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ABSTRACT

High Resolution methods, such as the ESPRIT algorithm, per-
form an accurate representation of an harmonic signal as a sum
of exponentially damped sinusoids. However, in coding applica-
tions, the signal must be represented with a minimum number of
parameters. Unfortunately, it is well known that applying the ES-
PRIT algorithm with an under-estimated model order generates bi-
ased frequency estimates. In this paper, we propose a new method
for selecting an appropriate modeling order, which minimizes this
bias. This approach was applied to both synthetic and musical sig-
nals and outperformed the classical information theoretic criteria.

1. INTRODUCTION

Estimating a line spectrum is an important task for many applica-
tions, such as speech signals analysis and synthesis [1] and musical
signals modification [2]. Although the Fourier transform remains a
prominent tool for frequency estimation, the ESPRIT algorithm [3]
overcomes the resolution limit of the Fourier analysis and provides
straight estimates of the model parameters. This method relies on
the rotational invariance property of the signal subspace spanned
by the sinusoids. Its drawback is that the model order is supposed
to be known, which is not the case in many applications.

Many methods have been proposed in the literature for esti-
mating the number of sinusoids. Most of them rely on an ad-
ditive white noise hypothesis. This is the case of the maximum
likelihood method [4], the information theoretic criteria [5] and
the Wishart matrices approach [6]. In the presence of a correlated
noise, these methods tend to overestimate the model order. Con-
sequently, specific methods have been designed to address the col-
ored noise case, such as new information theoretic criteria [7] and
a technique based on a band noise covariance matrix model [8].

In this paper, we show that applying the ESPRIT high reso-
lution method with an erroneous model order perturbes the esti-
mation of the sinusoids, and we derive error bounds which can be
easily computed (a similar bias phenomenon was analyzed in [9]
in the case of the MUSIC algorithm). Based on this result, our new
model order selection method consists in minimizing this perturba-
tion. Contrary to the above mentioned methods, which achieve the
model order selection by analyzing the spectral properties of the
additive noise, our approach focuses on the signal itself. Although
it relies on a noiseless model, we observed that it outperforms the
classical information theoretic criteria, even in low SNR scenarios.

The paper is organized as follows. Section 2 summarizes the
principles of the ESPRIT method. In section 3, the perturbation of
the poles induced by an under-estimated model order is analyzed.

Then our new model order selection method, referred to as the ES-
TER method, is introduced in section 4, where a fast implemen-
tation is proposed. In section 5, the performance of this method
is compared to that of the AIC and MDL criteria [5]. Finally, the
main conclusions of this paper are summarized in section 6.

2. THE ESPRIT METHOD FOR ESTIMATING
MULTIPLE FREQUENCIES

The noiseless Exponentially Damped Sinusoids (EDS) model [10]
defines the discrete signal asx(t) =

∑r
k=1 αkzt

k, wherer is the
order of the model,αk ∈ C∗ are the complex amplitudes, and
zk ∈ C∗ denote the complex poles. The vectorx(t) = [x(t −
n + 1), . . . , x(t)]T (with n > r) belongs to thesignal subspace
spanned by then× r Vandermonde matrix

V =


1 . . . 1
z1 . . . zr

...
...

...
zn−1
1 . . . zn−1

r

 .

If the r poles{z1, . . . , zr} are distinct,V is full rank, so
that the signal subspace has dimensionr. Let V ↓ be the matrix
extracted fromV by deleting the last row. Similarly, letV ↑ be the
matrix extracted fromV by deleting the first row. ThenV satisfies
the so-calledrotational invariance property:

V ↑ = V ↓ D (1)

whereD is the diagonal matrixD = diag(z1, . . . , zr).
In practice,V is unknown, but the signal subspace can be ob-

tained by computing the singular value decomposition (SVD) of
a Hankel or Toeplitz data matrix withn > r rows andl > r
columns, or the eigenvalue decomposition (EVD) of a square data
matrix [10]. Indeed, if{w1, . . . , wn} are the left singular vec-
tors associated to the singular valuesσ1 ≥ . . . ≥ σn ≥ 0 sorted in
decreasing order, then the signal subspace is spanned by then× r
orthonormal matrixW (r) = [w1, . . . , wr] (then − r last sin-
gular values being equal to 0). SinceW (r) andV span the same
subspace, there is a non-singular matrixG of dimensionr×r such
thatV = W (r) G. ThenW (r) satisfies an equation similar to
equation (1):W (r)↑ = W (r)↓ Φ(r), whereΦ(r) is defined by
its eigenvalue decomposition:Φ(r) , G D G−1. Finally, the
ESPRIT algorithm [3] consists of the following steps:

• computingW (r) via a singular value decomposition



• computingΦ(r) = W (r)†↓W (r)↑ (where the symbol†
denotes the Moore-Penrose pseudo-inverse)

• extracting the poleszk as the eigenvalues ofΦ(r)

In practice, the model orderr is unknown. We assume below
that the ESPRIT algorithm is applied with an erroneous model or-
derp and we focus on how the estimation of the poles is affected.
For allp ∈ {1, . . . , n}, let W (p) , [w1, . . . , wp] and

Φ(p) , W (p)†↓W (p)↑. (2)

The estimated poles are defined as the eigenvalues ofΦ(p). If
p > r, the following proposition shows that ther poles do no
longer form the whole set of eigenvalues ofΦ(p), but they are
part of it in the general case.

Proposition 1 Suppose thatp ≥ r andW (p)↓ is full rank. Then
∀k ∈ {1, . . . , r}, zk is an eigenvalue ofΦ(p).

Proof Let vk be the right eigenvector ofΦ(r) associated to the eigen-

value zk and consider thep-dimensional vectorvk ,

[
vk

0

]
. Note

thatW (p)vk = W (r)vk. Consequently,W (p)↑vk = W (r)↑ vk =
W (r)↓Φvk = zkW (r)↓ vk = zkW (p)↓vk. SinceW (p)↓ is full

rank, left multiplying the previous equality byW (p)†↓ yieldsΦ(p)vk =

zk vk.

3. UNDER-ESTIMATION OF THE MODEL ORDER

If p < r, it is well known that the eigenvalues ofΦ(p) do not
match the poles in the general case. Letv̂ be a unitary eigenvector
of Φ(p), associated to the eigenvalueẑ. In this section, it will be
shown that̂z approximates one of the eigenvalues ofΦ(r), and
that an error bound can be easily computed. First, we need to de-
fine theupper condition numberof the Vandermonde matrixV :
κ2 = σmax(V )

σmin(V ↓)
, whereσmax(.) denotes the largest singular value

of a matrix, andσmin(.) denotes the smallest one. This condition
number characterizes the noiseless signal itself, and does not de-
pend onp. It is an unknown constant for our problem, which does
not need to be calculated. It is involved in the following theorem,
whose proof can be found in the appendix.

Theorem 2 (a priori error bound) Let v̂ be a given unitary vec-
tor, let ẑ be a given complex number. Define the residual vector

e(p) , W (p)↑ v̂ − ẑ W (p)↓ v̂. (3)

Then there is an eigenvaluezk of Φ(r) for which

|ẑ − zk| ≤ κ2 ‖e(p)‖2 . (4)

In theorem 2,‖.‖2 denotes the Euclidian vector norm (or 2-
norm). Note that the bound‖e(p)‖2 can be computed without
knowing the exact value ofr. Corollary 3 follows from theo-
rem 2. It gives an error bound valid for all the eigenvalues of
Φ(p). Again, this bound can be computed without knowing the
exact value ofr. It involves the spectral norm of a matrix (or 2-
norm), also denoted‖.‖2, defined as‖M‖2 , max

‖u‖2=1
‖M u‖2.

Corollary 3 (a posteriori error bound) For each eigenvaluêz of
Φ(p), there is an eigenvaluezk of Φ(r) for which

|ẑ − zk| ≤ κ2 ‖E(p)‖2 (5)

where
E(p) = W (p)↑ −W (p)↓ Φ(p). (6)

Proof Let ẑ be an eigenvalue ofΦ(p) andv̂ a unitary eigenvector associ-
ated withẑ. Then equation (3) yieldse(p) =

(
W (p)↑ −W (p)↓Φ(p)

)
v̂.

