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ABSTRACT

In this paper we review the acoustic features used for music-to-score
alignment and study their influence on the performance in a chal-
lenging alignment task, where the audio data is polyphonic and may
contain percussion. Furthermore, as we aim at using “real world”
scores, we follow an approach which does exploit the rhythm infor-
mation (considered unreliable) and test its robustness to score errors.

We use a unified framework to handle different state-of-the-art
features, and propose a simple way to exploit either a model of
the feature values, or an audio synthesis of a musical score,in an
audio-to-score alignment system. We confirm thatchroma vectors
drawn from representations using a logarithmic frequency scale are
the most efficient features, and lead to a good precision, even with a
simple alignment strategy. Robustness tests also show thatthe rela-
tive performance of the features do not depend on possible musical
score degradations.

Index Terms— music information retrieval, automatic align-
ment, acoustic features

1. INTRODUCTION

Audio-to-score alignment is the task of synchronizing a musical
score with a its audio performance. The result is a mapping between
each instant in the recording and a position in the score. This task
has been extensively studied from thereal-timepoint of view, for the
application of automatic accompaniment of a musician [1, 2]. In this
case, the problem is also known asscore following.

We deal here with theoffline alignment (or audio synchroniza-
tion) of an audio recording with its score. Indeed, a temporal align-
ment can be useful in applications where the real-time constraints
do not apply, such as score-controlled audio browsing or automatic
indexing, in order to take advantage of the numerous scores than can
be found freely, on the internet for instance. However, these scores
are often error-prone. Hence, as the indicated rhythm may beunre-
liable, we choose not to use the note duration information. We are
interested in an alignment at asymboliclevel, i.e. in which the result
is the time indexes of the score notes or chords.

An alignment system can be separated into two layers. A low-
level layer extracts features describing the instantaneous content of
the audio signal. These features are used by a high-level layer, which
performs the alignment thanks to a model of the temporal evolu-
tion of the music. Most works on audio-to-score alignment and
score following use specific low-level features along with their own
high-level system. The focus is usually put on the temporal model
[3, 4, 1] and the low-level layer is often introduced with little discus-
sion about its efficiency. To the authors’ knowledge, there has been
no comprehensive study on the relative performance of the differ-
ent features proposed for this task in previous works. Furthermore,

Fig. 1. An example of the score representation. Top: a “normal”
musical score; bottom: the corresponding chord representation

although polyphonic music has already been used to assess the pre-
cision of some alignment systems (see for example [5, 4, 6]),large
scale comparative evaluations on the same database at the symbolic
level, such as the last MIREX campaign on this domain[7], have
been almost exclusively performed with monophonic or slightly
polyphonic classical music.

In the present work, we study the specific influence of the low-
level layer on an audio-to-score alignment system in a challenging
polyphonic case. We use a unified framework to compare different
models, including a novel simple method to perform an alignment at
the symbolic level using an audio synthesis of the score. We also test
the behavior of the models when confronted to errors in the score and
find that the relative performances are not affected by theseerrors.

The rest of this paper is organized as follows: in Section 2, we
define the alignment problem and separate the low-level layer from
the temporal model. The low-level models considered in the study
are detailed in Section 3. We then expose in Section 4 the results
of our experiments on the alignment performance induced by the
different features. Finally, conclusions are provided in Section 5.

2. THE ALIGNMENT SYSTEM

From a general point of view, a musical score is a list of notesde-
scribed by their pitch, onset and offset times. However, in order to
locate positions in a polyphonic score, it is useful to have afully or-
deredrepresentation of this score. As in [4] we consider a score asa
sequence ofchords, which are sets of notes that sound together, in-
dexed by their onset times. Figure 1 represents the conversion from
a “normal” score to our chord sequence representation.

The output of an alignment algorithm is the sequence of chords
which “best match” the audio signal. Lety=y1, . . . , yn be the fea-
ture sequence extracted from the signal. IfSt is a random variable
describing the current chord at timet, the low-level layer calculates
the local likelihoodp(yt|St=s) of each chords corresponding to the
observationyt. The high-level layer then determines the optimal (in
some sense) sequence of chords given the sequence of featureobser-
vations. The high-level module used in this work is very simple, as
it searches for themaximum likelihoodpathŜ, defined by :
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whereS is the set of acceptable paths. These acceptable paths are
all the paths which begin with the first chord and end with the last
one of the score, with no “heaps” (no chord may be skipped). This
optimum can be efficiently found thanks to the Viterbi algorithm.

It is important to note that our alignment strategy does not take
into account chord durations indicated in the score. This permits to
integrate the fact that two interpretations of the same piece can face
very large deviation in note durations while the same sequence of
chords will be observed. Thus, the only temporal information that is
used is the order of the chords.

