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Abstract

In this paper we present an innovative tempo estimationesyghat processes acoustic audio
signals and does not use any high level musical knowledge.p@yposal relies on a harmonic plus
noise decomposition of the audio signal by means of a subsqaalysis method. Then, a technique to
measure the degree of musical accentuation as a functiomefis developed and separately applied
to the harmonic and noise parts of the input signal. This i¥@d by a periodicity estimation
block that calculates the salience of musical accents fargelnumber of potential periods. Next, a
multi-path dynamic programming searches among all thenpialeperiodicities for the most consistent
prospects through time and finally the most energetic caelits selected as tempo. Our proposal
is validated using a manually annotated test-base contga®b1 music signals from various musical
genres. In addition, the performance of the algorithm umiiéerent configurations is compared. The
robustness of the algorithm when processing signals ofadiegr quality is also measured.

I. INTRODUCTION

The continuously growing size of digital audio informatimereases the difficulty of its access and
management, thus hampering its practical usefulness. Amsequence, the need for content-based
audio data parsing, indexing and retrieval techniques tkenthe digital information more readily
available to the user is becoming critical. It is then notpsising to observe that automatic music
analysis is an increasingly active research area. One dfuhjects that has attracted much attention
in this field concerns the extraction of rhythmic informatiwom music. In fact, along with harmony
and melody, rhythm is an intrinsic part of the music. It isfidiflt to provide a rigorous universal
definition, but for our needs we can quote Parncutt [1], “a icalshythm is an acoustic sequence
evoking a sensation of pulse” which refers to all possiblghimic levels,i.e., pulse rates, evoked
in the mind of a listener (see figure 1). Of particular impoca is thebeat also calledtactusor
foot-tappingrate, which can be interpreted as a comfortable middle poitthe metrical hierarchy
closely related to the human’s natural movement [2]. Thecephofphenomenal acceritas a great
relevance in this context, Lerdahl and Jackendoff [3] deffires: "the moments of musical stress in
the raw signal (who) serve as cues from which the listenergits to extrapolate a regular pattern”.
In practice, we consider as phenomenal accents all theetisevents in the audio stream where
there is a marked change in any of the perceived psychoacalystoperties of sound.e., loudness,
timbre and pitch.

Metrical analysis is receiving a strong interest from thenowinity because it plays an important
role in many applications: automatic rhythmic alignmentrafltiple instruments, channels or musical
pieces; cut and paste operations in audio editing [4]; aatmnmusical accompaniment [5], beat
driven special effects [6], [7] music transcription [8] antamatic genre classification [9].

A number of studies on metrical analysis were devoted to sjiminput usually in MIDI or other
score format [10], [11]. However, since the vast majoritynadisical signals are available in raw or
compressed audio format, a large number of recent work foousethods that directly process the
time waveform of the audio signal. As pointed out by Klap8], [there are three basic problems
that need to be addressed in a successful metrical anajstens First, the degree of musical stress
as a function of time has to be measured. Next, the periodsphades of the underlying metrical
pulses have to be estimated. Finally, the system has to etibespulse level which corresponds to
the tactus or some other specifically designated metrigel.le

A large variety of approaches have already been investigbtistogram modelare based on the
computation of the Inter-Onset Intervals (IOl) histografram which the beat period is estimated.
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Fig. 1. Example showing how the rhythmic structure of musin be decomposed in rhythmic levels formed by equidistant
pulses. There is doublerelationship between the lowest rhythmic level and the égher rhythmic level, on the contrary
there is atriple relationship between the highest rhythmic level and the twxer level.

The IOl are obtained by detecting the precise location ofetm®r phenomenal accents and the
detectors often operate on subband signals (see for exdfjle[13], [14] or [15]). The so-called
Detection Function mode&loes not aim at precisely extracting onset positions, liheraat obtaining

a smooth profile, usually known as the "detection functiomho indicates the possibility of finding
an onset as a function of time. This profile is usually buitinfr the time waveform envelope [16].
Periodicity analysis can be carried out by a bank of oscitlatbased on comb-filters [17], [8] or
by other periodicity detectors [18], [19Probabilistic modelssuppose that onsets are random and
exploit Bayesian approaches such as particle filtering to fieat locations [20], [21]Correlative
approaches have also been proposed, see [22] for a methatbthpares the detection function with
a pulse-train signal and [23] for an autocorrelation badgdrahm.

The goal of the present work is to describe a method whichopag metrical analysis of acoustic
music recordings at one pulsation level: the tactus. Thegsed model is an extension of a previous
system that was ranked first in the tempo contest of & "Annual Music Information Retrieval
Evaluation eXchange” (MIREX) [24]. Our model includes salénnovative aspects including:

« the use of a signal/noise subspaces decomposition,

« the independent processing of its deterministic (sum ofis®ids) and noise components for
estimating phenomenal accents and their respective peitiqd

« the development of an efficient audio onset detector,

« the exploitation of a multi-path dynamic programming agmioto highlight consistent estimates
of the tactus and which allows the estimation of multiple @omnent tempi.