Sincev̂ is unitary, applying the 2-norm yields

‖e(p)‖2 ≤
∥∥W (p)↑ −W (p)↓Φ(p)

∥∥
2

(7)

Finally substituting equation (7) into equation (4) yields equation (5).

4. SELECTION OF AN APPROPRIATE MODELING
ORDER BASED ON THE ESTIMATION ERROR

The practical interest of corollary 3 is that‖E(p)‖2 (which will
be referred to as thea posteriori error bound) can be computed for
all p ∈ {1, . . . , r}, giving a quantitative criterion for selecting an
appropriate modeling order lower thanr, such that the estimation
error bound is minimum. In practice,r is unknown, and the bound
will be computed for allp ∈ {1, . . . , pmax}, where1 ≤ pmax <
n− 1. If pmax happens to be greater thanr, then for allp > r the
a posteriori error bound is positive1 , whereas it is zero forp = r.
Consequently, the global minimum is zero and it is reached forp =
r, which is the exact model order. In any case, detectingp such that
the a posteriori error bound is minimum in the range[1, pmax] is
a relevant approach for selecting the modeling order. Following
this remark, the ESTimation ERror (ESTER) method consists in
maximizing the inverse error functionJ : p 7→ 1

‖E(p)‖22 . Such a

function is plotted in section 5. Proposition 4 shows that its values
are in the interval[1, +∞[ (the proof is given in the appendix).

Proposition 4 For all p ∈ {1, . . . , n}, ‖E(p)‖2 ≤ 1.

The drawback of the ESTER method is that a direct implemen-
tation would lead to a very computationally demanding algorithm.
Indeed, once the SVD of the data matrix has been computed, the
matrix E(p) must then be calculated for allp ∈ {1, . . . , pmax}.
Such a computation would involve3np2 flops for eachp, so that
the overall complexity would benp3

max flops. This complexity
is to be compared to that of a direct calculation of the AIC and
MDL criteria [5] from the singular values of the data matrix; both
of them involve only2npmax flops. Therefore, we developed a
recursive implementation of the ESTER method, presented in ta-
ble 1, which involves only6np flops for eachp, so that its over-
all complexity is3np2

max. In particular, computing the matrices
E(p) for all p ∈ {1 . . . pmax} in this way is not more computa-
tionally demanding than computingE(pmax) directly. Although
the mathematical derivations leading to the equations in table 1 are
not detailed here (they will be presented in a forthcoming paper),
note that this algorithm recursively updates the auxiliary matrices
Ψ(p) , W (p)H

↓ W (p)↑ andΞ(p) , W (p)↑ −W (p)↓ Ψ(p).

5. SIMULATION RESULTS

5.1. Synthetic signal

The test signal is a sum ofr = 5 complex exponentials plus a
complex colored noise, defined in the time windowt ∈ [0, 254].
For eachk ∈ {1, . . . , r}, thekth exponential is characterized by

1Let P(p) = In−1 − W ↓(p)W ↓(p)
† be the projector onto the

orthogonal complement ofIm(W ↓(p)). If p > r, Im(W ↑(r)) =
Im(W ↓(r)) ⊂ Im(W ↓(p)), thereforeP(p)W ↑(r) = 0. Since
E(p) = P(p)W ↑(p), the r left columns ofE(p) are zero. However,
thep − r right columns ofW ↑(p) do not belong toIm(W ↓(p)) in the
general case, therefore thep− r right columns ofE(p) are non-zero, and
the a posteriori error bound is positive.



Table 1. Recursive computation ofE(p)

W (0) = [], Ψ(0) = [], Ξ(0) = []

For p = 1 to pmax

ψr(p) = W (p− 1)H
↓ w(p)↑

ψl(p) = W (p− 1)H
↑ w(p)↓

ψlr(p) = w(p)H
↓ w(p)↑

Ψ(p) =

[
Ψ(p− 1) ψr(p)

ψl(p)
H ψlr(p)

]
ξ(p) = w(p)↑ −W (p− 1)↓ψr(p)−w(p)↓ ψlr(p)

Ξ(p) =
[

Ξ(p− 1)−w(p)↓ψl(p)
H ξ(p)

]
W (p) =

[
W (p− 1) w(p)