3. AUDIO FEATURES FOR ALIGNMENT

The low-level layer estimates the likelihood of each chord for each
frame of the audio recording. Since a chord is a set ofpitchednotes,
we use features which describe the spectral content of the audio. In
order to evaluate the impact of the low-level layer, we compare sev-
eral feature models, which can be divided into three broad classes.
Table 1 sums up the representations which are studied in thiswork.

3.1. Spectral models

The power spectrum drawn from a Short-Term Fourier Transform
(STFT) of the audio signal is used in many score following works
[2, 4, 1], because of the low complexity of this transform. Inorder to
calculate the likelihood of a power spectrum{y(ω)} (whereω spans
the frequency bins) given a chords containing|s| notes with funda-
mental frequencies{f1, . . . , f|s|}, two methods have been tested.

Generative Spectrum.The first method, drawn from [4], uses a
template model of the power spectrum, given the notes of the chord.
For one note of fundamental frequencyf , the modelgf (ω) is a mix-
ture of Gaussians, where the means correspond to the harmonics.
We consider 5 components, whose standard deviations are setto one
semitone and whose weights are quadratically decreasing.

Then, the corresponding chord modelg is a mix of the one-note
templates, with an additional noise term:

g(ω) =
1 − q

|s|

|s|
X

n=1

gfn
(ω) + q U[0,ωmax](ω). (1)

Here,U[0,ωmax](·) is the uniform pdf, and the parameterq controls
the amount of “noise” in the model. In the experiments, ten different
values have been tested between0 and0.95. For silent chord (where
s is the empty set∅), only the noise term remains (q=1). This model
is then used as a probability distribution over the frequency bins.
According to Raphael’s Generative Spectrum (RGS) model [4], the
likelihood is estimated by the formula:

pRGS(y|S = s) = C(y)
Y

ω

g(ω)y(ω)
, (2)

which calculates the likelihood ofy if it is seen as a histogram of
random samples from the distributiong. This model is referred to as
histogram model. In our application, the value ofC has no impact
on the alignment results, since it is the same for every path.

Cont calculates the chord likelihood [1] thanks to a proba-
bilistic measure of a normalized version̄y of the power spectrum:
pCGS(y|S = s) = exp

`

−D(ȳ||g)
´

, where D(·||·) denotes the
Kullback-Leibler divergence. The exponential function isused to
convert the divergence into a probability estimate.

Peak Spectral Match. We also estimate the chord likelihoods
by the value of the Peak Spectral Match (PSM) exposed in [2], which
is the ratio of the signal energy in the expected frequency bands, over
total energy. In the special case of silence (s = ∅), the value of the
likelihood is given by :pPSM(y|S = ∅) = (min(−EdB,γ)

γ
)ν , where

EdB is the normalized energy of the frame, in dB (its maximum is
0). We set the scale parameterν is to 5 and the thresholdγ to 30 dB.

3.2. Semitone Energy Features

We also test spectral representations which follow the samescale
as the musical score. Thesemitonefeatures represent the spectral
power in the musical chromatic scale (C1,C#1,. . . ).

We compute such features thanks to the same bank of elliptic
filters as in [3]. We also use a constant Q transform (CQT), with a
quality factor set to one semitone. These features are respectively
denoted byFBSE(for FilterBank Semitone Energy) andCQTSE.

Three different approaches are then used to calculate the likeli-
hood of a chord. The first estimate is, as for the PSM (Sec. 3.1),
the ratio of the power in the expected semitone bands, over the total
power. We call it theratio method. As in [3], the spectral power lo-
cated at the first two harmonics of the note is also taken into account.

For the two other methods, a template vectorg is built for each
chord, as the superposition of note templates and of a noise compo-
nent. The template values are 1/3 in the bins of the first threenote
partials, and 0 elsewhere. The likelihood is then estimatedby :
– thehistogram modelof (2): phist(y|g) =

Q

ω
g(ω)y(ω), wherey is

the observation vector;
– the value of thecosine measure: pcos(y|g) = 〈y·g〉

‖y‖‖g‖
, where〈·〉

denotes the inner product and‖ · ‖ is theL2 norm.

3.3. Pitch Class Profile Representations

We also considerpitch class profiles(PCP), or chroma vectorrep-
resentations, which consist in a 12-component vector corresponding
to the spectral energies of the 12 musical pitch classes (A, A#,. . . ).
These representations have been shown to perform well in thetask
of audio-to-audio alignment [8, 9].

