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ABSTRACT
We present a new approach of symbolic audio-to-score align-
ment, with the use of Conditional Random Fields (CRFs).
Unlike Hidden Markov Models, these graphical models allow
the calculation of state conditional probabilities to be made
on the basis of several audio frames. The CRF models that
we propose exploit this property to take into account the
rhythmic information of the musical score. Assuming that
the tempo is locally constant, they confront the neighbor-
hood of each frame with several tempo hypotheses.

Experiments on a pop-music database show that this use
of contextual information leads to a significant improvement
of the alignment accuracy. In particular, the proportion of
detected onsets inside a 100-ms tolerance window increases
by more than 10% when a 1-s neighborhood is considered.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing—Methodologies and techniques

General Terms
Algorithms, Experimentation

Keywords
Conditional Random Fields, Music Information Retrieval,
Audio/Score Alignment, Indexing

1. INTRODUCTION
Audio-to-score matching aims at finding the correspon-

dence between a musical score and a recording of the piece.
This matching allows for the use of the score as precise index-
ing information about the audio. Thus, applications such as
score-controlled audio browsing or automatic musical anal-
ysis can be associated to this task. We deal with the case
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where the score is a “perfect scanned sheet”, that is a sym-
bolic score where the relative note durations (according to
the tempo) are indicated, but where the tempo is unknown.

Many work on audio-to-score alignment rely on Hidden
Markov Models (HMM) [8, 6] whose hidden states account
for the notes or chords of the score. The dependencies be-
tween different audio frames are modeled by the state transi-
tion model. However, the HMM structure is limited in that
it can only render a specific form of temporal dependencies.
In particular, the correlation between the note lengths —the
idea of tempo— cannot be modeled.

Different approaches have been proposed in previous works
to incorporate this concept of tempo into the models. Raphael
[9] and Cont [1] consider an additional random variable rep-
resenting tempo. Thus, additional dependencies between
variables at different times can be modeled. However, in
such semi-Markov models, an audio observation is supposed
to depend only on the current state.

In [7], a “filtering” of the similarity matrix is introduced
to include contextual information in the comparison between
points of an audio stream for musical structure analysis.

Following a similar idea, we propose in this work to take
into account the neighborhood of each audio frame in our
symbolic audio-to-score alignment problem. This is made
possible in the Conditional Random Fields [5] (CRFs) frame-
work. CRFs are probabilistic models for labeling and seg-
menting sequential data, which have been designed for nat-
ural language processing [5]. This framework allows for the
consideration of audio frames from an arbitrary past or fu-
ture for the calculation of each state probability.

The rest of this paper is organized as follows: our CRF
model for symbolic audio-to-score alignment is introduced
in Section 2. Section 3 provides results of alignment experi-
ments and finally some conclusions are drawn in Section 4.

2. CONDITIONAL RANDOM FIELDS FOR
MUSIC-TO-SCORE MATCHING

2.1 Conditional Random Fields
Conditional Random Fields (CRFs) are a form of undi-

rected graphical models that can be seen as the discrimina-
tive counterpart of HMMs, which are said to be generative.
Whereas in HMMs, the observations are conditioned on the
hidden variables, CRFs condition these hidden variables on
the observation sequence.

Figure 1 compares both model structures. Double nodes
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Figure 1: Comparison between HMM and CRF
graphical representations.

5:4: 6: 7:3:2:1:

Figure 2: Example of the score segmentation into a
sequence of chords.

represent observed variables and shaded nodes (in CRF) cor-
respond to variables that the model conditions on. Since
these latter variables are observed, no conditional indepen-
dence property is assumed, contrary to HMMs, in which the
observed variables are independent given the hidden vari-
ables. Thus, features from an arbitrary past or future may
be considered without a significant increase of the decoding
complexity. For more information, we refer to [5].

2.2 Structure of the Alignment Model
The audio recording is split into short overlapping frames.

Let xN1 = x1 . . . xN be this observation sequence of lengthN .
Our aim is to find the positions in the recording (as frame
indexes) of the notes indicated by the score. However, it can
also be seen as the problem of assigning a location in the
score to each frame. More precisely, we segment the score
into chords, which are sets of notes sounding simultaneously.
This is illustrated in Figure 2. Then, we search for the chord
label sequence that best matches the audio data.