]
u(p) = W (p)(n,:)

H

ϕ(p) = Ψ(p)Hu(p)

E(p) = Ξ(p)− 1
1−‖u(p)‖2

(
W (p)↓ u(p)

)
ϕ(p)H

its amplitudeαk and its polezk = e−δk+i2πfk , wherefk ∈ R
is its frequency andδk ∈ R is its damping factor. The values
of the parametersfk are 0, 0.1, 0.3, 0.6 and 0.8 Hz, and for all
k ∈ {1, . . . , r}, δk = 0 andαk = 1. The additive noise has been
obtained by applying the filterH(z) = 1

1−0.99 z−1 to a complex
white gaussian noise, whose variance has been chosen so that the
resulting Signal Noise Ratio (SNR) is 10 dB. The ESTER method
is compared to three Information Theoretic Criteria (ITC), known
as theAkaike Information Criterion(AIC) [5], the Minimum De-
scription Length(MDL) [5], and theEfficient Detection Criterion
(EDC) [11] which is known to be a robust generalization of AIC
and MDL. These methods consist in minimizing a cost function
which involves the singular values{σ1, . . . , σn}:

ITC(p) = −(n−p) l ln


(

n∏
q=p+1

σ2
q

) 1
n−p

1
n−p

n∑
q=p+1

σ2
q

+p (2n−p)C(l) (8)

whereC(l) is a function ofl. The AIC criterion is defined by
choosingC(l) = 1 and the MDL criterion is defined by choosing
C(l) = 1

2
ln(l). The EDC criteria are obtained for all functions of

l such that lim
l→+∞

C(l)
l

= 0 and lim
l→+∞

C(l)
ln(ln(l))

= +∞. We chose

C(l) =
√

l ln(ln(l)), for which we obtained the best results.
The singular values have been obtained by computing the SVD
of a Hankel data matrix containingn = 128 rows andl = 128
columns, involving then + l− 1 = 255 samples of the whole sig-
nal. Figure 1-a displays the AIC (solid line), MDL (dashed line)
and EDC (dotted line) criteria, such as formulated in the above
equation. None of them reaches a minimum atp = r = 5.
This failure might be explained by the presence of the surround-
ing noise, whose power spectral density is not uniform, contrary
to the additive white noise hypothesis on which these estimators
basically rely. As expected, the EDC criterion is more robust than
AIC and MDL, but its minimum is obtained forp = 7.

Figure 1-b displays new ITC criteria proposed in [7] to address
the colored noise case2. The best results were obtained with the

2These new criteria are referred to asC1 (solid line),C2 (dashed line),
Cm1 (dotted line) andCm2 (circles line). The common value of the pa-
rametersM1 andM2 defined in [7] was set ton

2
− 1.

Fig. 1. Model order selection for a synthetic signal

dashed line criterion, which reaches a minimum atp = 6 ' r.
Concurrently, figure 1-c displays the inverse error functionJ

for p ∈ {1, . . . , pmax}. It can be noticed that the global max-
imum is reached atp = r = 5, despite the surrounding noise,
which was not included in the model.

5.2. Musical signal

Fig. 2. Periodogram and ESTER criterion for a piano signal

This section illustrates the application of the ESTER method
to a musical signal. The study deals with a piano tone, C5, sampled
at 11025 Hz, from which a segment of255 samples (23 ms) has
been extracted. Since the energy of audio signals is not evenly dis-
tributed over frequencies, we used a pre-emphasis filter obtained
by linear prediction at order 7 to compensate the energy decrease.
The periodogram of the filtered piano signal is displayed in fig-
ure 2-a. We used a Blackman window, because of its high leakage
rejection (-57 dB), and despite its lobe width (three times larger
than that of the rectangular window). In this figure, sixteen sharp
spectral peaks clearly upraise from the surrounding noise level.
We observed that the ITC criteria mentioned in section 5.1 present



a high convexity atp = 16, but their penalty term is not sufficient
to make this point be the global minimum. Figure 2-b displays the
inverse error functionJ for all p ∈ {1, . . . , pmax}. The global
maximum is reached atp = 16. It can also be noticed that the
error bounds obtained for lower values ofp are relevant. Indeed,
high values are reached atp = 4, 6, 12, which in fact correspond to
small jumps in the singular values decrease (not represented here).
Therefore, the ESTER method gives the expected model order, and
moreover the error bounds can be used to quantify the adequacy of
a possible lower modeling order. In particular, it can be noticed
that odd model orders do not fit the signal. Indeed, since this sig-
nal is real valued and centered, its spectrum is hermitian symmetric
with no constant component, which underlies an even model order.

