiently diverse to cover most styles thanks
to the harmonic variability of jazz, and the LM smoothing.
Nevertheless, expanding the dataset to chord charts from other
genres could provide some benefits in future work.

After sampling a token sequence from the LM, we convert
it to a chord chart (choosing the key at random from the distri-
bution of keys in iRb) and add rhythmic variations randomly
chosen from those available in BIAB (see e.g. bar 4 in Fig. 2,



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

featuring a G minor 7" chord with a ‘shot’ modifier and an
eighth note ‘push’ — refer to Appendix B for a more detailed
explanation). This is necessary in order for the trained system
to be able to handle such variations; notably, we observed
that the model from [10], trained without this kind of data
enhancement, always produces continuous accompaniments
even when the inputs contain prominent breaks.

This procedure resulted in 1,200 chord charts of 252 bars
each for training, plus another 2 x 600 chord charts of 16 bars
each as a validation and test set, respectively.

More details about the generation process can be found in
Appendix B.

B. Accompaniment generation

The general procedure for accompaniment generation is
adapted from [10]. BIAB allows generating a MIDI accompa-
niment for a given chord chart in one of the available styles.
A style is essentially a set of human-defined patterns and
rules for accompaniment generation which allow for some
degree of freedom (randomness); one input can thus yield
many different results. Each style typically consists of two
substyles (A and B) with slightly different patterns intended
for different sections of a song. The overall range of patterns in
each style is relatively small, and thus corresponds to a specific
groove rather than a broad category like genre. For instance,
over 150 BIAB styles are categorized as Blues, bearing such
names as ‘Texas Blues — 12/8 Slow Blues’ and ‘Elvisl — 50s
Rock Shuffle-Blues’. Each style may contain up to 5 tracks
(drums and up to 4 other instruments).

To enable generalization to unseen styles, the training data
should contain as many styles as possible. We picked 1,476
MIDI styles from BIAB (their list can be found on the
supplementary website) and reserved 2 x 20 of them for the
validation and test set, respectively. All selected styles are in
4 or 12 time (i.e. with 4 beats per measure) and contain
between 3 and 5 instruments, one of which is always drums.
In this work, we treat the A and B substyles as separate styles,
effectively doubling the number of styles in each part of the
dataset. We used BIAB to render each generated chart in a few
randomly chosen styles, so as to obtain about 500 measures of
MIDI per style in each subset (train, val, test). We then split
the files into fragments of 8 bars.

An example from the training set is visualized in Fig. 2.

C. Data feeding

After preparing the data, we need to form the triplets
(A% BT, AT) required to train our style transfer model. As
illustrated in Fig. 3a, this is done by looping over all possible
pairs (A%, AT) such that S # T for every 8-bar segment A,
and for each such pair, choosing the fragment B” at random
from all segments in style 7.

IV. PROPOSED MODEL

Our model is a neural network following the encoder-
decoder pattern. It consists of two encoders — one for content
and one for style — that process the two respective inputs, and
a decoder that subsequently generates the output.

A B ’ content input x ‘ ’ style input z(® ‘
. . .
° content style
° . encoder encoder
x
S (@ o o
* ~ attention o) style
T e ® «® embedding
* decoder
°
. °
° . . output s

(a) (b)

Fig. 3. (a) An illustration of how the training triplets (z,z,y) =
(AS, BT, AT) are formed. Rows correspond to styles, columns to chord
chart segments. Each dot represents an available example. (b) A high-level
view of the model architecture. The model generates the i track of the output
§ given the content input z and the ™ track of the style input z. The overall
output § is obtained by combining all the §(¥)’s.

Since the output consists of several tracks corresponding to
different instruments, we chose to break down the problem by
modeling each track separately. While this could be done by
training a dedicated model for each instrument as in [10], here
we instead propose a single model allowing to generate all the
accompaniment tracks, one at a time.