The paper is organized as follows. Section Il describes iffiereint elements of our algorithm, then
section Ill presents the experimental results and compaeproposed model with two reference
methods. Finally, section IV summarizes the achievemehtsuo system and discusses possible
directions for future improvements.

Il. DESCRIPTION OF THE ALGORITHM

The architecture of our tempo estimation system is providdeigure 2. First, the audio signal is
split in P subbands signals which are further decomposed into detitini (sum of sinusoids) and
noise components. From these signals, detection funotibich measure in a continuous manner the
degree of musical accentuation as a function of time ar@aetetd and their periodicity is then estimated
by means of several different algorithms. Next, a multiipdnamic programming algorithm permits
to robustly track through time several pulse periods fromciwithe most persistent is chosen as
the tactus. The different building blocks of our system agtailed below. Note that, throughout the
rest of the paper, it is assumed that the tempo of the audikig stable over the duration of the
observation window. In addition, we suppose that the taatssbetween 50 and 240 beats per minute
(BPM).

A. Harmonic+Noise decomposition based on subspace asalysi

In this part we describe a subspace analysis technique {soesereferred to as high resolution
methods) which models a signal as a sum of sinusoidal conmp@a&d noise.
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Fig. 2. Overview of the tempo estimation system.

Our main motivation to decompose the music signal is the addeanphasizing phenomenal accents
by separating them from the surrounding disturbing evemésexplain this idea using an example.
When processing a piano signal (percussive or pluckedgssounds in general) the sinusoidal
components hamper the detection of the non-stationary améedl noise of the attack, in this case the
sound of the hammer hitting the cords. Conversely, whengasing a violin signal (bowed strings
or wind instrument sounds in general) the non-stationdcyidin noise of the bow rubbing the cords
hampers the detection of the sinusoidal components.

The decomposition procedure used in the present work radetse first two blocks of the scheme
presented in Figure 2 and is founded on the research camieldyoBadeatet al. [25], [26]. Related
work using such methods in the context of metrical analysisnfiusic signals has been previously
proposed in [19]. Letz(n), n € Z, be the real analyzed signal, modeled as the sum:

x(n) = s(n) + w(n), 1)
where
2M
s(n) = Z ;2] (2)
i=1
is referred to as the deterministic partaofThea; # 0 are the complex amplitudes bearing magnitude

and phase information and thg are the complex poles; = e%+727fi where f; € [—%, %[ are the

frequencies withf; # fj, for all i ## k andd, € R are the damping factors. It can be noticed that
sinces is a real sequence;’s and a;’s can be grouped i/ pairs of conjugate values. Subspace
analysis techniques rely on the following property of fhelimensional data vectaf(n) = [s(n— L+
1),...,s(n)]T (with usually2M < L): it belongs to the2 M -dimensional subspace spanned by the
basis{v(zx)}x=o....20m—1, Wherev(z) = [1z ... 2£71]T is the Vandermonde vector associated with
a non-zero complex number This subspace is the so-callsijnal subspaceAs a consequence,
v(zr) L span(W ) where W denotes al. x 2M matrix spanning the signal subspace aWd,

an N x (N — 2M) matrix spanning its orthogonal complement, referred tohasroise subspace.
The harmonic+noise decomposition is performed by prajediie signal: respectively on the signal
subspace and the noise subspace.



Initialization: Ug = [ Tam }

O(N—2M)x2M

For each time step n iterate:
- A(n) =H(n)Ug(n — 1) fast matrix product
2- A(n) = Ug(n)R(n) skinny QR factorization

TABLE |
SEQUENTIAL ITERATION EVD ALGORITHM.

Let the symmetricl, x L real Hankel matrixH, be the data matrix:

5(0) s(1) -+ s(L-1)
T o
s(L—1) s(L) --- s(N-1)

where N = 2L — 1, with 2M < L. Since each column dfl; belongs to the sam2M/-dimensional
subspace, the matrix is of rard/ and thus is rank deficient. Its eigenvalue decomposition{gV
yields

H, = UA,UY (4)

whereU is an orthonormal matrixA, is the L x L diagonal matrix of the eigenvalues,— 2M of
which are zerosU# denotes the Hermitian transposedf The 2 -dimensional space spanned by
the columns ofU corresponding to the non-zero entries/f is the signal subspace.

Because of the surrounding additive white noHg is full rank and the signal subspacE,s,
is formed by the2M-dominant eigenvectors df,, i.e., the column ofU associated to the M
eigenvalues having the highest magnitudes.

