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ABSTRACT é = / J + 4 N * i
In this paper we review the acoustic features used for mosgzore r ‘ 4 ’
alignment and study their influence on the performance ina-ch [/ 5 . ! N . .
lenging alignment task, where the audio data is polyphonitraay R 3 5 ‘ E FS !

contain percussion. Furthermore, as we aim at using “realdivo
scores, we follow an approach which does exploit the rhythfori Fig. 1. An example of the score representation. Top: a “normal”
mation (considered unreliable) and test its robustnessoi@®rrors.  musical score; bottom: the corresponding chord representa
We use a unified framework to handle different state-ofatte-
features, and propose a simple way to exploit either a moflel o

the feature values, or an audio synthesis of a musical s@®@)  4jthough polyphonic music has already been used to assepseh
audio-to-score alignment system. We confirm ttlatoma vectors  isjon of some alignment systems (see for example [5, 4)&{je
drawn from representations using a logarithmic frequewayesare  gcgle comparative evaluations on the same database antheliy
the most efficient features, and lead to a good precisiom &ith a level, such as the last MIREX campaign on this domain[7],ehav

simple alignment strategy. Robustness tests also showhhaela-  peen aimost exclusively performed with monophonic or shgh
tive performance of the features do not depend on possib&calu polyphonic classical music.

score degradations. In the present work, we study the specific influence of the low-

Index Terms— music information retrieval, automatic align- level layer on an audio-to-score alignment system in a ehglhg

ment, acoustic features polyphonic case. We use a unified framework to compare difiter
models, including a novel simple method to perform an alignnat
1. INTRODUCTION the symbolic level using an audio synthesis of the score. [¥¢etast

the behavior of the models when confronted to errors in theesand

Audio-to-score alignment is the task of synchronizing a icals find that the relative performances are not affected by thases.
score with a its audio performance. The result is a mappihgesn The rest of this paper is organized as follows: in Sectione, w
each instant in the recording and a position in the scores Esk  define the alignment problem and separate the low-levet fagen
has been extensively studied from teal-timepoint of view, for the  the temporal model. The low-level models considered in theys
application of automatic accompaniment of a musician [1|2this are detailed in Section 3. We then expose in Section 4 thdtsesu
case, the problem is also knownssre following of our experiments on the alignment performance inducedhby t

We deal here with theffline alignment (or audio synchroniza- different features. Finally, conclusions are provided éct®n 5.
tion) of an audio recording with its score. Indeed, a temipalign-
ment can be useful in applications where the real-time caings
do not apply, such as score-controlled audio browsing ayraatic
indexing, in order to take advantage of the numerous schagsdan
be found freely, on the internet for instance. However, ¢hsores  From a general point of view, a musical score is a list of noes
are often error-prone. Hence, as the indicated rhythm maybe= ~ Scribed by their pitch, onset and offset times. However,riteoto
liable, we choose not to use the note duration informatioe. an¢  locate positions in a polyphonic score, it is useful to hatellg or-
interested in an alignment asgmbolicevel, i.e. in which the result ~ deredrepresentation of this score. As in [4] we consider a scoee as
is the time indexes of the score notes or chords. sequence ofhords which are sets of notes that sound together, in-

An alignment system can be separated into two layers. A lowdexed by their onset times. Figure 1 represents the coovefimm
level layer extracts features describing the instantameontent of @ “normal” score to our chord sequence representation.
the audio signal. These features are used by a high-lewa, hagich The output of an alignment algorithm is the sequence of chord
performs the alignment thanks to a model of the temporaluevol which “best match” the audio signal. Lgt=y1, ..., y. be the fea-
tion of the music. Most works on audio-to-score alignmend an ture sequence extracted from the signalSfis a random variable
score following use specific low-level features along witkit own  describing the current chord at timethe low-level layer calculates
high-level system. The focus is usually put on the temporadeh  thelocal likelihoodp(y:|Si=s) of each chords corresponding to the
[3, 4, 1] and the low-level layer is often introduced withlétdiscus- ~ observationy;. The high-level layer then determines the optimal (in
sion about its efficiency. To the authors’ knowledge, theae een  Some sense) sequence of chords given the sequence of felasere
no comprehensive study on the relative performance of tfierdi  vations. The high-level module used in this work is very denps
ent features proposed for this task in previous works. euntiore, it searches for thenaximum likelihoogbathS, defined by :