The model, depicted in Fig. 3b, operates as follows. The
content encoder receives the content input x (containing all
tracks), while the style encoder receives (), the i™ track of
the style input. The decoder then combines the representations
computed by the two encoders to generate the corresponding
i™ output track, (). Note that neither the index 7 nor any other
information about the expected output track is given explicitly;
instead, the model must infer all the necessary information
from z() itself.

This design has the advantage that it allows to process any
style input regardless of the number of tracks and without the
need for any additional knowledge about them, and generalizes
easily to instrument combinations unseen in the training data.
On the other hand, it does not allow for interaction between
tracks in the output, but this is only a minor limitation in
our setting where the generation is densely conditioned on the
content input.

A. Data representation

The style input z(*) and the output §(*) use an event-based
representation similar to MIDI, which has proven effective for
neural music generation [10], [32], [33]. Unlike these previous
works, where timing is encoded as time differences between
events, we propose a beat-relative encoding, which we found
to be more robust to timing errors during generation. In this
representation, each track is encoded as a sequence of event
tokens, each with one integer argument:

e NoteOn (pitch), DrumOn (pitch): begin a new

note at the given pitch (0-127);3

8For DrumOn and DrumOf£, the pitch argument (MIDI note number)
encodes the percussion instrument (e.g. snare drum, hi-hat).
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Fig. 4. A detailed view of the model architecture with focus on the 3™
decoding step, i.e. n = 3 (for illustration purposes). Each attention weight
Qnm is calculated from the states s, —1 (here s2) and h,,. The upper index
(¢) is omitted everywhere for simplicity.

e NoteOff (pitch), DrumOff (pitch): end the note
at the given pitch (0127, or * to end all active notes);

e SetTime (units): set the time within the current beat,
quantized to 12ths of a beat (0-11);

e SetTimeNext (units): move to the next beat and set
the time within that beat (0-11);

e SetVelocity (units): set the velocity value, quan-
tized to 8 levels (1-8).

The content input, on the other hand, may contain an
arbitrary number of tracks that need to be processed simultane-
ously, which motivates a more compact representation. We use
a piano roll matrix with 128 rows (all pitches allowed by the
MIDI standard) and with 4 columns per beat. Each value in this
matrix equals the total velocity of all notes with a given pitch
active at a given time, normalized by the maximum velocity
127).

The main advantage of the piano roll representation over
event-based representations is that its size depends only on
the duration of the input (which is at most 8§ measures in our
setting), and not on the number of instruments or the style
of the content input. This prevents excessive computational
complexity, and should also aid the content encoder in deriving
a representation which is style- and instrument-independent.
For simplicity, we do not include drums in our piano rolls; this
is a limitation, though in practice, we observe that the model
is often able to use rhythmic cues from the other instruments
for generating the target-style drum track.

B. Architecture details and training

A detailed view of the architecture is displayed in Fig. 4.
Both encoders consist of a convolutional neural network
(CNN) with exponential linear unit (ELU) activations [34],
followed by a recurrent neural network (RNN) with a gated
recurrent unit (GRU) [35]. The convolutional layers reduce

the dimensionality of the initial representations, and the sub-
sequent RNN serves to integrate information from a wider
temporal context. The encoder architectures differ as follows,
mostly due to the different input representations:

« The content encoder applies two consecutive 2D convo-
Iutional layers to the piano roll matrix, then flattens the
resulting 3D feature map to obtain a sequence of 1024-
dimensional vectors with two vectors per measure. This
sequence is then fed to a GRU layer with 200 units,
resulting in a sequence of 200-dimensional state vectors
hi,....hare

o The style encoder starts with a sequence of embeddings
of the input tokens and applies three consecutive con-
volutional layers, compressing the sequence eight times,
followed by a GRU with 500 units. Only the last GRU
state is kept and used as a summary vector of the style
(style embedding), denoted o(?).

Note that since the style encoder only sees one track z(*) at
a time, the style embedding o(?) encodes the style of that
specific track (which is to be transferred to the corresponding
output track), rather than the style of the accompaniment as a
whole.