6. CONCLUSIONS

In this paper, we presented some results on how the estimation of
a noiseless EDS model is affected by applying the ESPRIT algo-
rithm with an erroneous model order. If the model order is over-
estimated, the true poles are among the estimated ones. On the
contrary, if the order is underestimated, the estimated poles can
be seen as approximations of some of the true ones. In this last
case, ana posteriori error boundwas given, which can be com-
puted without knowing the exact model order. Following from
this observation, we introduced theESTERmethod for selecting
an appropriate model order. Since the basic method was compu-
tationally expensive, we proposed a fast algorithm for recursively
computing the a posteriori error bounds. Then, we illustrated the
performance of the ESTER method on a synthetic signal and on a
piano signal. Moreover, we noted that the error bounds could be
used to quantify the adequacy of a possible lower modeling order.
Finally, although it was designed for the ESPRIT algorithm, the
ESTER criterion can be used with any High Resolution method.

Appendix
Proof of theorem 2 If ẑ = zk for somek ∈ {1 . . . r}, the assertion
is trivial, so we may assume that∀k ∈ {1 . . . r}, ẑ 6= zk. Note that

W (p) v̂ = W (r)

[
v̂
0

]
, so that equation (3) yields

e(p) =
(
W (r)↑ − ẑW (r)↓

) [ v̂
0

]
. (9)

SinceV = W (r)G, we haveW (r)↓ = V ↓G
−1, and equa-

tion (1) yieldsW (r)↑ = V ↓DG
−1. Therefore, equation (9) yields

e(p) = V ↓ (D − ẑ Ir)G−1

[
v̂
0

]
. (10)

Since∀k ∈ {1 . . . r}, ẑ 6= zk, D − ẑ Ir is non-singular. Therefore,
equation (10) yields[

v̂
0

]
= G (D − ẑ Ir)−1 V †

↓ e(p). (11)

Then applying the 2-norm into equation (11) yields

‖v̂‖2 ≤ ‖G‖2
∥∥∥(D − ẑ Ir)−1

∥∥∥
2

∥∥∥V †
↓

∥∥∥
2
‖e(p)‖2 . (12)

SinceW (r) is orthonormal andV = W (r)G, ‖G‖2 = ‖V ‖2 =

σmax(V ). Moreover,(D − ẑ Ir)−1 is diagonal with diagonal entries
1

zk−ẑ
, thus

∥∥∥(D − ẑ Ir)−1
∥∥∥
2

= 1
min

k∈{1...r}
|ẑ−zk|

. The singular values

of V †
↓ are the inverses of those ofV ↓, so that

∥∥∥V †
↓

∥∥∥
2

= 1
σmin(V ↓)

.

Finally, sincêv is unitary, equation (12) yields

min
k∈{1...r}

|ẑ − zk| ≤
σmax(V )

σmin(V ↓)
‖e(p)‖2 . (13)

Finally, the assertion follows from equation (13).

Proof of proposition 4 It can be noticed that

E(p) =
(
W (p)↑W (p)†↑ −W (p)↓W (p)†↓

)
W (p)↑

Applying the 2-norm yields

‖E(p)‖2 ≤ dist
(
W (p)↑,W (p)↓

) ∥∥W (p)↑
∥∥
2

(14)

wheredist
(
W (p)↑,W (p)↓

)
,
∥∥∥W (p)↑W (p)†↑ −W (p)↓W (p)†↓

∥∥∥
2

is the distance between subspacesSpan(W (p)↑) and Span(W (p)↓),
which satisfiesdist

(
W (p)↑,W (p)↓

)
≤ 1, as shown in [12, pp. 76-77].

Since
∥∥W (p)↑

∥∥
2
≤ 1, the result follows from equation (14).
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