2. THE ALIGNMENT SYSTEM



S = argmaxL(Y|S)

n
— argmax [ ] p(¥1150),
Ses ses i3

Peak Spectral Match. We also estimate the chord likelihoods
by the value of the Peak Spectral Mat&t§M) exposed in [2], which
is the ratio of the signal energy in the expected frequenagbzaover

whereS is the set of acceptable paths. These acceptable paths agRa| energy. In the special case of silenge=(f), the value of the

all the paths which begin with the first chord and end with tht |

one of the score, with no “heaps” (no chord may be skipped)s Th o

optimum can be efficiently found thanks to the Viterbi alg¢fom.

It is important to note that our alignment strategy does ake t
into account chord durations indicated in the score. Thimfie to
integrate the fact that two interpretations of the sameepgam face
very large deviation in note durations while the same secpierf
chords will be observed. Thus, the only temporal informathat is
used is the order of the chords.

3. AUDIO FEATURES FOR ALIGNMENT

The low-level layer estimates the likelihood of each chandeach
frame of the audio recording. Since a chord is a sgtitthednotes,
we use features which describe the spectral content of tfhie.aln
order to evaluate the impact of the low-level layer, we coraev-
eral feature models, which can be divided into three broadses.
Table 1 sums up the representations which are studied imtris

3.1. Spectral models

The power spectrum drawn from a Short-Term Fourier Transfor
(STFT) of the audio signal is used in many score following ksgor
[2, 4, 1], because of the low complexity of this transformotder to
calculate the likelihood of a power spectrym(w) } (wherew spans
the frequency bins) given a chosctontaining|s| notes with funda-
mental frequencieéf, ..., fs }, two methods have been tested.

Generative Spectrum.The first method, drawn from [4], uses a
template model of the power spectrum, given the notes oftibedc
For one note of fundamental frequengythe model s (w) is a mix-

likelihood is given by :pesu(y|S = 0) = (=2=Ee2)) where
is the normalized energy of the frame, in dB (its maximum is
0). We set the scale parameteis to 5 and the thresholgto 30 dB.

3.2. Semitone Energy Features

We also test spectral representations which follow the ssraée
as the musical score. Tremitonefeatures represent the spectral
power in the musical chromatic scale;(C#,...).

We compute such features thanks to the same bank of elliptic
filters as in [3]. We also use a constant Q transform (CQT ) wit
quality factor set to one semitone. These features are ctaagly
denoted byFBSE(for FilterBank Semitone Energy) af@QTSE

Three different approaches are then used to calculateksié li
hood of a chord. The first estimate is, as for the PSM (Sec., 3.1)
the ratio of the power in the expected semitone bands, oedothl
power. We call it theatio method. As in [3], the spectral power lo-
cated at the first two harmonics of the note is also taken ictount.

For the two other methods, a template vegtas built for each
chord, as the superposition of note templates and of a noisea-
nent. The template values are 1/3 in the bins of the first thoge
partials, and 0 elsewhere. The likelihood is then estimbayed
— thehistogram modedf (2): prist(y|g) = 1, g(w)*“), wherey is
the observation vector;

— the value of thecosine measurepcos(y|g) = %
denotes the inner product afid || is the Z> norm.

where(-)

3.3. Pitch Class Profile Representations

ture of Gaussians, where the means correspond to the haisnoni We also considepitch class profile{PCP), or chroma vectorep-

We consider 5 components, whose standard deviations aieesat
semitone and whose weights are quadratically decreasing.

