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ABSTRACT

Recent efforts in audio indexing and retrieval in music databases
mostly focus on melody. If this is appropriate for polyphonic mu-
sic signals, specific approaches are needed for systems dealing
with percussive audio signals such as those produced by drums,
tabla or djemb́e. Most studies of drum signals transcription fo-
cus on sounds taken in isolation. In this paper, we propose sev-
eral methods for drum loops transcription where the drums sig-
nals dataset reflects the variability encountered in modern audio
recordings (real and natural drum kits, audio effects, simultaneous
instruments, . . . ). The approaches described are based on Hidden
Markov Models (HMM) and Support Vector Machines (SVM).
Promising results are obtained with a 83.9% correct recognition
rate for a simplified taxonomy.

1. INTRODUCTION

Pre-recorded audio databases of drum loops are becoming very
popular and are now widely used in modern music compositions.
Such databases typically gather a large number of short drum sig-
nals (called loops) referenced (in the best case) by their tempo
and general style. Due to the continuously growing size of such
databases, searching an appropriate drum loop only based on tempo
and style becomes rather tedious. There is, therefore, a need for
content-based methods that would allow to search in these databases
more efficiently, that is with more natural or specific queries. An
essential aspect of such a searching tool is the necessity to obtain
beforehand an automatic transcription of drum loop signals.

The transcription of drum signals has gained much interest
in the past few years. For example, McDonald & al. [1] identi-
fied isolated percussive sounds based on spectral centroid trajec-
tories and Sillanp̈aä & al., [2], presented a classification system in
five broad categories (Bass drum, snare drum, hi-hat, cymbal, and
toms). More recently, Gouyon & al. [3] evaluated several methods
for natural and synthetic drum signals recognition. These technics
proved to be successful but were limited to isolated sounds.

Other works deal with more complex signals and aim at ex-
tracting the drum tracks from polyphonic music signals [4], or use
source separation approaches to pre-process drum loops signals
[5]. A particularity of drum loops signals is that each event can
be produced by simultaneous strokes on different instruments (for
example bass drum and hi-hat). Lawlor & al. [5] showed very
promising results but this work was limited to three instruments

(snare drum, kick drum and hi-hats) and tested on only fifteen
manually selected loops.

Another particularity of drum loops is that they contain a suc-
cession of events (or strokes). As a consequence, drum loop sig-
nals or drum tracks often exhibit a temporal structure. Two con-
current studies have exploited such a structure by means of a se-
quence model, or ”language model” by analogy with large vocabu-
lary speech recognition systems ([6] for drum sequences transcrip-
tion, or [7] for the transcription of tabla signals).

The objective of this paper is to propose and to evaluate two
novel approaches for the transcription of drum loops signals. The
work described in this paper is a following, to some extent, of
a previous study conducted on tabla signals ([7] where specific
sequence models were successfully used). It is important to em-
phasize that this work is conducted on a rather large database of
drum loops (315 drum loops containing 5327 strokes). Moreover,
this database reflects various aspects of variability encountered in
modern audio recordings (natural and synthetic drum kit, audio ef-
fects such as flanger or reverberation, . . . ) and includes complex
signals resulting from simultaneous strokes on several instruments.

The paper is organized as follows. Next section describes the
overall system architecture. Then, section 3 is dedicated to the
description of the database used and of the statistical approaches
followed for the automatic transcription of drum loops. Section 4
discusses the results obtained and, finally, section 5 suggests some
conclusions.

2. SYSTEM ARCHITECTURE

The aim of this system is to transcribe drum loops signal into a
higher level of representation for indexing and retrieval applica-
tions. The information automatically extracted from the signal in-
cludes the instrument (or the combination of instruments) played
on each stroke, the onset time of each event and the overall tempo
of the drum loop. The system architecture is then based on three
major parts:

1. a segmentation and tempo extraction module (described in
section 3.2)

2. a features extraction module (see section 3.3)

3. and a classification module for which three different ap-
proaches were tested (see section 3.4)

The overall architecture of the system is depicted in figure 1.



Fig. 1. Architecture of the drum loop transcription system.