In practice, we observe the noisy sequenge) and its harmonic part can be obtained by projecting
x(n) onto its signal subspace as follows:

s =UgUlx )

A remarkable property of this method is that for calculatithg noise part of the signal, the
estimation and subtraction of the sinusoids is not requerglicitly. The noise is obtained by
projectingz(n) onto the noise subspace:

w=x-s=(I-UsU)x. (6)

Subspace trackingsince the harmonic plus noise decompositionz@f) involves the calculation
of one EVD of the data matri¥l, at every time step, decomposing the whole signal would requi
a highly demanding computational burden. In order to redhisecost, there exist adaptive methods
that avoid the computation of the EVD [27], a survey of suchthuds can be found in [26]. For
the present work, we use an iterative algorithm calleduential iteration25], shown in Table I.
Assuming that it converges faster than the variations ofstheal subspace, the algorithm operation
involves two auxiliary matrices at every time stép(n) and R(n), in addition of a skinny QR
factorization. The harmonic and noise parts of the wholeaig(n) can be computed by means of
an overlap-add method:

1) the analysis window is recursively time-shifted. In giee, we choose an overlap 8f./4,
2) the signal subspacB s is tracked by means of the previously mentioned sequertéiedtion
algorithm presented in Table I.
3) the harmonics, and noisew, vectors are computed according to Eq. (5) and Eg. (6),
4) finally, consecutive harmonic and noise vectors are plidt by a Hann window and respec-
tively added to the harmonic and noise parts of the signal.
The overall computational complexity of the harmonic plusse decomposition for each analysis
block is that of step 2, which is the most computationally dading task of the whole metrical
analysis system. Its complexity &(L n(n + log(L)).



Subspace analysis methods rely on two principles. From ametpbey assume that the noise is
white and secondly, that the order of the model (humber afssiids) is known in advance. Both of
these premises are not usually satisfied in most application

A practical remedy to overcome the colored noise problensistsin using a pre-accentuation
filter! and in separating the signal in frequency bands, which haefflect of leading to a (locally)
whiter noise in each channel. The input sign&h) is decomposed int@® = 8 uniform subband
signalsz,(n), wherep =0,..., P — 1. Subband decomposition is carried out using a maximally
decimated cosine modulated filter bank [28], where the pypwfilter is implemented as a 130
order FIR filter with 80 dB of rejection in the stop band. Usswgh a highly selective filter is relevant
because subspace projection techniques are very sertsitsmurious sinusoids.

Estimating the exact number of sinusoids present in a giigamakis a considerably difficult task
and a large effort has been devoted to this problem, for riestd29] [30]. For our application we
decided to slightly overestimate the model order since raiieg to Badeau [26, page 54] it has a small
impact in the algorithm performance compared to an underatbn. Another important advantage
of the bandwise processing approach is that there are legsoéils per subband (compared to the
full band signal) which allows at the same time to reduce therall computational complexity,e,
we deal with more matrices but-times smaller in size.

In this way, further processing in the subbands is the samalfdrequency channels. The output
of the decomposition stage consists in two signal¢n) carrying the harmonic and,(n) the noise
part of z,(n).

B. Calculation of a musical stress profile

The harmonic+noise decomposition previously describedbeaseen as a front-end that performs
“signal conditioning”, in this case it consists in decomipggshe input signal in several harmonic and
noise components prior to rhythmic processing.

In the metrical analysis community there exists an imptioinsensus about decomposing the music
signal in subbands prior to conducting rhythm analysis. okding to experiments carried out by
Scheirer [17], there exists no optimal decomposition smeay subband layouts lead to comparable
satisfactory results. In addition, he argues that a "psgicbastic simplification” consisting in a simple
envelope extraction in a number of subbands is sufficienktiaet pulse and meter information from
music signals. The tempo estimation system herein propissedilt upon this principle.

The concept of phenomenal accent as a discrete sound eaystplfundamental role in metrical
analysis. Humans hear them in a hierarchical structure,isha@ phenomenal accent is related to a
motif, several motifs are clustered into a pattern and a caligiiece is formed of several patterns
that may be different or not. In the present work, we atterogte acute (in a computational sense)
to the physical events in an audio signal related to the mésmaEfrmusical stress, such as magnitude
changes, harmonic changes and pitch leaps. That is, aceffstits that can be heard and are musically
relevant for the listener. The attribute of being sensitivéhese events does not necessarily implies
the need of a specific algorithm for detecting harmonic actpithanges, but solely a method which
reacts to variations in these characteristics.

In practice, calculating a profile of the musical stress @né# a music signal as a function of time
is intimately related to the task of detecting onsets. Rbbuset detection for a wide range of music
signals has proven to be a difficult task. In [31] Bello pr@sda survey of the most commonly used
methods. While we propose an approach that exploits previesearch [16], [22] as a starting point,
it significantly improves the calculation of the SpectrakEgy Flux (SEF) or spectral difference [32].
See Figure 3 for an overview of the proposed method. As in theigus section, the algorithm will
be presented for a single subband case and only for the harmemponents, (n), since the same
procedure is followed for the noise paut,(n) and the rest of the subbands.