Then, the corresponding chord mogék a mix of the one-note
templates, with an additional noise term:

[s|

90) = 0 0 @) + 0 Vona@) @)
n=1
Here, Ujp,wmag (+) is the uniform pdf, and the parametgicontrols
the amount of “noise” in the model. In the experiments, téfent
values have been tested betw@amnd0.95. For silent chord (where
s is the empty sef), only the noise term remaing=£1). This model
is then used as a probability distribution over the freqydsrins.
According to Raphael’'s Generative Spectrum (RGS) modeltfs]
likelihood is estimated by the formula:

pres(ylS = 5) = C(y) [[ 9()*, &)
which calculates the likelihood af if it is seen as a histogram of
random samples from the distributign This model is referred to as
histogram model In our application, the value @' has no impact
on the alignment results, since it is the same for every path.

resentations, which consist in a 12-component vector spamrding
to the spectral energies of the 12 musical pitch classes £A,.A).

These representations have been shown to perform well itattke
of audio-to-audio alignment [8, 9].

Many ways have been proposed to calculate such features. We

compare here four different algorithms to obtain chromaomsc

— The first representation is the integration of the FBSHifestover
the different octaves. This feature is denoted by FBPCP.

—We also use an algorithm proposed by Peeters [10], whick sl
STFT magnitude for each pitch class. This representatidaristed
by PPCP (for Peeter®CP).

— A third chroma vector{PCP is calculated according to Zhu’s
method [11], which performs a peak-picking on the CQT, arghth
sums the amplitude corresponding to all the octaves.

— The last representation is Gomez’s Harmonic Pitch Clas§I®
(HPCP) [12]. Its calculation involves peak-picking on the STFT
magnitude with quadratic interpolation, and the integratdf the
energy of the harmonics for each chromatic bin.

The likelihoods are then estimated by the same methods as in

Section 3.2:ratio, histogramand cosinemeasures. The latter two
methods need templates corresponding to the chords. Fiotdi,

Cont calculates the chord likelihood [1] thanks to a proba-the template is created based on the notes which are prestm i

bilistic measure of a normalized versignof the power spectrum:
pees(y|lS = s) = exp(—D(yllg)), where D(-||-) denotes the
Kullback-Leibler divergence. The exponential functionuised to
convert the divergence into a probability estimate.

chord. For example, a chord containing notes Es, Gs andCy
leads to the templatg, 0,0, 2,0, 0,0, 1,0, 0, 1,0), where the vec-
tor components correspond to pitch classes from A to G#. Aeoi
component is added to these templates, as in Eq. (1).



[ Acron.] Meaning [ Acron.] Meaning J Monophonic database
RGS Raphael's Generative Spec|| HPCP | Harm. Pitch Class Profile| 25%
CGS Cont's Generative Spec. ZPCP | Zhu's PCP o 20%
PSM Peak Spectral Match PPCP | Peeters’ PCP S 150
FBSE | FilterBank Semitone Energy|| FBPCH FilterBank PCP E 1o

CQTSH CQT Semitone Energy

Table 1. Summary of the low-level features tested. 0% =
RGS CGS PSM FBSE CQTSE PPCP FBPCP zZrCP HPCP

Polyphonic Database
100% —

3.4. Synthetic template-based likelihood computationsyntemp) 2o

For the chord likelihood estimation, we test an addition&tmod ]
that uses an audio synthesis of the score (thanks to the TMiel 0% |

20% —

softwaré), in order to obtain more realistic chord templates (which %

0%

Error Rate

are referred to asyntemjp, as an alternative to the simple theoret- RGS  CGS  PSM  FBSE CQTSE PPCP  FBPCP  ZPCP  HPCP

ical templates presented in Section 3. For a specific chandthe

score, lethy, . .., nz, be the indexes of theé frames where the chord Fig. 2. Results of the theoretical models. Scores are given for the
s is playing in the synthesis. Lék,,, ..., gn, be the feature vec- best parameter settings.