Many ways have been proposed to calculate such features. We
compare here four different algorithms to obtain chroma vectors.
– The first representation is the integration of the FBSE features over
the different octaves. This feature is denoted by FBPCP.
– We also use an algorithm proposed by Peeters [10], which sums the
STFT magnitude for each pitch class. This representation isdenoted
by PPCP (for Peeters’PCP).
– A third chroma vector (ZPCP) is calculated according to Zhu’s
method [11], which performs a peak-picking on the CQT, and then
sums the amplitude corresponding to all the octaves.
– The last representation is Gómez’s Harmonic Pitch Class Profile
(HPCP) [12]. Its calculation involves peak-picking on the STFT
magnitude with quadratic interpolation, and the integration of the
energy of the harmonics for each chromatic bin.

The likelihoods are then estimated by the same methods as in
Section 3.2:ratio, histogramandcosinemeasures. The latter two
methods need templates corresponding to the chords. Following [8],
the template is created based on the notes which are present in the
chord. For example, a chord containing notesC3, E3, G3 andC4

leads to the template(0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0), where the vec-
tor components correspond to pitch classes from A to G#. A noise
component is added to these templates, as in Eq. (1).



Acron. Meaning Acron. Meaning

RGS Raphael’s Generative Spec. HPCP Harm. Pitch Class Profile
CGS Cont’s Generative Spec. ZPCP Zhu’s PCP
PSM Peak Spectral Match PPCP Peeters’ PCP
FBSE FilterBank Semitone Energy FBPCP FilterBank PCP
CQTSE CQT Semitone Energy

Table 1. Summary of the low-level features tested.

3.4. Synthetic template-based likelihood computation (syntemp)

For the chord likelihood estimation, we test an additional method
that uses an audio synthesis of the score (thanks to the TiMidity++
software1), in order to obtain more realistic chord templates (which
are referred to assyntemp), as an alternative to the simple theoret-
ical templates presented in Section 3. For a specific chords in the
score, letn1, . . . , nL be the indexes of theL frames where the chord
s is playing in the synthesis. Let̂gn1

, . . . , ĝnL
be the feature vec-

tors observed on these frames. We estimate the likelihood ofs by
psynth(y|s) = maxℓ∈{1,...,L} pcos(y|ĝnℓ

), wherey is the observation.
This approach computes a single likelihood value for each chord, de-
spite the variable durations of the chords in the synthesized data.

4. EXPERIMENTS

4.1. Database and Experimental Settings

To evaluate the alignment systems, we need ground-truth MIDI
files which are perfectly aligned to the audio signals. We first ex-
ploit the MIREX’06 score following evaluation database, compris-
ing four pieces of classical monophonic (or slightly polyphonic)
mono-instrumental music. We also use 93 pop songs from the
RWC database [13]. These songs are polyphonic multi-instrumental
pieces, most of which contain percussion. In order to simulate the
case where the scores are unreliable, we simply use the ground-truth
MIDI files and, depending on the experiments, we choose to exploit
only certain pieces of information. Here, we discard duration infor-
mation to evaluate the capacity of the system to infer this information
based on the resulting sequence of chord labels.

In our experiments, the audio signals are converted to mono and
downsampled to 16 kHz. For signal analysis, we use 50 ms frames
with a 20 ms hop-size, and 2048 frequency bins for the STFT. For
each feature, ten values of the noise parameterq (see eq.1) are eval-
uated, from the set{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The
figures given below correspond to the best value.

The chosen evaluation measure gives the error rate, that is the
proportion of onsets which are detected beyond a thresholdθ =
300 ms around the real onset time. This threshold is chosen after
the MIREX’06 contest.

4.2. Results and Discussion

The most important results of the experiments on the monophonic
and polyphonic databases are presented in Figure 2.

The first tests are run on the MIREX database (Figure 2, up). In
this contest, the best system obtained a9.9% error rate. Apart from
the PPCP system, which obtains a very large error rate (26.0%),
all our system perform better. This is not really surprisingsince,
although we do not use temporal information, we do not apply real-
time (nor even causal) constraints either.

Monophonic vs. Polyphonic Music. Consistently with one’s
intuition, the error rates are much higher on polyphonic than on

1TiMidity++: http://timidity.sourceforge.net/

Fig. 2. Results of the theoretical models. Scores are given for the
best parameter settings.

monophonic music, since this data is more complex. Moreover,
whereas the three features classes (power spectrum, semitone and
PCP) can obtain similar results on the monophonic database (five
of the feature models obtain between 3% and 5.3% error rates), the
spectral models perform much worse than the others on the poly-
phonic case (+25% error rate at least). These models appear to be
unadapted to polyphonic music, as they are too much dependant on
the timbre and too sensitive to background noise. Thus, the choice
of the feature model is all the more important as the data is complex.

Limitations of the STFT. On the polyphonic database, the five
worse systems are all those which exploit a STFT. This bringsto
light the problem of an insufficient resolution of this transform in
low frequencies. Whereas this limitation can be overcome inthe
monophonic case (by taking into account neighboring bins asin the
spectral models), the presence of several close partials inpolyphonic
music makes it preferable to use a logarithmic frequency scale.