Spectral energy fluxThe method that we present resides on the general assuntped the
appearance of an onset in an audio stream leads to a variatihre signal’'s frequency content.
For example, in the case of a violin producing pitched nates,resulting signal will have a strong
fundamental frequency that leaps in time as well as the egléitarmonic components at integer

1since the power spectral density of audio signals is a dsiogaunction of frequency, the use of a pre-accentuation
filter that tends to flatten this global trend is necessaryoun implementation we use the same filter as in [26], that is:
G(2) =1-0.982"1
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Fig. 3. Overview of the system to estimate musical stress.

multiples of the fundamental attenuating as frequencyeiases. In the case of a percussive instrument,
the resulting signal will tend to have sharp energy boodte. Farmonic componenj,(n) is analyzed
using the STFT, leading to

Sp(m, k) = Y w(Mm —n)s,(n)e I Fr" 7)
wherew(n) is a finite-length sliding window)/ the hop sizejn the time (frame) index ané =
0,...,N — 1 the frequency channel (bin) index. To detect the above meati variations in the
frequency content of the audio signal, previous methode pavposed the calculation of the derivative
of S,(m, k) with respect to time

Ey(l,k) =Y h(l —m) Gy(m, k) (8)

and whereE, (I, k) is known as the Spectral Energy Flux (SEE}m) is an approximation to an
ideal differentiator .
H(e*™) ~ jor f 9)

and )
Gp(mv k) = -7:{|Sp(m7 k)l} (10)

is a transformation that accentuates some of the psychetically relevant properties oﬁ’p(m, k).

In solving many physical problems by means of numerical wegh it is a challenge to seek
derivatives of functions given in discrete points. For epdamin [16], [22] authors propose a first
order difference withh = [1, —1], which is a rough approximation to an ideal differentiatarthis
paper, we use a differentiator filté{m) of order2L based on the formulae for central differentiation
developed by Dvornikov in [33] which provides a much closppmximation to (9). Other efficient
differentiator filters can be used providing comparableltssfor instance, FIR filters obtained by the
Remez method [34]. The underlying principle of the propogdiggtal differentiator is the calculation
of an interpolating polynomial of orde2L passing througt2L + 1 discrete points which is used
to find the derivative approximation. A comprehensive deson of the method and its accuracy
to approximate Equation (9) can be found in [33]. The anedytexpression to compute the firkt

coefficients of an antisymmetric FIR differentiator is givhy g(i) = ﬁ with
L 2
aiy= ] <1 - ;_2) (11)
j=1
J#i
and: =1,..., L. The coefficients oh(m) are given by

h=[-g(L),...,0,...,9(L)] (12)
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Fig. 4. The smoothing effect of the energy integration fioxcemphasizes signal attacks but masks rapid modulatitimes.
image shows aitched frequency channel corresponding to piano signal (uppe) pafore smoothing and (lower part) after
smoothing.

In our proposal, the transformatias(m, k) calculates a perceptually plausible power envelope for
frequency channet and is formed of two steps. First, psychoacoustic reseanckhomputational
models of mechanical to neural transduction [35] shows tiatauditory nerve adaptation response
following a sudden stimulus change can be characterizechassim of two exponential decay
functions:

p(m) = ae” ™ 4 Bem ™2 for m >0 (13)

formed by a rapid decline component with time constahni (in the order of 10 ms and a slower
short-term decline with a time constafit.] in the region of 70 ms. This adaptation function performs
energy integration, emphasizing the most recent stimulusilasking rapid modulations. From a signal
processing standpoint, this can be viewed as two smootbimngpbss filters whose impulse response
has a discontinuity that preserves edge sharpness andsalwlithg signal attacks. In practice, the
smoothing window is implemented as a 2nd-order IIR filterhwittransform

a+ 08— (aze+ Bz1271)
d(z) = — —-
1—(z14+29)27 + 21202

(14)

whereT) = 15ms, T, =75 ms,a =1, 8 =5, z1 = e /" andz, = e~ /"2, Figure 4 shows
the role of the energy integration function after convolyih with a pitched channel of a signal’s
spectrogram representation.

The second part of the envelope extraction consists in aitbgac compression. This operation
has also a perceptual relevance since the logarithmicrelifte function gives the amount of change
in a signal’s intensity in relation to its level, that is

%log I(t) = A]i—i)t) (15)
This means that the same amount of increase is more promimenguiet signal [16], [36].

In practice, the algorithm implementation is straightfard, and is carried out as presented in
Figure 3. The STFT in Equation (7) is computed using/énpoint fast Fourier transform (FFT).
The absolute value of every frequency chanrt@(,m,kﬂ is convolved with¢(m). The smoothing
operation is followed by a logarithmic compression. Theultasg G(m, k) is given by

G(m’ k) = logy (Z |§(2v k)|¢(m - Z)) . (16)

At those time instants where the frequency content,¢f) changes and new frequency components
appearE(l, k) exhibits positive peaks whose amplitude is proportion&h&energy and rate of change
of the new components. In a similar way, when frequency carapts disappear from,(n), the SEF
exhibits negative peaks, marking tbffsetof a musical event. Since we are only interested in onsets,
we apply a half-wave rectification (HWR) tB8((, k), i.e., only positive values are taken into account.
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Fig. 5. Trumpet signal example, see text for a descriptiammFtop to bottom: harmonic part waveform, spectrogram
representation, the corresponding spectral (¥, k) and the detection function(l).