3. TRANSCRIPTION OF DRUM LOOPS

3.1. Drum loops database

The database used for this study consists of 315 drum loops con-
taining 5327 strokes. This database was manually annotated using
eight basic categories:bd for bass drum,sd for snare drum ,hh
for hi-hat, clap for hands clap,cym for cymbal, rs for rim shot,
tom for any other tom of a drum andperc for all other percussive
instruments with more definite pitch such as congas, djembé or
tabla. When two or more instruments are played at the same time,
the event is labelled by all corresponding categories (for example
if bass drum and cymbal are hit simultaneously, both labels are at-
tached to the corresponding stroke). Combinations of up to four
simultaneous instruments exist in the database (although they are
not frequent).

All drum loops were extracted from commercial samples CDs.
The loops are representatives of different styles including rock,
funk, jazz, hip-hop, drum’n’bass and techno and are played on
different drum kits including electronic kits. Some loops also have
special effects such as flanger, reverberation, distortion or com-
pression. The loop duration is between two and fifty seconds. If
our database is comparable (or larger) in size to the dataset used
in most other studies, it is important to emphasize that it contains
more important situations commonly encountered in modern au-
dio recordings including simultaneous percussive instruments and
audio effects. A compressed version of a few drum loops along
with their annotation is given on our web site ([8].

3.2. Segmentation and tempo extraction

Due to the impulsiveness of the drum loops signals, it seems appro-
priate to segment the signal into individual events. Each segment
then corresponds to a stroke on a given instrument or to simultane-
ous strokes on several instruments and can be labelled accordingly.
To segment the drum loops signals, an onset detection algorithm
based on sub-band decomposition was used [9]. Since the drum
loops signals consist in localized events with abrupt onsets, this
algorithm obtains very satisfying results. Concurrently, the overall
tempo is estimated using a slightly modified version of Scheirer’s
algorithm [10]. It consists in associating a filter bank with an onset
detector in each band and with a robust pitch detection algorithm
such as the spectral sum or spectral product [11].

3.3. Features extraction

To select an appropriate features set, a simple classifier (k-Nearest
Neighbors) was used. The recognition rates on the different feature
sets envisaged were compared and the results obtained have, for a
large part, confirmed those obtained by [3]. Finally, our features
set includes:

• Mean of 13 MFCC The Mel Frequency Cepstral Coeffi-
cients (MFCC) includingc0 are calculated on 20 ms frames
with an overlap of 50 %. The mean is then obtained by
averaging the coefficients over the stroke duration. In our
work, c0 is not excluded since it led to better classification
performance.

• 4 Spectral shape parametersdefined from the first four
order moments:

– the spectral centroı̈d given bySc = µ1,

– the spectral width given bySw =
p

µ2 − µ2
1,

– the spectral asymmetrySa defined by the spectral

skewness :Sa = 2(µ1)3−3µ1µ2+µ3
(Sw)3

– and the spectral flatnessSf defined from the spectral

kurtosisSf =
−3µ4

1+6µ1µ2−4µ1µ3+µ4
(Sw)4

− 3

whereµi =
PN−1

k=0 ki.A(k)
PN−1

k=0 A(k)
and whereA(k) is the ampli-

tude of thekth component of the Fourier transform of the
input signal.

• 6 Band-wise Frequency content parametersThese pa-
rameters correspond to the log-energy in six pre-defined
bands (in Hertz: [10-70] Hz, [70-130] Hz, [130-300] Hz,
[300-800] Hz, [800-1500] Hz, [1500-5000] Hz). These
bands were chosen according to a meticulous observation
of the frequency content of each drum instrument. Such a
choice led to better performance compared to a more clas-
sical Bark scale filterbank (as used in [3]).

3.4. Classification approaches

3.4.1. Hidden Markov Models

Drum signals exhibit some kind of context dependencies. In fact,
the sound produced by a given stroke (and especially if it is res-
onant) may continue while the following stroke happens and thus
may have an impact on the spectral characteristics of the follow-
ing event. Also, some typical sequences of instruments are often
played (i.e succession of bass drum and cymbal,...).