Let YN
1 be the (unobserved) random process representing

the chord labels. In the following, the boundary indexes N
1

will be omitted when not needed to clarify the presentation.
We also consider other hidden variables than the chord label
to model the random process. Let Tn be a (discrete) ran-
dom variable symbolizing the current tempo value, and Dn
the location within the current chord at time n ({Dn = d}
means that the current chord started at time n−d).

Our goal is to find the most probable sequences of chord
labels ŷ, duration indexes d̂ and tempo values t̂, given the
observation sequence x:`

ŷ, d̂, t̂
´

= argmax
y,d,t

p (Y = y,D = d,T = t|X = x) . (1)

The returned chord label sequence is then ŷ.
Let Vn = (Yn, Dn, Tn) be the vector of hidden variables

at time n. In CRFs, the assumption is made that the pro-
cess {Vn} verifies the Markov property, conditioned on the
observation sequence. Thus, the conditional probability of
(1) can be factorized as

p (v|x) = p(v1|x)

NY
n=2

p(vn|vn−1,x). (2)

Dn−1 Dt+1Dn

Tn

Yn

XnXn−1

Yn−1 Yn+1

Xn+1 Xn+νXn−ν . . .. . .

Figure 3: Graphical representation of our CRF mod-
els. Solid lines: unconstrained model. Dashed lines:
additional edges of the constrained model (only edges
concerning variables at time n are drawn).

2.2.1 Unconstrained Model
In our first model, which we call the unconstrained model,

a simplifying hypothesis allows us to obtain a problem which
is very close to a HMM. We assume that the probability
p(vn|vn−1,x) can be separated into a transition function
ψ(yn, yn−1) controlling the transitions between the chords,
and an observation function φν(vn,x

n+ν
n−ν) which links the

current hidden variables with the observations within a neigh-
borhood of ν frames. The probability of (2) can then be
written

p (v|x) =
1

Z(x)
ψ0 (y1)

NY
n=2

ψ (yn, yn−1)

NY
n=1

φν
`
vn,x

n+ν
n−ν

´
(3)

where Z(x) is a normalizing factor. The CRF framework
allows us to take into account an arbitrary neighborhood
(thanks to the parameter ν) in a simple manner. Note that
the case ν = 0 boils down to a hidden Markov model.

2.2.2 Constrained Model
In the previous model, the transition function ψ does not

depend on the variables Dn, indicating that no prior in-
formation on the sequence D is modeled. This choice is
explained by complexity considerations, however this is a
very coarse approximation. Indeed, this process is strongly
structured since it is in fact a counter: we have either Dn =
Dn−1 +1 (if the chord is the same), or Dn=0 (if Yn 6= Yn−1).

This constraint on the process D is added in the con-
strained model. In this model, the probability factorizes as:

p (y,d, t|x) =
1

Z(x)
ψ0 (y1)

NY
n=2

ψ′(yn, dn, yn−1, dn−1)

NY
n=1

φν
`
yn, dn, tn,x

n+ν
n−ν

´
. (4)

The transition function ψ′ takes four arguments, resulting in
a more complex model than the previous one. The graphical
representations of both models are displayed in Figure 3.

2.3 Transition and Observation Functions

2.3.1 Transition Functions
In the alignment process, we suppose that the order of the

chords is the one indicated in the score. Hence, there are
only two possible chord transitions: either a continuation of



the same chord, or the beginning of the next one. We then
set the transition functions of (3) to:

ψ0(y1) = δ{y1,1}

ψ(yn, y1) = δ{yn,yn−1} + δ{yn,yn−1+1},

where δ{·,·} is the Kronecker function. Thus, only sequences
of chords in the right order have non-zero probabilities.

For the constrained model, in order to express the struc-
tural constraint on Dn−1 (see Sec. 2.2.2), the transition func-
tion becomes:

ψ′(yn, dn, yn−1, dn−1) = δ{yn,yn−1}δ{dn,dn−1+1}

+δ{yn,yn−1+1}δ{dn,0}.

2.3.2 Observation Functions
The features that we use in this work are chroma vectors

which are extracted according to [10], with a time resolution
of 50 Hz. These features provide an efficient representation
of the pitched content of a musical signal for our task [4].