To find a global stationarity profile(l), better known as théetection functioncontributions from
all channels are integrated across frequency

v(l)= > E(k). (17)
E(l,2)>0

v(l) displays sharp peaks at transients and note onsets, thataatsmwhere the positive energy flux is
large. Figure 5 shows an example for a trumpet signal. Frgntadoottom: waveform of the harmonic
part for the subbansy (n); the respective STFT modulus, highlighting the signal'sfanic structure;
SEFE(l, k), dotted vertical edges indicate the regions where the SEfFge; the bottom part presents
the detection functior(l), onset instants and intensity are indicated by peaks tathd height
respectively.

The output of the phenomenal accent detection stage is tbwhéwo signals per subband: the
harmonic part detection functios} (1), and the noise part detection functiofi(l).

C. Periodicity estimation

The basic constituents of the comb-like detection funatiof(/) andv,’(l) are pulsations repre-
senting the underlying metrical levels. The next step &igsh estimating the periodicities embedded
in those pulsations. This analysis takes place at a sublewedl for both harmonic and noise parts.
As briefly mentioned in Section |, many periodicity estinatialgorithms have been proposed to
accomplish this task. In the present work, we test threesdifft methods widely used in pitch
determination techniques: the spectral sum, the speawdupt and the autocorrelation function. The
procedure described below is repeatdtimes to account for the harmonic and noise parts in all
subbands. In this stage, no decisions about the pulse inegsepresent i, (l) are taken, but only
a measure of the degree of periodicity present in the signedliculated. Firsty,(!) is decomposed
into contiguous frameg,, with n = 0,..., N — 1 of length/ and an overlapping of samples, as
shown in Figure 6. Then, a periodicity analysis of every feais carried out producing a signal
of length K samples generated by any of the three methods explained:belo

1) Spectral sum:The spectral sum (SS) method relies on the assumption teasghctrum of
the analyzed signal is formed of strong harmonics locatemhtager multiples of its fundamental
frequency. To find periodicities, the power spectrumgef i.e., |G, (e/2"/)|, is compressed by a
factor \, then the obtained spectra are added, leading to a reinfdwrelamental. For normalized
frequency, this is given by

A
) . 1
= N F2mAf\ |2 f 18
= LGP tor < 57 a8)



LIl L)L

g(, R
g1 v p ngl

Fig. 6. Decomposition oby (1) into contiguous overlapping windows, .

whereA is the upper compression limit that ensures that half thepagfrequency is not exceeded.
The spectral sum corresponds to the maximum likelihoodtioluof the underlying estimation
problem.

2) Spectral productThe spectral product (SP) method is quite similar to the abbentioned SS,
the only difference consists in substituting the sum by apc, that is

1
rn_H|G (7222 for f<3x (19)

3) Autocorrelation: The biased determlnlstlc autocorrelation (AC)gf

= 2 g1+ 1)) (20)
l

Data fusion.Once allr,, have been calculated, they are fused in a two step proceass,. &rery
r, from the harmonic and noise parts is normalized by its largakie and weighted by a peakness
coefficient ¢,, calculated over the corresponding In this way, we penalize flat windows, (bearing
little information) by a low weighting coefficient,, ~ 0. On the opposite side, a peaky windgy
leads toc,, =~ 1. The second step consists in adding information from albaualds coming from both
harmonic and noise parts:

1 & 1 &
Tn = op Z Ci,prfhp + op Z c;f’prip (21)
p=1 p=1

where the superscript andw on the right side indicate the harmonic and noise part résehc
Since this frame process is repeafédimes, then all the resulting, are arranged as column vectors
(,,) to form a periodicity matrixI® of size K x IV as follows

T=[vov: - Ynaal (22)

I" can be seen as a time—frequency representation of the ipnsaresent in:(n), since rows exhibit
the degree of periodicity at different frequencies, whitduens indicate their course through time.

D. Finding and tracking the best periodicity paths

At this point of the analysis, we have a series of metricaélesandidates whose salience over
time is registered in the columns &f. The next stage consists of parsing through the successive
columns to find at each time instantthe best candidates and thus track their evolution. Dynamic
programming (DP) is a technique that has been extensivedg s solve this kind of sequential
decision problems, details about its implementation carfooed in [37]. In addition, it has also
been proposed for metrical analysis [22], [38]. At each tiirz@ne n there existsK potential path
candidates called'(,, ). The DP solves this combinatorial optimization problem byraining all
possible combinations of thE, ;) in an iterative and rational fashion. Then, a path is formgd b
concatenating a serieg, of selected candidates from each frame: Ihg ,, ). The DP procedure
iteratively defines a scor§,, ;) for a path arriving at candidate,, , and this score is a function of

1/¢
2In the present work we use as peakness measutel — ¢, where¢ = (]‘[le g(l)) / / (1/6 Zf;l g(l)). Since¢
(the ratio of the geometric mean to the arithmetic mean) istadss measure bounded to the redioqd ¢ < 1, whenc — 1
it means thay(l) has a peaked-shape. On the contrary; & 0, means thay(l) has a flat-shape.
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three parameters: the score of the path at the previous f&mse .. ), wherey,_,) represents
the candidate through which the path comes from timel; the periodicity salience of the candidate
under analysid’(, x); and a transition penalty, also called local constraln;, _, ) who deprecates
the score of a transition from candidate_; at timen — 1 to candidate: at timen according to
the rule shown in Figure 7. These three parameters are ddlatine following way:

Stnk) = Stn—-1,0n-1)Ppn_1,k) T Lini)- (23)

The transition-penalty rule relies on the assumption thatdmmon music, metrical levels generally
vary slowly in time. In our implementation, a transition hetvertical axis of one position corresponds
to aboutl BPM (the exact value depends on the method used to estimagetivdicity). Thus, the
DP smoothes the metrical level paths and avoids abruptiti@rs In addition, the DP stage has been
designed such that paths sharing segments or being too(etak@ BPM) to more energetic paths are
pruned. Figure 8 shows an example of the DP performanceginpiper part can be seen an image
of the time—frequency matriX* for Mozart's pieceRondo Alla Turcashowing in black shades the
salience. In the lower part are shown the three most saliatfispobtained by the DP algorithm and
representing metrical levels related as 1:2:4. To estintegdactus, the path with highest energe.(
the most persistent through time) is selected and the azevhis values is computed. If a second
most salient periodicity is required (for example, as dedeahin the MIREX'05 "tempo extraction
contest”) the average of the second most energetic patlinebtay the DP algorithm is provided as
secondary tactus.

IIl. PERFORMANCE ANALYSIS

In this section, we present the evaluation of the proposetesy. Its performance under different
situations is also addressed, along with a comparison tthaneeference method. Note that the
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tempo estimation system includes beat-tracking capisilinlthough this task is not evaluated in the
present paper.

A. Test data and evaluation methodology

The proposed system was evaluated using a corpus of 961ahesaerpts taken from two different
datasets. Approximately 56% of the data comes from the asitpavate collection, while the rest is
thesong excerptpart of the ISMIR’04 “tempo induction contest” [39] for whidata and annotations
are freely available. The musical genres and tempi dididhwf the database used to carry out the
tests are presented in Figure 9. Genre categories werdesekeocording to those dfmazon.coff.

To construct both databases, musical excerpts of 20 s wighatively constant tempo were extracted
from commercial CD recordings, converted to monophonimfarand downsampled at 16 kHz with 16
bits resolution. In the authors’ private database, eachrgxevas meticulously manually annotated by
three skilled musicians who tapped along with the music evthik tapping signal was being recorded.
The ground-truthwas computed in a two step process. First, the median of tiee-leat intervals
was calculated. Then, concording annotations from diffea@mnotators were directly averaged, while
annotations differing by an integer multiple were normediazn order to agree with the majority before
being averaged. If no consensus was found the excerpt watedj Thesong excerptglatabase was
annotated by a professional musician who placed beat marlsdiog excerpts and the ground-truth
was computed as the median of the inter-beat intervals [40].

Quantitative evaluation of metrical analysis systems iopan issue. Appropriate methodologies
have been proposed [41], [42], however they rely on an arslumuextremely time-consuming
annotation process to obtain the ground-truth. Due to sumhations in the annotated data, the
guantitative evaluation of the proposed system was confméioe task of estimating the scalar value
of the tactus (in BPM) of a given excerpt, instead of an extiaeievaluation at several metrical
levels involving beat-rates and phase locations. A firgh stevards benchmarking metrical analysis
systems has been proposed in [40]. In a similar way, duringesaluation two metrics are used:

« Accuracy 1 the tactus estimation must lie within a 5% precision windofrthe ground-truth

tactus,

« Accuracy 2 the tactus estimation must lie within a 5% precision windofrthe ground-truth

tactus or half, double, three times or one-third of the gbtroth tactus.
The reason for using the second metric is motivated by thetfet the ground-truth used during
the evaluation does not necessarily represent the meteical that most of human listeners would
choose [40]. This is a widespread assumption found amongaalesystems evaluations.

B. Experimental results

1) Effect of window length and overlajt is interesting to know if the combination of the three
periodicity algorithms that we use (SS, SP and AC) wouldheascore higher than individual entries.
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For this reason we created a fourth entrant callethod Fusion(MF) that combines results from the
three other methods using a majority rule. If there existageement between methods, preference
was given to the SS. To measure the impact of the window lefgthe overlapping was fixed to

p = 0.5¢. Then, several values df were tested as shown in Figure 10. For the spectral methods a
performance gain is obtained &sicreases. This improvement is especially important ferapproach
based on the SP. In the case of the AC, increaéimgs counterproductive, since it slightly degraded
the performance probably due to the influence of the spumpeaks inv,(1). There exists a trade off
between window length and adaptability to rhythmic flucirag. From Figure 10 it can be seen that
accuracy for the SS and MF methods has practically reacbemaximum wher! = 5 s. We then
study the overlapping parameter influence on the overall performance for a fixedainlength

(¢ = 5 s). Figure 11 clearly shows that introducing this redungtancdhe time—frequency matrix’
yields a significant gain in performance for the SS, SP and M¥hods, this can be explained by
the fact that the DP stage has a larger data horizon and adefiés to metrical levels paths. For
the AC method, varying does not seem to have a significant effect in the results. Akerd case,
large p values bring a loss in adaptability. We fixed the overlapgimg = 0.6¢, since it provides

a "good” trade-off between accuracy and tracking capabititereafter, all results will be computed
using/ =5 s andp = 0.64.

