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ABSTRACT

Automatic musical instrument recognition is a relatively new topic in the growing field of Music
Information Retrieval. Early studies mostly focused on instrument recognition from recordings of
isolated notes. More recently, some studies tackled the problem of musical phrases played in
solo (i.e. without accompaniment) which better covers the timbre variability of a given instrument.
However, the current trend is now to deal with true polyphonic music (i.e. involving multiple instru-
ments), which appears to be a far more difficult problem but with more practical applications. The
aim of this paper is to provide an overview of the state-of-the-art in automatic musical instrument
recognition with a focus on recent and innovative approaches applied to true polyphonic music.
It will be shown that the traditional "bag of frames" approaches can obtain interesting results by
building efficient automatic taxonomies or by using complementary information to enhance the
relevant signal. We however argue that it is important to consider new directions to overcome the
limitations of these traditional approaches. One of these promising directions that will be detailed
concerns mid-level representations, which are based on the decomposition of the signal into a
small number of sound atoms or molecules bearing explicit musical instrument labels.

INTRODUCTION

There is a growing interest for new means of interaction with audio information that is nowadays
mostly available in digital format and stored in large databases. There is therefore a strong need
for efficient audio indexing techniques that would allow the extraction of a detailed and meaningful
symbolic representation directly from a digital audio recording. For music signals, this repre-
sentation will include information about the metric, the harmony, the melody, the genre or the
interpretation style and will ultimately be represented under the form of an enriched music sheet.
The availability of such a symbolic representation opens the path for numerous Music Information
Retrieval (MIR) applications including content-based search by similarity, cover songs retrieval,
automatic post-remixing, ... .

Automatic musical instrument recognition is a relatively new topic in the growing field of MIR and
aims at recognizing which instruments are played in a given music sample. This topic appears
to be an essential step since several applications would directly rely on the knowledge of the in-
strumentation. Such applications include music synthesis from automatically learned templates,
music track separation for personal remixing, parametric low-bit rate audio coding or more gener-
ally for music search by content similarity. Early studies mostly focused on instrument recognition
from recordings of isolated notes. More recently, some studies tackled the problem of musical
phrases played in solo (i.e. without accompaniment) which better cover the timbre variability of a
given instrument, and is closer to standard playing conditions. However, the current trend is now
to deal with true polyphonic music (i.e. involving multiple instruments), which appears to be a far
more difficult problem but with more practical applications. The aim of this paper is to provide
an overview of the state-of-the-art in automatic musical instrument recognition with a focus on



approaches applied to true polyphonic music.

The paper is organized as follows. First, a brief overview of the traditional "bag-of-frames" ap-
proach is proposed in next session. Then, in the following section, an alternative and very promis-
ing approach based on sparse atomic decomposition of the audio signal is described. Finally,
some conclusions are suggested.

TRADITIONAL "BAG-OF FRAMES" APPROACH

The most straightforward and traditional approach for music instrument recognition is based on
a training phase in which instruments models are built (see figure 1). For this phase, a training
database gathering a representative (and ideally very large) set of signals for each musical instru-
ment is used. A set of features is then computed for each class of the training database, usually
on successive short signal segments (called frames) and are then used either as reference tem-
plates (during testing phase) or used to build a statistical model for each class. In the recognition
phase, the same set of features is computed and is compared either to the templates or to the
model to determine what are the most probable instruments currently playing.
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Figure 1: A classic architecture

Feature extraction

The feature extraction module aims at representing the audio signal using a reduced set of fea-
tures that characterize the signal properties well with a view to discriminating the instruments.
The features proposed in the literature can be roughly classified in four categories:

e Temporal features: These features are directly computed on the time domain signal. The
advantage of such features is that they are usually straightforward to compute. They include
the crest factor, temporal centroid, zero-crossing rate and envelope amplitude modulation

e Cepstral features: Such features are widely used in speech recognition or speaker recog-
nition. This is duly justified by the fact that such features allow to estimate the contribution
of the filter (or vocal tract) in a source-filter model of speech production. They are also of-
ten used in audio indexing applications since many audio sources also obey a source filter
model. The usual features include the Mel-Frequency Cepstral Coefficients (MFCC), the
Linear-Predictive Cepstral Coefficients and their first and second derivatives.