An efficient approach that integrates context (or time) depen-
dencies is given by the Hidden Markov Model (HMM). This class
of models is particularly suitable for modelling short term time-
dependencies and it has been successfully used for a wide variety
of problems ranging from speech recognition to tabla signals tran-
scription [7]. In such a framework, the sequence of feature vec-
tors ot is represented as the output of a Hidden Markov Model.
The recognition is performed by searching the most likely states
sequence, given the output sequence of feature vectors. In this
model, a succession of strokesSk−m, ..Sk is associated to each
stateqt. Intuitively, the stateqt represents the strokeSk in the
context ofSk−m..Sk−1 at timet. The model is thus clearly con-
text dependent. The transition probabilities from statei to statej



is given by (in the case of 3-grams):

aij = p(qt = j|qt−1 = i)

= p(st = S3|st−1 = S2, st−2 = S1)

wherep(st = S3) is the probability density of observing the in-
strumentS3 at time t. The observation probability distribution
associated to each state is given by:

bi(x) = p(ot = x|qt = i)

= p(ot = x|st = S2, st−1 = S1)

In this work bi(x) is either modelled by a single mixture (a
Gaussian vector distribution with diagonal covariance matrix) or a
mixture of two Gaussian distributions. For example, in the single
mixture case, the feature vectors are modelled with a single vec-
tor distribution of 23 Gaussian distributions (where each Gaussian
characterizes the mean, variance of each parameter of the features
set). In the case of several Gaussian mixtures, the EM algorithm
is used. The decoding is carried out using the traditional Viterbi
algorithm.

3.4.2. Support Vector Machines

The other classification approach used in this study is known as
Support Vectors Machines (SVM) which are well designed for bi-
nary problems classification. Support Vector Machines non-linearly
map (using a Kernel function) their n-dimensional input space into
a higher dimensional feature space where the two classes are lin-
early separable with an optimal margin. Such classifiers can per-
form binary classification and regression estimation tasks but can
also be adapted to perform n-class classification [12],[13]. SVM
have very interesting generalization properties since the decision
surface in the data space can be well defined even in the case where
a complex surface would be necessary to separate the data. Several
kernels can be used. For this study, the library LibSVM [14] was

used and a radial basis kernel was chosen (K(x, y) = exp−
(x−y)2

λ

with λ = 1
N

and whereN is the number of features).
Note that with SVM the data are directly the features vectors

obtained for each strokes regardless of their left context (i.e. there
is no sequence model in this case).

Since we are interested in labelling each segment by one or
many labels among then instruments in the kit, two different ap-
proaches are possible :

One2n -ary classifier. In a first approach, only one classifier is
used, in which each possible combination of strokes is rep-
resented by a distinct class. Our study uses 8 instruments,
implying thus the use of a 255 classes classifier. It is impor-
tant to notice that among the 255 possible combinations of
strokes only 45 of them were present in the database.

n binary classifiers In a second approach, one binary classifier
per instrument is trained. This binary classifier is used to
decide whether the instrument is played or not in each seg-
ment.

3.5. Drum kit dependent approach

Due to the high variability of the data, a drum kit dependent ap-
proach was also tested. Instead of using one generic classifier,
four classifiers ”specialized” in four different kinds of drumkits
were trained by splitting the training database according to style /

Instrument alone or prominent
Snare Drum, Rim-Shot or Clap 1440

Bass drum 1652
Hit-hat or Cymbal (alone) 1558
Conga, tom, djemb́e, Tabla 462

Combinations
Bass Drum + (snare drum, Rim-Shot or Clap) 53

Snare Drum + (Tom or Congas) 44
Bass drum + snare drum + (tom or Congas) 12

Bass drum + (Tom or Congas) 106

Table 1. Number of occurrences in the database of each label for
the simplified taxonomy

drumkit criteria. The four categories roughly correspond to four
types of drum kits:

Electro style which mostly includes sounds generated by electronic
drums such as Roland TR-808 or TR-909 (41 loops - techno,
hip hop) ,

Light style which is representative of traditional acoustic drums
eventually with light effects (125 loops - jazz, funk),

Heavy stylewhich includes sounds with heavy and long reverber-
ation (67 loops - rock, industrial),

Hip-hop style which includes sounds often compressed with var-
ious audio effects such as flanger (82 loops - drum’n’bass,
hip hop).

We use as a transcription the output of the classifier which
gives the best likelihood score. Note that this approach can only
be used with HMM-based classifiers, since the SVM classifiers
perform a ”hard” decision.