2) Performance per genreFigure 12 presents the algorithms’ performance in the fofrbars
showing accuracys. musical genre, these results were calculated usingAtwiracy 1criterion.
Figure 13 presents the algorithms’ performance but thig tirsing theAccuracy 2criterion. Results
are in general considered satisfactory. With the only etiaepf greek music, for all genres at least
one of the periodicity methods obtained a score above 90%theoreggae, soul and hip-hop genres
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in some cases even a success rate of 100% was obtained (bhadercuracy 2criterion), although
such results must be taken with cautious optimism sincestbeares are not particularly difficult and
their representation in the dataset is rather limited, asvaehin Figure 9. For enhancement purposes,
it is perhaps more interesting to analyze the instancesentier algorithm failed. For the classical
genre, the cases where the algorithms failed are mostlyetel® smooth onsets (usually in string
passages) that are not detected. In some excerpts a wronigahkvel was chosen (for example 2/3
of the tempo). In the jazz case, most failures are relatecbtp-glvythmic excerpts where the tactus
found by the algorithm differed from the one selected by thaagators. For the latin, pop, rock,
“other” and greek genres, the large majority of the erroesfaund in excerpts with a strong speech
foreground or having large chorus regions, both incoryecthnaged by the onset detection stage.
For the greek genre, poly-rhythmic excerpts with a peculme-signature are often the cause of a
wrong detection. In techno music, some digital sound efféedd to false onsets.

3) Impact of the harmonic+noise decompositiohnatural question arises when we inquire about
the influence of the harmonic plus noise decomposition irstlséem’s performance. To answer it, the
proposed method has been slightly modified andstiigspace projectioblock presented in Figure 2
has been bypassed. This modified approach is based on aygeyistem that has been compared to
other state of the art algorithms and was ranked first in #¢ Annual Music Information Retrieval
Evaluation eXchange” (MIREX) in the "Audio Tempo Extraatiocategory. Evaluation details and
results are available on-line [24], [43]. Besides, we deditb assess the contribution of the harmonic
plus noise decomposition proposed in section II-A (EVD H+y)comparing it to a more common
approach based on the STFT (FFT H+N). The principle usedrfonme this decomposition is close to
that proposed by [44]. In addition, we compared the abovetioeed system variations to the well-



14

95

& iy CJEVDHN
%0 i b [CIFFT H+N
& i B without H+N
H &
85 Ml
g
>
3 80
=3
8
<
75
70
65— Q00— U U = !
SS SP AC MF Scheirer

Fig. 14. Algorithm comparison to see the influence of the H-4dd¢amposition. The error-bar indicates the 95% confidence
interval calculated a3$.96, / p—z\‘} wherep corresponds to the accuracy (in tfe1] range) of the algorithm under analysig,
is computed byy = 1 — p and N is the total number of excerpts under analysis [45, page 47].

known classical method proposed by Schéifdr7]. A small modification of Scheirer’s algorithm
output was carried out, since it was conceived to produce afdeeat times rather than an overall
scalar estimate of the tactus.

The accuracies of the algorithms can be seen in Figure 14leWhé proposed system (EVD
H+N) attained a maximum score of 92.0%, it was slightly odipened by its variation based on
the STFT decomposition (FFT H+N), who obtained 92.3% of amcy (both under the SS method).
All tests showed better performance for the H+N based appes with the exception of the STFT
decomposition (FFT H+N) when combined with the SP peridgiestimation method. The results
shown in Figure 14 suggest that the statistical significamtiee accuracy between carrying out a H+N
decomposition or not, depends on the method used. WhileShen8 MF show a small but consistent
improvement, the SP and AC fail to present the H+N decomiposis statistically advantageous.
Nevertheless, a general trend indicating a better perfoceés perceived.

After taking a closer look at the improvement obtained byhgghe H+N decomposition, we can
see that it is mainly formed of excerpts containing weakcifasuch as bowed-string and wind
instruments, and to a lesser extent of signals with a rathear chythm but with a salient speech
foreground (vocals). When we examined the excerpts for iwhicne of the algorithms succeeded,
we found practically the same kind of signals: bowed-ssingth large vibratos and weak attacks,
orchestral pieces and signals with a strong speech foradrdn fact, the weakness of the algorithm
lies in the musical stress estimation module. This can ba ssea single problem formed of two
different facets:

« the incapability of detecting soft attacks mainly seen mssical pieces, while visual inspecting

the set of detection functions we noticed that true attacksat surpass the noise level,

« the presence of too many false attacks in the detectionibtmanainly provoked by the appear-

ance of local frequency variations seen in vibratos anddpsignals.
Both kinds of malfunctions produce an erroneous periogimibfile and consequently a wrong tempo
estimation.