For a chord label y, we build a chroma vector template
gy from the content of this chord, as in [3]. This template
is normalized so that it can be regarded as a probability
distribution over the chroma bins. In the case of silence, we
use a flat template, in order to model the background noise.
As a matching measure f(x, y) between a chroma vector x
and the chord y, we use the opposite of the Kullback-Leibler
divergence:

f(x, y) = −
12X
i=1

x̄(i) log

„
x̄(i)

gy(i)

«
(5)

where x̄ is a normalized version of x so that it sums to 1,
and x̄(i) is the i-th component of this vector.

In order to take into account the observations extracted
from several frames, we make the assumption that the tempo
changes slowly over time and can be considered as locally
constant over windows of length 2ν + 1 frames. Thus, it is
possible to confront a local feature sequence with a chord
sequence corresponding to a score position and a (constant)
tempo hypothesis.

Formally, let vn = (yn, dn, tn) be the hidden variable vec-
tor, let s(vn) be the chord label sequence corresponding to a
theoretical rendition of the score with the hypothesis: Hvn :
{The tempo is constant and equals tn; the score position at
time n is (yn, dn)}. We define the observation function as:

φν
`
vn,x

n+ν
n−ν

´
= exp

„ νX
k=−ν

λkf
“
xn+k, sn+k(vn)

”«
, (6)

where the λk are parameters which control the importance
given to the features at the different time-shifts. Intuitively,
the weights λk should be decreasing with |k|, in order to

emphasize the current feature. We set λk = e
− 2|k|

Fs , where
Fs is the feature sampling rate.

Note that in the case ν = 0, the value of φ0(vn, xn) does
not depend on the tempo and duration variables, since we
always have φ0 (vn, xn) = exp

`
λ0f(xn, yn)

´
.

When the hypothesis Hvn is inconsistent, i.e. when dn is
greater than the length of the chord yn at tempo tn, we set
φν
`
vn,x

n+ν
n−ν

´
= 0.

2.4 Decoding Process
In the case of the unconstrained model, the optimization

problem of (1) can be factorized. Indeed, the maximization

over d and t can be done “at the feature level”. We define:

φ̃ν
`
yn,x

n+ν
n−ν

´
= max

d,t

˘
φν
`
yn, d, t,x

n+ν
n−ν

´ ¯
. (7)

This maximum can be computed by an exhaustive search,
since all our hidden variables are discrete. The equation (1)
can then be written:

ŷ = argmax
y

n
ψ0(y1)

NY
n=2

ψ(yn, yn−1)

NY
n=1

φ̃ν
`
yn,x

n+ν
n−ν

´o
,

The Markov property of the hidden variables allows for a
decoding with the Viterbi algorithm.

For the constrained model, the optimal sequence is:`
ŷ, d̂

´
= argmax

y,d


ψ0 (y1)

NY
n=2

ψ (yn, yn−1)

NY
n=1

max
t

˘
φν
`
yn, dn, t,x

n+ν
n−ν

´ ¯ff
.

(8)

The Viterbi algorithm can also be used here. However, the
decoding is more complex than for the former model, since
the process d̂ needs to be stored as well as ŷ.

3. ALIGNMENT EXPERIMENTS

3.1 Database and Setting
We apply the presented models to an offline audio-to-

score alignment task, on a database of 94 pop songs, from
the RWC database [2]. These songs are polyphonic multi-
instrumental pieces of length 2 to 6 minutes. The align-
ment ground-truth is given by the synchronized MIDI files
provided with the recordings. The same MIDI files are ex-
ploited as target scores, however we do not use the timing
information of these ground truth files, as mentioned above.

The chosen evaluation measure is the recognition rate,
defined as the fraction of onsets which are correctly detected
less than a threshold θ away from the real onset time. We
test two values of θ: 300-ms and 100-ms.

The set of possible tempo values Σ has to be a (not too
large) finite set, in order to solve the tempo maximization
of eq. 7 and 8. Two tempo sets have been selected, based on
musical motivations, given here in beat per minute (bpm):

Σ1 = {40, 64, 88, 120, 160, 200, 240},
Σ2 = {40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120,

132, 146, 160, 176, 192, 208, 224, 240}.

Finally, we consider three values of the parameter ν: 0,
25 and 50 frames, corresponding to 0-s, 0.5-s and 1-s.