e Spectral features: These features are usually computed on the spectrum (magnitude of the
Fourier Transform) of the time domain signal. They include the first four spectral statistical
moments, namely the spectral centroid, the spectral width, the spectral asymmetry defined
from the spectral skewness, and the spectral kurtosis describing the peakedness/flatness of
the spectrum. A number of spectral features were also defined in the framework of MPEG7
[14]. Frequency derivative of the constant-Q coefficients, describing spectral irregularity or
smoothness were also reported to be successful by Brown [2]; Octave Band Signal Inten-
sities were later proposed by S. Essid & al. ([9]), to capture in a rough manner the power
distribution of the different harmonics of a musical sound without recurring to pitch-detection
techniques.

e Perceptual features: Relative specific loudness, sharpness and spread can also be used.
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To obtain centered and unit variance features, a linear transformation is often applied to each
computed feature. This normalization procedure is usually more robust to outliers than a mapping
of the feature dynamic range to [-1 : 1]. More details on most of these common features can be
found in [24]. When a large number of features is chosen, it becomes necessary to use feature
selection techniques to reduce the size of the feature set. It is then possible to select the most
effective features for the problem at hand, that is in this case to select the features that best
discriminate the instruments considered.

Classification

Different classification strategies were proposed in the context of automatic musical instrument
recognition (see for example [13] for a review). Early studies were based on the K-Nearest Neigh-
bors algorithm for musical recognition on isolated notes ([16], [7]) and more recently on musical
phrases ([22]). The current trend is however to use more sophisticated modelling approaches
(Discriminant analysis in [1], neural networks in [19], Gaussian mixture models in [2],[9] and Sup-
port Vector machines in [23], [9]). An interesting research direction consists in integrating a model
of temporal dynamics by means of Hidden Markov Models, for example (see [18]).

From isolated notes to polyphonic signals

Most of the studies in automatic instrument recognition only tackle the problem of monophonic
sources (e.g. only one instrument played at a time). On the contrary, most real musical sources
correspond to a mixture of several instruments. In most cases, the methods designed for the
monophonic case will not directly work for the polyphonic case. In fact, the feature extraction
process is highly non-linear and cannot exploit a simple additivity of the different sources. How-
ever, several approaches were already proposed to cope with this limitation. For example, in
[4], the missing feature theory is applied by ignoring the features that are perturbed by other
sources. In a later work [5], it is proposed to extract the predominant harmonic combs related to
the predominant fundamental frequency. These harmonic combs are then used as features for
automatic instrument recognition in polyphonic music. In a sense, this approach uses the con-
cept of prior source separation before conducting the individual instrument identification. Such
a concept is further developed in [15], where the polyphonic signals are first preprocessed by
a source separation approach based on independent subspace analysis. The resulting signals
are then classified by traditional classifiers such as K nearest neighbors (K-NN) or Gaussian Mix-
ture models (GMM). This concept is also particularly well adapted for percussive or drum signals
transcription as demonstrated in [10]. Some other approaches will rely on more specific models,
such as pitch dependent instrument models [17] while some other will pay particular attention to
limit overtraining by learning note models on polyphonic or mixed signals [6]. In [25], instrument
spectrum models are put in a probabilistic framework to perform both instrument identification and
transcription of the input. This method also has the advantage to take the additivity of the music
signals into account. Another interesting direction consists in learning a model for any possible
combination of instruments for a given music genre. For example, in a jazz trio (bass, piano,
drum), a total of seven classes will be defined and learned. To overcome the potential complexity
burden, [8] further proposed to follow a hierarchical methodology where the taxonomy is auto-
matically learned from labelled data. This method was successfully applied to jazz ensembles.
However, this approach needs to have labelled data with information for any given time about
which instruments are currently playing, and gathering such data may be rather tedious.

The quick overview given above shows that the "bag-of-frames" approach is popular and it often
provides satisfying performance. However, despite the promising results obtained, it is also im-
portant to investigate other paths which would at the same time allow for training the individual
instrument models on isolated notes or solos, be able to cope with the large variability of sounds
produced by any given instrument and finally limit the perturbation of the other sources (instru-
ment) in the transcription process. One of this research directions relies on a signal model that
is supposed to well represent the studied classes of instrument. Such methods aim at repre-
senting the signal as an explicit linear combination of sound sources, which can be adapted to
better fit the analyzed signal. These approaches are at the intersection of source separation, au-
tomatic transcription and musical instrument identification and are often referred to as mid-level
representation since a further post-processing is usually required to tackle any of the mentioned
applications. One of these approaches, based on a decomposition of the signal into elementary
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sound templates, is briefly recalled below but the interested reader is invited to consult [20] and
[21] for a more in-depth presentation.

SPARSE ATOMIC DECOMPOSITION OF POLYPHONIC MUSIC SIGNALS

Principle

Since “bag-of-frames” methods are limited in describing music as a sum of musical sources,
approaches that extract additive features have to be developed. The method described below
fulfills this goal by getting a structured representation of the musical sounds, where each element
of the representation can be considered as a sound object.