4. TRANSCRIPTION RESULTS

4.1. Taxonomy

In theory, all instruments from the eight basic categories can be
played simultaneously leading to2n possible combinations. In
practice (i.e. in our database) only 45 out of 255 combinations
are observed. As a consequence, the first taxonomy (detailed tax-
onomy) is defined where each combination is characterized by a
label.

To better analyse the results, another taxonomy is also used.
The so-calledsimplified taxonomygathers some instruments in
a reduced number of categories and only keeps the label of the
prominent instrument for each stroke with a few exceptions for
frequent combinations or for combination where there is no salient
instruments (see table 1).

Note that the simplified taxonomy is only used to provide an
additional interpretation of the results but that the same models
have been used for both (i.e. same training and decoding).

4.2. Evaluation protocol

For evaluation, the usual cross-validation approach was followed
(often called ten-fold procedure in the literature [15]). It consists
in splitting the whole database in 10 subsets randomly selected and
in using nine of them for training and the last subset (i.e. 10 % of
the data) for testing. The procedure is then iterated by rotating the



Taxonomy Detailed simplified
one2n-ary classifier

HMM, 3-grams, 1 mixture 59.1% 78.7%
HMM, 3-grams, 2 mixtures 58.7% 78.3%
HMM, 4-grams, 1 mixture 59.3% 77.3%
SVM 65.1% 83.1%

n binary classifiers
HMM, 3-grams, 1 mixture 45.6% 68.6%
HMM, 3-grams, 2 mixtures 41.5% 65.2%
HMM, 4-grams, 1 mixture 34.0% 53.1%
SVM 64.8% 83.9%

Drum kit dependent approach
HMM, 3-grams, 1 mixture 62.5% 82.2%
HMM, 3-grams, 2 mixtures 58.4% 83.4%
HMM, 4-grams, 1 mixture 60.8% 77.3%

Table 2. Drum instruments recognition results

10 subsets used for training and testing. The results are computed
as the average values for the ten runs.

4.3. Results and discussion

The results obtained on our dataset are summarised in table 2.
It can be observed that SVM clearly outperforms the HMM ap-
proach for both taxonomies when the models are trained on all
data. This may be explained by the fact that the rather simple
acoustic model used with HMM cannot cope with the high vari-
ability of the dataset.

This is confirmed by the experiment implementing a drum de-
pendent approach. When a drum kit dependent model is used for
HMM, performances of both approaches (SVM and HMM) are
comparable. In fact, this approach permits to split the data accord-
ing to the drum kit used and thus to decrease the variability of data
within a given class which is appropriate for HMM.

Still, it is surprising that the SVM classification that does not
include any sequence modelling outperforms the HMM approach.
In fact, the sequence modelling was very efficient with tabla sig-
nals where time dependencies can be observed at the label-level
(one same stroke can have different labels depending on the con-
text in which it is played) while with drum signals time depen-
dencies can be observed only at the signal-level (the same instru-
ment can sound differently depending on the context in which it
is played). Also, one of the main differences of the two studies is
that for tabla all performances were representative of a unique style
(which is again not the case for the drum loops dataset). This sug-
gests that sequence modelling may become much more efficient if
the drum signals are gathered according to a given style.

Another reason for the better performances of the SVM could
be that much more training data are used for each class (instru-
ment combination) with SVM since the events are here considered
regardless of their left context. Clearly, more variability is attached
to the data of a given class, but this is well supported by SVM.

5. CONCLUSION AND FUTURE WORK

This paper proposed novel approaches for drum transcription and
evaluated these methods on complex drum loops signals. If promis-
ing results were obtained (83.9% using a simplified taxonomy),

they suggest that the acoustic model part could be improved and
several directions can be envisaged. For exemple, data transforma-
tion such as Principal Component Analysis (PCA) which leads to
feature vectors with independent components and acoustic mod-
els with higher number of gaussian mixtures will be tested. Also,
despite the rather large size of our corpus, it clearly appears that
better modelling could be achieved with a larger dataset and this
especially for HMM approaches. Finally, it is planned to build a
combined system that would take into account the respective ad-
vantages of SVM and HMM sequence modelling.
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