3.2 Results and Discussion
Table 1 displays the recognition rates obtained in these

experiments. From these results, we can first notice that
better scores are obtained with the tempo set Σ2 than with
Σ1 (except in the case ν = 0, where the tempo set has
no effect). Consistently with one’s intuition, the feature
sequences considered in Sec. 2.3.2 can be more accurately
modeled when more tempos are tested.

It can also be observed that the additional variable depen-
dencies rendered by the constrained model (compared to the
unconstrained one) improve the accuracy of the model, since
the former system always performs better than the latter,
for the same parameter settings. This improvement also oc-
curs in the case ν = 0, where no neighborhood is considered.



Unconstrained Model Constrained Model
Tempos ν =0 ν =25 ν =50 ν =0 ν =25 ν =50

Σ1 65.1 69.3 74.4 79.1 76.4 78.9
Σ2 65.1 69.9 75.7 79.1 76.8 79.7

(a) θ = 300 ms

Unconstrained Model Constrained Model
Tempos ν =0 ν =25 ν =50 ν =0 ν =25 ν =50

Σ1 36.6 44.3 53.7 46.4 49.3 57.2
Σ2 36.6 45.1 55.8 46.4 49.9 59.0

(b) θ = 100 ms

Table 1: Recognition rates of our systems (in %).

(a) ν = 0 (b) ν = 50 (1-s)

Figure 4: “Matching Matrices” of a musical excerpt
for two values of the neighborhood parameter ν.

This is due to the fact that the model limits the note lengths
to values depending on their duration in beat. As explained
in Sec. 2.3.2, the value of φν is set to 0 when a note length is
incoherent with the tempo hypothesis. Thus, the maximal
possible length of a note is its duration under the hypothesis
of the slowest considered tempo (40 bpm here).

A disappointing result can be seen in Table 1 (a): the
scores of the constrained model are lower with ν = 25 than
with no contextual information. This can be explained by a
limitation of our observation features. Indeed, the chroma
templates used in the calculation of the function f(x, y) (see
Sec. 2.3.2) are approximations which do not take into ac-
count note harmonics nor percussion sounds, and the best
match of an observation sometimes does not correspond to
the “real chord”. Hence, since an observation is taken into
account in several consecutive neighborhoods, this bias can
be amplified by our CRF models.

However, this problem can be alleviated by increasing the
neighborhood length ν. This way, more frames are con-
sidered and the proportion of “biased observations” inside
each neighborhood decreases, resulting in a more robust lo-
calization if the tempo grid is fine enough to render these
longer dependencies. Thus, the results are improved by a 1-s
neighborhood, with the tempo set Σ2. Moreover the “pre-
cise alignment” recognition rate (with a 100-ms threshold)
increases with ν, for all the tested settings. This indicates
that taking into account contextual information does help
to match an audio observation with its position in the score.

This is further illustrated on Figure 4, where “matching
matrices” storing the values of the function φ̃ν of eq. (7)
are displayed for two values of ν. Whereas with ν = 0,
the matching matrix is hard to read, its counterpart with
a 1-s neighborhood clearly brings to light high-score paths,
corresponding to repeating phrases. Thus, the position in
the score can be more accurately estimated.

4. CONCLUSION
We present a new approach of symbolic audio-to-score

alignment, with the use of the Conditional Random Fields
framework. These models allow us to take into account a
neighborhood of each frame for the matching of an audio
observation with its symbolic description (e.g. chord). We
propose two CRF models which take into account the rhyth-
mic information given by the score thanks to a hidden vari-

able representing tempo.
Experiments show that the use of contextual information

does improve the accuracy of the obtained alignments. In
spite of a known limitation of the chroma features used
which can affect in particular recordings containing much
percussion, the 100-ms recognition rate increases by more
than 10% when a 1-s neighborhood is considered.

This approach, applied here to an offline alignment task,
can very easily be transposed to the real-time case, by con-
sidering only the past neighborhood. The use of the CRF
framework could allow for a learning of the parameter λk
in a discriminative fashion. We believe that there is also
much room for improvement in the design of the dependency
structure of the model. In our experiment, the constrained
model, which takes into account more variable dependencies
than the simpler unconstrained model, obtains better results.
More complex structures could be conceived in order to more
accurately render the process dynamics.
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