The architecture of the decoder is adapted from sequence-
to-sequence (seg2seq) models with attention [36] (originally
developed for machine translation), and also uses a GRU. It
works by always predicting the next token y,(L) in the target se-
quence, conditioned on all the previous tokens y{ ), cey yff) 1
on the style embedding o and, via the attention mechanism,
on the sequence of content encoder states hy,...,hy. More

precisely, the n-th decoder state 553 ) is computed as

FOREOIOI

~1)s

st = GRU([Ey, .
where [] denotes concatenation, F is the token embedding
matrix (shared with the style encoder) and c( RN is the context
vector (a weighted average of the content encoder states)
computed by attention. The attention weights are predicted
by a feed-forward neural network (trained jointly with the rest
of the model) based on all the encoder states hy,...,hys and
the previous decoder state s?_l.

The role of the attention mechanism is to provide a soft
alignment between the states of the content encoder and those
of the decoder. In other words, it allows the decoder to attend
to different encoder states as it generates the output. The need
for such a mechanism arises mainly from the different time
representations in the content input and the output. However,
it also gives the decoder the flexibility to focus on different
contexts (e.g. next measure, previous beat) as needed.

The output of the decoder cell is a softmax probability
distribution over yﬁl The model is trained end-to-end to
minimize the cross entropy loss:

— log p(y(i) | z, Z(i)) —
- ZlogP(y(’) 2,20, ).

Note that we do not explicitly enforce mutually disentangled
representations of content and style during training (e.g. by
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means of additional terms in the loss function). Instead, the
model is expected to learn to perform style transfer simply due
to the way the training examples are constructed (as described
in Section III).

Once trained, the decoder can be run in two modes:

a) sampling with temperature 7: sampling the token g),(f)
at random from the softmax distribution. To control the
randomness of the outputs, the logits are divided by a
temperature parameter 7 before applying the softmax.

b) greedy decoding: taking the most likely token g at
every step (this is the limit sampling behavior when

7 — 0).

We train the model using Adam [37] with a batch size
of 64 and with exponential learning rate decay, halving the
learning rate every 3k batches (192k training triplets). This
somewhat aggressive strategy prevents overfitting by forcing
the validation loss to plateau. We stop training in the middle
of the first epoch (after 1.6 M triplets) where the improvement
to the validation loss is already very small.

The complete hyperparameter settings are included with the
source code.

V. EVALUATION

In this section, we describe the objective metrics used in our
experiments to evaluate style transfer performance. Functions
for computing these metrics are included in the source code.

The goal of style transfer is to produce an output that
matches both the content input and the style input. This leads
to two complementary evaluation criteria: content preservation
and style fit.

A. Content preservation

Given our definition of content, we would like the content
preservation metric to capture the agreement in harmonic
structure, which is the most important piece of information
conveyed in a chord chart. We compute this metric as the
frame-wise cosine similarity between chroma features of the
content input and those of the output as proposed in [19].
Following [10], the chroma features are computed at a rate
of 12 frames per beat and averaged over a 2 beat window
with a stride of 1 beat. Unlike in [10], the metric is computed
on the combined output rather than on individual tracks. This
is because the harmony may not be fully captured by each
individual instrument. Also, as the content input and the output
may use completely different sets of instruments, it is not
possible to pair them up meaningfully for this purpose.

B. Style fit

It has been previously proposed to characterize musical
styles using statistics computed on musical events [16], [38],
[39]. Based on this idea, we evaluate style fit by collecting so-
called style profiles (inspired by the features proposed in [38]),
and then measure how well they are matched by the style
transfer outputs. Since the different accompaniment tracks
within a given style are generated conditionally independently

Metric Observations Bins
pw. time-pitch | (start(b) — start(a), pitch(b) — pitch(a))|24 x 41
€10,4) x {—20,-19,...,20}, a #b
onset-duration (start(a) mod 4, end(a) — start(a)) |24 x 12
€ [0,4) x [0,2)
onset-velocity (start(a) mod 4, velocity(a)) 24 x 8
€10,4) x {1,2,...,127}
onset-drum (start(a) mod 4, pitch(a)) 24 x 128
€0,4) x {0,1,...,127}
TABLE I