tors observed on these frames. We estimate the likelihoadbyf
Peynth(y|s) = maxpe(1,.... L} Peos(y|gn, ), Wherey is the observation.
This approach computes a single likelihood value for eadndside-  monophonic music, since this data is more complex. Moreover

spite the variable durations of the chords in the synthdsitzga. whereas the three features classes (power spectrum, senaiiml
PCP) can obtain similar results on the monophonic database (five
4. EXPERIMENTS of the feature models obtain between 3% and 5.3% error rdtes)
spectral models perform much worse than the others on the pol
4.1. Database and Experimental Settings phonic case (+25% error rate at least). These models appéar t

| he ali h unadapted to polyphonic music, as they are too much dependan
To evaluate the alignment systems, we need ground-truthI MIDy,q (impyre and too sensitive to background noise. Thus, ltbice

files which are perfectly aligned to the audio signals. We 86 ot the feature model is all the more important as the datarigbex.
ploit the MIREX'06 score following evaluation databasengwis-

ing four pieces of classical monophonic (or slightly polgpft) Limitations of the STFT. On t_he polyphonlc databasg, the five
mono-instrumental music. We also use 93 pop songs from th¥Orse systems are all those which exploit a STFT. This brings
RWC database [13]. These songs are polyphonic multi-ingtrial light the prob_lem of an msufﬂqent _res_olutlon of this tréoren in
pieces, most of which contain percussion. In order to siteutee  0W frequencies. Whereas this limitation can be overcoméhén
case where the scores are unreliable, we simply use thedtouth ~ Monophonic case (by taking into account neighboring biria ése
MIDI files and, depending on the experiments, we choose titxp SPectral models), the presence of several close partipisyphonic
only certain pieces of information. Here, we discard doratinfor- ~ MUsic makes it preferable to use a logarithmic frequenclesca
mation to evaluate the capacity of the system to infer tiig@mation Semitone vs. PCP Features. The four features which exploit
based on the resulting sequence of chord labels. such a scaleABSE CQTSE FBPCP, ZPCP obtain comparable

In our experiments, the audio signals are converted to modo a scores, between 40.3% and 46.7% on the real polyphonic Eigta (
downsampled to 16 kHz. For signal analysis, we use 50 ms fameure 2, bottom), with their best parameter sets. Chroma ffeatiave
with a 20 ms hop-size, and 2048 frequency bins for the STFT. Foalready been proven successful for audio synchroniza8pnHere
each feature, ten values of the noise paramg{see eq.1) are eval- we empirically show that the octave information does notrionp
uated, from the s€f0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. The  the alignment results.

figures given below correspond to the best value. , Likelihood Calculation Method. On the other hand, the likeli-
The chosen evaluation measure gives the error rate, thlag is thood calculation method can have an influence. For exanigert

proportion of onsets which are detected beyond a threshold o 15104 of thecQTSEfeatures with theatio, cosineandhistogram
300 ms around the real onset time. This threshold is chosen aftgf o4 res are respectively.7%, 47.0%, and41.8%.

the MIREX'06 contest. Thehistogramandcosinemeasures obtain similar results. How-

) ) ever, the former is generally more efficient because thefaétin
4.2. Results and Discussion (2) penalizes audio events (notes) which are not expectée iscore
(smallg and largey), resulting in a good discrimination between dif-
and polyphonic databases are presented in Figure 2. ferent dch‘(‘)rgs. ;’hee}}lohmtecjtho? perfor:mz poorlyz l?ecaul]sehof |_ts bias
The first tests are run on the MIREX database (Figure 2, up). 1{oWwards “abundant” chords (for a chord containing all thespole

this contest, the best system obtainedl®% error rate. Apart from notes, all the frequency bins are expected, resulting imargy ratio
the PPCP system, which obtains a very large error 12660%) of 1) and its inability to take into account a model of noise.