Semitone vs. PCP Features. The four features which exploit
such a scale (FBSE, CQTSE, FBPCP, ZPCP) obtain comparable
scores, between 40.3% and 46.7% on the real polyphonic data (Fig-
ure 2, bottom), with their best parameter sets. Chroma features have
already been proven successful for audio synchronization [8]. Here
we empirically show that the octave information does not improve
the alignment results.

Likelihood Calculation Method. On the other hand, the likeli-
hood calculation method can have an influence. For example, the er-
ror rates of theCQTSEfeatures with theratio, cosineandhistogram
measures are respectively61.7%, 47.0%, and41.8%.

Thehistogramandcosinemeasures obtain similar results. How-
ever, the former is generally more efficient because the factor gy in
(2) penalizes audio events (notes) which are not expected inthe score
(smallg and largey), resulting in a good discrimination between dif-
ferent chords. Theratio method performs poorly, because of its bias
towards “abundant” chords (for a chord containing all the possible
notes, all the frequency bins are expected, resulting in an energy ratio
of 1) and its inability to take into account a model of noise.

Theoretical templates vs. syntemp. As shown in Fig. 3, the
behavior of thesyntempsystems are similar to their “theoretical tem-
plates” counterparts. This indicates that our theoreticalmodels are
quite well suited for this application, and that the observed tenden-
cies are directly linked to the features rather than the likelihood cal-
culation method. For almost every feature, the use ofsyntempim-
proves the system performance, as the synthesis allows for more re-



Fig. 3. Comparison of theoretical templates (dark) andsyntemp
(light) on the real polyphonic database.

Fig. 4. Error rates of several systems as a function of the note re-
placement rate (“-S” stands for withsyntemp)

alistic templates. It may also be explained by a possible “temporal
bias”: as the score rhythm is used for the synthesis, the number of
synthetic templates for a chord depends on its score duration. Hence,
longer chords may be favored by a greater number ofsyntemps.

The result degradation ofFBSEcan be explained by timbre dif-
ferences, which modify the relative weights of the partials, and tun-
ing or inharmonicity problems, which can affect our filterbank rep-
resentations, since these filters are narrower than those ofthe CQT.
This latter problems explain the poor results ofPPCP, because of
the sensitivity of the STFT-to-chroma mapping in low frequencies.

Robustness of features to presence of percussion.In the poly-
phonic database, 9 songs contain no percussion. On these particular
parts of the data, the performances are better. For example,the er-
ror rates ofCQTSEandZPCPare respectively 34.3% and 32.8%,
whereas they are both 41.8% on the whole database. Hence, per-
cussion does affect the performance of these pitch-based features.
However, the ranking is not modified, indicating that the best fea-
tures can be chosen regardless of the music instrumentation.

Robustness to error-prone scores.Experiments are run on the
polyphonic real audio files whose scores have been modified. We
considered three types of modification: suppression or pitch change
on randomly chosen notes; and addition of notes (with randompitch,
time and duration). Three modification ratios are considered: 1%,
5% and 10%. The error rates are then calculated only on the un-
modified chords. Here are tested only the most effective features.
Figure 4 shows the results for the replacement test. The behaviours
are similar with the other types of degradation.

Unsurprisingly, all the error rates increase with the scoremodi-
fication rate. The main observation that can be made is that this in-
crease is roughly the same for every considered system. Thisshows
that possible score errors deteriorate the performance, but have no
significant influence on the choice of the optimal low level layer.

5. CONCLUSION

This study compares different instances of low-level models used in
audio-to-score alignment through an extensive experimental evalua-
tion where numerous variants of the models components (especially
features and likelihood calculation) and their parametersare tested.
In order to be robust to error-prone scores, our alignment systems

infer the note durations without any other information thanthe order
of the chords in the piece. Our experiments show that among the
various features used in previous alignment proposals, some are sig-
nificantly more efficient than others when correctly parameterized,
and that the choice of the feature is all the more important when it is
applied to polyphonic multi-instrumental music.

Whereas explicit spectral models are efficient in the monophonic
case, their performance drops dramatically on the polyphonic data. It
is proven that features using a logarithmic frequency scaleare more
effective than those based on an STFT.

The best chroma features perform at least as well as the semi-
tone representations. Thus, CQT- or filterbank-based chroma vec-
tors seem to be a fairly good choice of features, since the octave
information does not appear to be essential. Furthermore, these rep-
resentations are lighter than semitone features and more robust to
possible octave errors in the score. The use ofsynthesized templates
can also improve the system precision for most representations, as
these templates are more realistic than the theoretical models.

In the continuation of this study, we will consider the use of
other kinds of information, including onset or structure, and address
the problem of the temporal model elaboration.
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