The basic concept of the sparse approximation derives from the “atomic” decomposition of audio
signals. In this case, the polyphonic signal is decomposed into a small number of sound atoms
or molecules, where each atom consists of windowed harmonic sinusoidal partials and each
molecule of several atoms spanning successive time windows. Each atom is associated with
a specific instrument and a specific pitch by learning the amplitudes of its partials on separate
solo data.

The overall goal of sparse decomposition is then to approximate a given signal z(t) as a linear
combination of atoms h, (¢) taken from a fixed dictionary D = {hx(t)}x

z(t) = Y anha(t). (Eqg. 1)

AEA,

Various dictionaries have been used for audio signals so far, including harmonic atoms [11], local
cosine and wavelet bases [3], and chirped Gabor atoms [12]. In the context of musical instrument
recognition, it is possible to choose, as mentioned above, specific harmonic atoms that carry
instrument specific information.

Decomposition in harmonic atoms

More precisely, such a harmonic atom is defined as a sum of M windowed sinusoidal partials at
harmonic frequencies with constant amplitudes but linearly varying fundamental frequency. Using
chirped Gabor atoms to represent the partials, each harmonic atom is in turn expressed as

M
hs,u,fg,c(J,A,@(t) = z am 6j¢mgs,u,7n><f0,m><c[) (t) (Eq 2)

m=1

where gy, 1.c(t) = = w (5*) 2im(f(t=w+5(t-w)*) yepresent the chirped Gabor atoms and where
s is the scale parameter, u the time localization, f, the fundamental frequency, ¢, the fundamental
chirp rate, A = {a, }m=1...m the vector of partials amplitudes and ® = {¢.,, };n=1...1s the vector of

partials phases.

The most distinctive feature of this signal model is that the vector of partials amplitudes A is learnt
on solo training data, so as to represent a single instrument i among the multiple instruments
possibly present in the polyphonic signal. More precisely, the frequency range is partitioned
into several pitch classes p and each vector A is associated with a single instrument/pitch class
Cip. Note that, each instrument/pitch class C;, may be represented by several amplitude vectors
denoted by A;,,, with k& = 1...K;,. This allows to better cope with the intrinsic variability of
sounds produced by each instrument.

The atoms are iteratively extracted following a Matching Pursuit technique. First, the most promi-
nent atom (i.e. the most correlated with the signal) is extracted and subtracted from the original
signal and the procedure is iterated until a predefined number of atoms have been extracted or
until a pre-defined Signal to Noise Ratio of the representation is reached. To increase the quality
of the representation without enlarging too much the size of the dictionary, it is possible to adap-
tively tune some of the atom parameters. For example, in [21], it is proposed to locally optimize
the fundamental frequency f, and fundamental chirp rate ¢ by a conjugate gradient technique.
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Figure 2: Representation of a music signal involving two instruments as a collection of harmonic
molecules. Each atom is represented by a parallelogram, and each molecule by a dashed-line
rectangle covering several atoms.

Decomposition in molecules

It is however important to note that the instrument-specific harmonic atoms are time-localized and
therefore do not capture long-term temporal content. This is the main motivation for the devel-
opment of a structured representation where the signal is decomposed on a set of instrument-
specific harmonic molecules, where a molecule M is a group of instrument-specific harmonic
atoms h,(t). Figure 2 displays an example of molecules for a music signal involving two instru-
ments.

It is shown in [21] that this approach is efficient for musical instruments identification in solos and
obtains very promising results in polyphonic music involving 5 or less instruments. The average
recognition rate on solos ranged from 56% to 86% depending on the instrument, which is nearly
as efficient as more traditional and heavily studied bag-of-frames approaches. For duos, the
preliminary results obtained show the potential of this approach for polyphonic signals (the correct
pair of instruments is recognized with a rate between 23% and 69% depending of the pair and
it is observed that at least one of the instrument is correctly recognized with a rate of about 97
%). It is also important to underline the potential of this alternative approach for a large range of
applications including audio signal modification, wav-to-midi transcription and music visualization.

CONCLUSIONS

We provided in this paper a brief overview of the domain of music instrument recognition and
presented a promising alternative approach based on the decomposition of the audio signal in
harmonic atoms or molecules. If the mainstream approaches (e.g. “bag-of frames” approaches)
are powerful and allow for reaching high recognition performances in solos, it is important to
investigate new directions to solve the more complex, but more useful, situation where several
instruments are played simultaneously (polyphony).
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