The most important results of the experiments on the momupho

all our system perform better. This is not really surprissigce, Theoretical templates vs. syntemp. As shown in Fig. 3, the
although we do not use temporal information, we do not apgdy-r  behavior of thesyntempsystems are similar to their “theoretical tem-
time (nor even causal) constraints either. plates” counterparts. This indicates that our theoreticadlels are

Monophonic vs. Polyphonic Music. Consistently with one's  dUite well suited for this application, and that the obsérienden-
intuition, the error rates are much higher on polyphonicntoa  Ci€S are directly linked to the features rather than thdiliked _cal-
culation method. For almost every feature, the useyoftempm-
1TiMidity++: http://timi dity. sourceforge. net/ proves the system performance, as the synthesis allowsdie ra-




infer the note durations without any other information ttiz@order

3 ZZ: of the chords in the piece. Our experiments show that amoag th
5 o various features used in previous alignment proposalse somsig-
oo nificantly more efficient than others when correctly parariezed,

and that the choice of the feature is all the more importargwihis
applied to polyphonic multi-instrumental music.
Whereas explicit spectral models are efficient in the mooajth
case, their performance drops dramatically on the polyjohdata. It
is proven that features using a logarithmic frequency saadenore
— effective than those based on an STFT.
—F— S The best chroma features perform at least as well as the semi-

Spec FBSE CQTSE PPCP FBPCP paleld HPCP

Fig. 3. Comparison of theoretical templates (dark) asyhtemp
(light) on the real polyphonic database.

54%

—2 |>cqTsE
fb— Pk tone representations. Thus, CQT- or filterbank-based chresc-
s ml—= - = . tors seem to be a fairly good choice of features, since thavect
o —— reeces information does not appear to be essential. Furthermuoesetrep-
S S resentations are lighter than semitone features and morestréo

1
0% 1% 5% 10%
Note Replacement Rate

possible octave errors in the score. The ussyothesized templates
can also improve the system precision for most representgtas

Fig. 4. Error rates of several systems as a function of the note rehese templates are more realistic than the theoreticaélnod

placement rate (“-S” stands for wilyntemp In t_he con_tinuation_ of _this st_udy, we will consider the use of
other kinds of information, including onset or structuned @ddress
the problem of the temporal model elaboration.

alistic templates. It may also be explained by a possiblmpieral
bias”: as the score rhythm is used for the synthesis, the auwib
synthetic templates for a chord depends on its score dardtience,
longer chords may be favored by a greater numbeyofemps

The result degradation 6BSEcan be explained by timbre dif-
ferences, which modify the relative weights of the partiatsd tun-
ing or inharmonicity problems, which can affect our filtenkaep-
resentations, since these filters are narrower than thottee €QT.
This latter problems explain the poor resultsRPCP, because of
the sensitivity of the STFT-to-chroma mapping in low frencies.

Robustness of features to presence of percussidn.the poly-
phonic database, 9 songs contain no percussion. On thesai(zar
parts of the data, the performances are better. For exatmglesr-

ror rates ofCQTSEand ZPCP are respectively 34.3% and 32.8%,
whereas they are both 41.8% on the whole database. Hence, per

cussion does affect the performance of these pitch-basedrés.
However, the ranking is not modified, indicating that thetbea-
tures can be chosen regardless of the music instrumentation

Robustness to error-prone scoresExperiments are run on the

polyphonic real audio files whose scores have been modifieel. W

considered three types of modification: suppression ohgit@ange
on randomly chosen notes; and addition of notes (with ranpitch,
time and duration). Three modification ratios are consitdte&s,

5% and 10%. The error rates are then calculated only on the unyg]

modified chords. Here are tested only the most effectivaufeat
Figure 4 shows the results for the replacement test. Thevimira
are similar with the other types of degradation.

Unsurprisingly, all the error rates increase with the secooeli-
fication rate. The main observation that can be made is thairth
crease is roughly the same for every considered system shibigs
that possible score errors deteriorate the performandehdue no
significant influence on the choice of the optimal low levgdia

5. CONCLUSION

This study compares different instances of low-level medsked in
audio-to-score alignment through an extensive experiahentlua-
tion where numerous variants of the models components ¢idlye
features and likelihood calculation) and their parameteestested.
In order to be robust to error-prone scores, our alignmestiesys
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