OBJECTIVE STYLE FIT METRIC DEFINITIONS. EACH METRIC IS COMPUTED
AS A COSINE SIMILARITY BETWEEN FLATTENED 2D HISTOGRAMS OF THE
OBSERVATIONS DEFINED IN THE MIDDLE COLUMN (VALUES THAT FALL
OUTSIDE THE GIVEN RANGES ARE IGNORED). ‘START’ AND ‘END’ ARE
THE ONSET AND OFFSET TIME IN BEATS, RESPECTIVELY, OF A GIVEN
NOTE. ‘PITCH’ AND ‘VELOCITY’ DENOTE THE RESPECTIVE MIDI VALUES.

given the chord charts, we compute the style fit metrics for
each track separately.

The statistics used to compute each metric are summarized
in Table I. Firstly, we adopt our previously proposed metric
[10], herein referred to as the (pairwise) time-pitch metric.
To calculate it, we consider all pairs of notes a, b less than 4
beats apart present in a given set of outputs, then plot a 2D
histogram with the time difference between the onsets of a
and b on the x axis and the interval between a and b on the y
axis. We then measure the cosine similarity between this style
profile (flattened to a 984-dimensional vector) and a reference
one computed on examples of the target style.

Clearly, the pairwise time-pitch metric is invariant to time
shifts, does not account for note duration or velocity and is
not suitable for drums. For this reason, we complement it
with 3 additional metrics, computed on statistics of single
notes: onset-duration, onset-velocity and onset-drum. These
are defined analogously to the pairwise time-pitch metric, but
instead relate the position of a note’s onset within the measure
to some other attribute of the same note (duration, velocity,
and percussion instrument, respectively).

We measure the time-pitch and onset-duration metrics for
non-drum instruments only; onset-drum is computed on drums
only. Plots of example style profiles can be found in Fig. 12
at the end of the paper.

To evaluate a model using a given metric, we compute an
aggregate style profile on all outputs of the model in each
style, measure the cosine similarities to the reference profiles,
and report the mean and standard deviation over all styles in
the dataset. On non-synthetic datasets, where neither ground
truth nor fine-grained style labels are available, we compute
a separate profile for each output and measure its cosine
similarity to the profile of the corresponding style input. We
refer to these two ways of computing the metrics as macro
and nano metrics, respectively.

VI. EXPERIMENTS

We test the model on our synthetic test set and the Bodhid-
harma dataset [40], containing 950 MIDI recordings. The latter
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dataset was picked on the grounds of being stylistically diverse
and balanced, containing an equal number of recordings from
38 different genres. We filtered Bodhidharma to keep only
music in 4§ time (660 files) and pre-processed it in the
same way as the synthetic data, obtaining a total of 8,934
eight-bar segments. Additionally, we performed a certain kind
of dynamic range compression by standardizing the velocity
values in each segment, then scaling and shifting them to
match the mean and variance computed on the training data;
this is to compensate for a skewed distribution of velocity
annotations in this dataset.

Note that both Bodhidharma and the synthetic test set
contain styles unseen during training, and hence test the one-
shot style transfer capabilities (i.e. the generalization to new
styles).

We construct triplets (A%, BT, AT) from the synthetic test
set in the same way as during training (see Section III-C). On
Bodhidharma, where targets are not available, we form input
pairs (A°, BT) by choosing BT randomly (with replacement)
from the entire dataset.

The model is tested in both the greedy decoding mode and
the sampling mode with 7 0.6 (observed to yield good
results in preliminary experiments on the validation set).

For comparison, we also evaluate the following trivial
systems:

e CP-CONTENT: copies the content input to the output;
expected to have perfect performance on content preser-
vation, but poor on style fit.

CP-STYLE: copies the style input to the output; expected
to have perfect performance on style fit, but poor on
content preservation.