As can be seen from Figure 14, the majority rule combinatibthe three periodicity estimation
methods (MF) did not obtain the best performance. Since ®eéh& the higher score among all
methods proposed, it will be the only one considered in the part of the analysis.

4) Robustness to signal degradatiom order to evaluate robustness to signal degradation, we
used the scenario suggested by Gouwdral. [40] with minor modifications: every excerpt was
downsampled, GSKMencoded/decoded, up-sampled at 16 kHz, band-pass filterétei500-4000
Hz range, reverberation with a delay of one second was aduk@irally corrupted by white Gaussian

S3This version of Scheirer’s algorithm was ported from the Bdpha platform to GNU/Linux by Anssi Klapuri.

4Based on the digital speech codec GSM 06.10 “Regular Pulsétafign Long-Term Predictor” (RPE-LTP) compressing
at 13 kbps.



15

100
[ JSSEVD H+N
[ ISSFFTH+N
[ without H+N

90 %{»{» {» {» I scheirer

» e
. i

60

50 i
a0— U1 oy

20 10 0
SNR (dB)

Accuracy (%)

Fig. 15. Robustness to signal degradation. The EVD H+N d@lgurdisplays the highest strength to signal distortion.

Periodicity Dynamic
estimation programming
Filter <1%< 1%
bank 5%

13% Accent
estimation

Subspace
projection

80%
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noise at three different SNRs. The performance of the etedusystems are presented in Figure 15.
While the EVD H+N version displays an outstanding robustntessignal distortion, its counterpart
FFT H+N shows to be more sensitive, even than the non-decsitipoapproach. This fact becomes
more evident as the SNR reduces, however the interest of i dbproach for noise robustness is
guestionable in this case since the difference is not statily significant. The EVD H+N robustness
to signal degradation has been previously exploited in iteeature as a denoising tool for speech
signals in automotive applications [46], [47]. As long as tBNR is high enough to guarantee that
the 2/ -dominant eigenvectors di, (see Section II-A) effectively correspond to the audio aign
the harmonic parts(,(n)) will be noise free. If the SNR is further reduced, spurioamponents will
be detected among the dominant eigenvectors, as a restilath®nic part will be corrupted. Figure
15 also shows Scheirer’s algorithm robustness to signsbrdisn.

5) Computational cost:A key attribute of any tempo estimation system is its comional
complexity. Since we implemented our algorithm under M&@s6.5.1 (R13) and we use a humber of
built-in functions, a meticulous evaluation appears todtear complicated. The approach we adopted
to estimate the burden is not the most infallible, but it is thost straightforward yet providing a
tangible opinion about the true complexity. We measuredithe it takes to the EVD H+N algorithm
to process a 20 s excerpt taken from the test-base. Figurbdisssthe percentage consumption per
analysis block and the total processing time @248 s. This figures were obtained using a Pentium
4 machine running at 2.4 GHz with 512 MB of memory under DeliEU/Linux 3.1 (Sarge). The
subspace projection stage is by far the most time consumoukb
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IV. CONCLUSIONS

In this paper we have presented a system that successfalyzas acoustic music recordings in
order to extract tactus information. The proposed methaiwaéidated using a large dataset containing
961 instances covering several musical genres. Withoutiniag any high-level music information,
our system shows that a good accuracy can be obtained usomgraan system configuration and the
same parameter set. Moreover, our results indicate thanugasing the audio signal into harmonic
and noise parts prior to rhythm analysis yields a small bastent improvement in performance and
proved to be robust to signal distortion. The major drawhzfdke system is that this accuracy increase
was obtained at the expense of a high computational costust ime remarked that the combination
of the system components (harmonic and noise) is ratherecamd this may explain that only a
small improvement in performance is obtained. Further walréuld be dedicated to the elaboration
of improved fusion strategies. We have also presented aitpoh to estimate the musical stress as a
function of time which copes with a large variety of musicreits. In addition, we use a multi-path
dynamic programming algorithm to provide temporal stipiis well as a robust multi-periodicity
tracking, even in the presence of arrhythmic or slight malsgassages. Compared to a previous
variant of our algorithm [34], the major changes in this nession consist in incorporating a dynamic
programming block and in avoiding any thresholding (neitierd or adaptive). These upgrades have
notably increased the system performance and robustnesgeudr, it appears that further effort
should be devoted to the musical stress module to improvevkeall system performance. In fact,
a significant number of errors are the consequence of nacidet or over-detected attacks in the
musical stress profile. This is especially the case for $sgrantaining tenuous attacks or predominant
vocal passages. Although the current system displays agegiormance when computing the main
tempo, future work is still needed to obtain a complete amdctired metrical description of a
musical piece that will fully exploit the information retat to the metrical levels that is provided
by the dynamic programming stage. If the reader is intedesiedetailed list containing the name
of excerpts used during the evaluation, the BPM annotatimsall algorithm results can be found
on-line atwww. t si . enst.fr/ ~grichard/jasp06/.
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