ORACLE: retrieves the ‘ground-truth’ target-style segment
generated by BIAB, if available; this should provide a
more realistic upper bound on all metrics.

Evaluating CP-CONTENT for style fit presents two pitfalls.
The first is that the content inputs for one target style may
themselves have several different styles. To avoid conflating
them, we aggregate the style profiles over each of them
separately; we then have one data point for each source-target
style pair. The second problem is that, as the content input
may contain a different set of instruments than the target, we
do not know which reference to use for each track. For this
reason, we evaluate each track of the content input against
each track of the target style and report the maximum value
for each target-style track.

We note that a direct comparison of our approach with
prior style conversion work (especially [10]) is unfortunately
not possible. The main reason is that a style translation
(conversion) system cannot be conditioned on unseen styles
since it has no style encoder.

In the rest of this section, we present the main evaluation
results (Section VI-A) and an ablation study (Section VI-C),
provide some observations about practical use of the proposed
system (Section VI-B), evaluate the proposed style similarity
metrics (Section VI-D), and explore the properties of the style
embedding space (Sections VI-E and VI-F).

A. Evaluation results

We evaluate our model using the metrics described in
Section V. First, we present in Fig. 5 the results on the
synthetic test set. In terms of the content preservation metric,
Grv2Grv achieves perfect results (on par with ORACLE), and
the gap with respect to CP-STYLE is large (for this metric,
CP-STYLE can be thought of as a ‘random baseline’, since the
style input is chosen independently of the content input).

Even though on style fit metrics (macro version), Grv2Grv
is not able to reach the performance of ORACLE or CP-STYLE
(close to 1), it scores higher than CP-CONTENT. This means
that the output is, on average, closer to the target style than
the content input, and hence the style transfer is at least
partly successful. The large range of values of CP-CONTENT
is explained by the fact that the content input may (or may
not) already be in a style which is similar to the target.

We may notice that the performance of Grv2Grv on the
onset-duration metric is considerably lower than on the other
style fit metrics, which suggests that it does not model note
duration well. However, note duration is arguably perceptually
less important than other features (in particular, those related
to onset time and pitch).

The two decoding modes of our model (greedy and sam-
pling) achieve similar results on all metrics, but the sampling
mode consistently performs slightly better on style fit. This
is not unexpected, given the fact that greedy decoding al-
ways picks the most likely event, whereas sampling draws
events randomly from the learned conditional distribution. This
means that sampling should allow the model to better cover
the distribution of features of the style, leading to a higher
score on our metrics.

We now turn to the results on the Bodhidharma dataset.
In this case, we need to use the nano style fit metrics (as
explained in Section V). To allow for comparison, we compute
the nano metrics on both datasets (synthetic and Bodhidharma)
and display the results alongside in Fig. 6. First of all, we
can see the style metrics drop and become more ‘blurred’
with respect to their macro versions (Fig. 5). For example,
on the synthetic dataset, ORACLE decreases from 1.00 to 0.75
on average on time-pitch, and Grv2Grv (sampling) drops from
0.84 to 0.62; moreover, sampling no longer seems consistently
better than greedy decoding on either dataset. This is probably
due to the fact that a single 8-bar example cannot capture
how the characteristic patterns of the style manifest in all the
different contexts (i.e. in different chord progressions); this
will often lead to mismatching style profiles, and therefore
noisy results.

On Bodhidharma, the scores are generally substantially
lower than on the synthetic test set, which indicates that the
dataset is more challenging for our model. The performance of
CP-CONTENT on style fit metrics is lower as well; this means
that the differences between styles in this dataset are larger,
making the task more difficult. However, our model still beats
the baselines — CP-STYLE on the content preservation metric
and CP-CONTENT on the style fit metrics — the former being
outperformed by a large margin.

One other factor to consider when reading the results is that
Bodhidharma contains full arrangements including melodies,
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as well as polyphonic music. This leads to the following issues
which may, in part, also be responsible for the different results
between the synthetic test set and Bodhidharma:

1) When presented with a melody line as its style input,
Grv2Grv — being trained on accompaniments — will in-
stead attempt to generate a pseudo-accompaniment track
in the style of the melody. Such tracks are generally un-
wanted and should, in practical applications, be removed
in a manual pre- or post-processing step.

The additional (non-accompaniment) tracks in the content
input can make the reference chroma features more
noisy, which could contribute to the drop in the content
preservation metric.

2)

B. User perspective

Upon listening to the outputs, we note that they are, for
the most part, musically meaningful, and follow the harmony
of the content input very accurately (this is true even on
the Bodhidharma dataset, despite the somewhat lower content
preservation values). They also generally match the overall
‘feel’ of the target style, especially the rhythmic feel, pitch
ranges and voicing types of the different tracks, but sometimes

fail to reproduce some of the exact patterns characteristic for
the style. We also observe that the outputs produced by random
sampling tend to sound more interesting than those resulting
from greedy decoding, which are often too simplistic and do
not capture the real variability of the target style. This is
consistent with the results in Fig. 5.

We also note that for best results, human selection and/or
pre-processing of the inputs is often required. Firstly, entire
pieces cannot be used as style inputs; instead, one needs
to select a short segment (ideally 8 bars), and not every
such segment is equally representative of the style of the
piece. Secondly, as mentioned in the previous section, some
tracks should usually be excluded from the style input (or,
equivalently, the output) because they are not part of the
accompaniment. This is also true for heavily interdependent
tracks (e.g. instruments playing in unison or creating parallel
harmonies), which, if generated independently, will not have
the desired effect.

Finally, to create a complete arrangement (cover), the gen-
erated accompaniment needs to be, at the least, combined with
the melody of the content input. Even though it is conceivable
to extract the melody automatically, it is a non-trivial task that
lies outside the scope of our work.
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C. Ablation study

Drums and velocity: Compared to our previous style trans-
lation work [10], Grv2Grv adds the ability to generate drums
and to model velocity. In this section, we attempt to answer the
question whether these additional tasks affect the performance
of the model in other areas. To this end, we perform an ablation
study where we re-train and evaluate the model while

(a) excluding the drum track,

(b) omitting the SetVelocity tokens and making the
content input piano roll binary (containing only the values
0 and 1 indicating whether a note is present), or

(c) both of the above.

In cases (b) and (c), we post-process the output by setting the
velocity of all notes equal to the average velocity of the style
input notes.

Fig. 7 (four leftmost bars in each group) shows the results
on three selected metrics on both of our test sets. Firstly,
removing the capability to generate drums obviously causes
the onset-drum metric to become undefined. However, it
slightly improves the performance on the other metrics as the
task becomes simpler.

Similarly, eliminating velocity seems to slightly improve
the performance on the metrics unrelated to velocity (onset-
duration and onset-drums). This may be explained by the fact
that removing the velocity tokens makes the sequences shorter,
reducing the length of the context that needs to be considered
by the decoder, and hence making the problem easier overall.

In terms of the onset-velocity metric, the velocity-enabled
models outperform the velocity-free ones on both datasets
(although the latter still yield relatively good results thanks
to our heuristic, which copies the average velocity from the
style input).

Beat-relative encoding: We are also interested in validating
our proposed beat-relative encoding (see Section IV-A), de-
signed to overcome the limitations of representing timing as
time differences between consecutive events, such as in [10].
For this reason, we include in our ablation study a version
of the Grv2Grv model which employs the encoding from
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Fig. 8. Style similarities between pairs of segments from the Bodhidharma
dataset. Plot (a) contrasts similarities within and across songs, while plot (b)
contrasts similarities within and across the 38 genres in the Bodhidharma
dataset. The values have been averaged so that every data point corresponds
to a single pair of songs.

[10], which we will refer to as the A-encoding. In practice,
this means that all SetTime and SetTimeNext tokens are
replaced with TimeShift tokens, which encode the time
difference to the previous event, rather than the last beat.

The results, displayed in Fig. 7 as the rightmost bar in each
group, show that the A-encoding is mostly outperformed by
the beat-relative encoding. On inspection, we confirm that the
outputs generated with the A-encoding are prone to rapidly
accumulating timing errors (as noted in [10]). This frequently
results in the individual output tracks getting completely
desynchronized from the content input, as well as from each
other. On the other hand, tracks generated with the beat-
relative encoding are mostly rhythmically coherent, even with
high sampling temperatures.

D. Validation of style fit metrics

In this section, we aim to validate the proposed style
similarity metrics. To this end, we compute the similarities
between all pairs of 8-bar segments in Bodhidharma and
compare inter- vs. intra-class similarities. For simplicity, we
limit the analysis to pitched instruments, and therefore include
only the onset-duration, onset-velocity and time-pitch metrics
(the latter is adopted from prior work, but has not yet been
evaluated on non-synthetic data). Since we apply the metrics to
each instrument track individually and it may not be possible
to unambiguously match the tracks of two given segments,
we simply compute the similarities on all pairs of instruments
belonging to the same MIDI instrument group’ and average
the results.

First, we compare in Fig. 8 (a) the similarities between
segments from the same song to similarities between segments
from different songs (regardless of genre). The same-song
similarities are substantially higher for all three metrics, which
is in line with our understanding of style as a set of char-
acteristics pertaining to a particular artist or song. Secondly,

9The General MIDI specification [41] defines 16 instrument groups such as
Piano, Bass, Strings or Reed, each comprising 8 instruments. This grouping
does not include drums, which exist on a dedicated MIDI channel.
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Fig. 9. Pairwise similarities between genres from the Bodhidharma dataset.
The values are averaged over all 3 metrics and all pairs of segments. Values
on the diagonal do not include pairs of segments from the same song. The
order of rows and columns has been determined using hierarchical clustering.

we would also expect our metrics to capture at least some
characteristics of genres; this is demonstrated in plot (b),
which shows that the average similarity of segments from the
same genre (excluding segments from the same song) is higher
than the average similarity across genres, again on all three
metrics.

The results on genres are further detailed in Fig. 9, showing
the similarity values — averaged over all 3 metrics — between
all pairs of genres (again, pairs of segments from the same
song are excluded). Despite the generally low and noisy
values, we can find clear clusters of similar genres, e.g.: Swing,
Cool and Bebop; Metal, Alternative Rock and Punk; as well
as a classical music cluster.

E. Style interpolation

The learned style embedding space enables us to blend
styles by linearly interpolating their embeddings. We sampled
100 pairs of bass tracks from the synthetic test set and
encoded them using the style encoder to obtain their respective
embeddings. For each embedding pair o, 01, we conditioned
the decoder, in turn, on vectors of the form (1—«)- o9+ a0y
for a evenly spaced between 0 and 1. Each time, we ran the
model over a batch of 20 content inputs in greedy decoding
mode and computed the style similarities of the outputs to
those obtained at the endpoints 0,0, (i.e. for « =0, 1).

Fig. 10 shows the results as a function of «. Interestingly,
the similarity curves in (a) are rather monotonic, yet staircase-
like (with continuous but steep transitions). This suggests that
the style space is divided into soft regions with little internal
variation (manifesting as plateaux in the plots), and that
regions closer to each other correspond to more similar styles.
Plot (b) in Fig. 10 then displays the behavior on average,
showing that, consistently with the above observations, the
similarity to the initial style decreases with increasing a.
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(a) Examples for specific style pairs; the solid line and the dashed line
show the similarity to the outputs generated from og (i.e. for &« = 0) and
o1 (for a = 1), respectively.
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(b) c-wise average and standard deviation of the metrics
plotted in (a) (solid line) over 100 style pairs.

Fig. 10. Style similarity to interpolation endpoints as a function of the
interpolation coefficient a.

Example outputs from this experiment are provided on the
supplementary website.*

F. Style embedding visualization

To further explore the properties of the style embedding
space, we visualize in Fig. 11 embeddings of segments from
the Bodhidharma dataset, using PCA followed by t-SNE
[42] for dimensionality reduction. Since the style embeddings
encode the characteristics of individual tracks, we may expect
the embedding space to be primarily clustered by instrument.
This is confirmed by plot (a), showing that drums and bass are
clearly separated from the rest. Other instruments do not form
such clear-cut clusters, arguably because a single instrument
may have different functions (e.g. playing chords vs. melody).

Plots (b) and (c) then show the distributions of genres for
two selected instrument groups.” Even though there are no
pronounced clusters, we can observe that the individual genres
are fairly localized.
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VII. LIMITATIONS AND FUTURE DIRECTIONS

While our supervised approach to music style transfer has
proven effective, some limitations remain. Possibly the most
important shortcoming is the fact that it is limited to accompa-
niments and does not account for interaction between different
instruments. This arises from the nature of the synthetic
training data, which is generated purely from chord charts and
without strong inter-track dependencies. An approach capable
of overcoming this limitation will likely need to be able to
take advantage of the available non-parallel ‘real-world’ music
data by means of unsupervised or semi-supervised learning
(possibly still using parallel synthetic data for supervision). It
will also need to employ a model capable of generating all
tracks jointly — without strong independence assumptions —
in order to capture the interactions between them; this is in
principle possible (as shown e.g. in [33], [43], [44]), albeit
more computationally demanding.

Moreover, it is apparent that there is, generally speaking,
still room for improvement in the quality of the outputs —
in particular, in the generalization to novel styles. This sub-
optimal one-shot generalization capability may be due to an
insufficient number of styles in the training set (in spite of
our efforts to make this number as large as possible) or a
discrepancy between BIAB styles and the test inputs (which
likely exists, despite BIAB styles being fairly realistic and
diverse). We believe that both problems may be alleviated by
training at least partially on open-domain, non-BIAB data as
outlined above, which we leave as future work.

Lastly, the applicability of Grv2Grv is limited by the fact
that it works with symbolic music only. An extension capable
of processing audio inputs, or even producing audio end-
to-end, would certainly be interesting and is left as another
natural next step.

VIII. CONCLUSION

In this paper, we presented Groove2Groove, a one-shot style
transfer method for accompaniment styles in the symbolic
music domain. Atypically for the style transfer task, we
approached it using end-to-end supervised learning, proposing
an encoder-decoder neural network along with a parallel
training data generation scheme. We have demonstrated the

performance of our model on both synthetic and non-synthetic
inputs in new styles, and shown that it behaves meaningfully
when its style representation is manipulated. We have also
conducted an ablation study, which highlighted some strengths
and limitations of our approach.

We hope that our work will help attract more attention to
the challenging problem of music style transfer and inspire
new research on the subject.

APPENDIX
A. Online demo

Our supplementary website* contains an interactive demo,
which allows to run Grv2Grv on arbitrary MIDI files uploaded
by the user. To take into account the considerations mentioned
in Section VI-B, we enable the user to select appropriate
sections and tracks from the input files, and also provide a
facility to recombine the output with any of the tracks of
the content input. We also provide pre-generated examples,
created using the velocity-free model from the ablation study
(Section VI-C) with inputs from the Bodhidharma dataset.

B. Data generation details

To obtain the training data for the bigram language models
mentioned in Section III-A, we extract the necessary features
from the iRb corpus using the jazzparser.sh script pro-
vided by [31]. The LMs use Lidstone (add-¢) smoothing with
e = 0.01. We sample sequences from the LM repeatedly
and concatenate them until we reach the maximum number
of measures. We then convert each token to a chord symbol.
We optionally add some of the following modifiers (defined by
BIAB) to each chord: (a) push: creates an 8" note anticipation;
(b) hold: all instruments hit the chord simultaneously and hold
it until the next chord symbol; (c¢) shot: all instruments play the
chord staccato, followed by silence; (d) rest: all instruments
are silent until the next chord. These modifiers are turned on
and off at random, with probabilities chosen so that they are
scattered sparsely throughout the chord charts.
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