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A Conditional Random Field Framework for Robust
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Abstract—In the present work, we introduce the use of Con-
ditional Random Fields (CRFs) for the audio-to-score alignment
task. This framework encompasses the statistical models which
are used in the literature and allows for more flexible dependency
structures. In particular, it allows observation functions to be
computed from several analysis frames.

Three different CRF models are proposed for our task, for
different choices of tradeoff between accuracy and complexity.
Three types of features are used, characterizing the local har-
mony, note attacks and tempo.

We also propose a novel hierarchical approach, which takes
advantage of the score structure for an approximate decoding
of the statistical model. This strategy reduces the complexity,
yielding a better overall efficiency than the classic beam search
method used in HMM-based models.

Experiments run on a large database of classical piano and
popular music exhibit very accurate alignments. Indeed, with
the best performing system, more than 95% of the note onsets
are detected with a precision finer than 100 ms. We additionally
show how the proposed framework can be modified in order to
be robust to possible structural differences between the score and
the musical performance.

I. INTRODUCTION

We address the problem of audio-to-score alignment (or
audio-to-score matching), which is the task of synchronizing
an audio recording of a musical piece with the corresponding
symbolic score. Depending on the targeted application, the
alignment can be either on-line or off-line.

On-line alignment has been extensively considered in the
context of score following, that is the real-time tracking of
a musician performance (see for example [1], [2], [3]). Such
a tracking allows for an automated computer accompaniment
of a live soloist, but also permits other kinds of interactions
between human performers and automated processes. This
may include real-time sound transformations (e.g. auto-tuning)
or the control of visual effects which are to be synchronized
with the music (e.g. stage lights or opera supertitles).

In off-line audio-to-score matching, the whole performance
is accessible for the alignment process. This permits to de-
velop non causal algorithms that can reach higher matching
precision. This can be interesting for applications that do not
require the real-time property. Among the most immediate
perspectives is, for instance, the possibility to browse a musical
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recording using the symbolic score [4]. An efficient audio-
to-score alignment also opens the path for new or emerging
applications in the field of Music Information Retrieval (MIR)
such as MIDI-informed audio indexing, transcription or source
separation [5], by taking advantage of the numerous scores that
can be found on the Internet.

The requirement for an ideal audio-to-score alignment sys-
tem may be manifold. In particular, they should comprise
generality, precision, scalability and robustness. Generality
refers to the capacity of the system to handle a wide variety
of musical styles. Yet many works on this task are limited, for
example to monophonic music [6], [7] or to single-instrument
music [8], [9]. Moreover, most international evaluation cam-
paigns have used data from a single style with low polyphony
(single instrument classical music) and this limitation was only
addressed in the last MIREX evaluation campaign1.

Scalability refers to the ability of a system to define different
operating points with varying precision/complexity tradeoff.
It should be an important property of an alignment system,
which, to the authors’ knowledge, has rarely been considered
in previous works. The desired tradeoff between precision and
complexity of the alignment process may depend on the target
application. For instance, low complexity would be favored
for retrieval applications whereas high precision would be
preferred for (off-line) informed source separation tasks.

Robustness refers in particular to the ability of the system
to deal with imperfect or low quality scores (or even low
detail scores, such as lead sheets). The variation of the musical
structure is certainly among the main sources of difference
between an audio recording and its corresponding score (e.g.
omission of a repeat section in classical music, additional solo
in a live performance in pop music, . . . ).

Audio-to-score matching is traditionally performed in two
steps, namely feature extraction and alignment. The features
extracted from the audio signal characterize some specific
information about the musical content. Then the alignment
is performed by finding the best match between the feature
sequence and the score.

The features used in audio-to-score alignment or score
following systems always comprise a descriptor of the in-
stantaneous pitched content of the signal. Early works ex-
ploited the output of a fundamental frequency detector [6],
[10]. But such estimators are error-prone, especially in the
context of polyphonic music. That is why many systems

1Music Information Retrieval Evaluation eXchange 2010, score fol-
lowing task: http://www.music-ir.org/mirex/wiki/2010:Real-time Audio to
Score Alignment (a.k.a Score Following)

http://www.music-ir.org/mirex/wiki/2010:Real-time_Audio_to_Score_Alignment_(a.k.a_Score_Following)
http://www.music-ir.org/mirex/wiki/2010:Real-time_Audio_to_Score_Alignment_(a.k.a_Score_Following)
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employ low-level features such as the output of a Short-
Time Fourier Transform (STFT) [11], the energy in frequency
bands corresponding to the musical scale [12] or chromagram
features. The chromagram representation, which collapses the
previous energy bands into one octave, is extensively used
in off-line audio-to-audio and audio-to-score alignment [13],
[14]. This representation has the advantage of being robust to
octave errors, as well as to timbral changes. The information
conveyed by note attacks may also be useful to precisely detect
the note onsets. Thus, some existing works take advantage of
onset features, such as the derivative of the short-time energy
[6], [7]. In [15] a “chroma onset” feature is designed, which
encompasses the onset information in each chroma bin.

Regarding the alignment process, early works on real-time
score following, as well as most off-line systems (for example
[15], [16]) rely on cost measures between events in the score
and in the performance. The alignment is then obtained by
“warping” the score so as to minimize the cumulative cost,
using dynamic programing techniques. The Dynamic Time
Warping (DTW) algorithm, or variants thereof, are extensively
used [15], [17]. This approach has the advantage of being
computationally simple and can be applied to audio-to-audio
synchronization. A hierarchical version of DTW [18] has
been applied to this task, either for complexity reduction [19]
or accuracy refinement [20]. Robustness issues, for example
to structure changes, have been tackled by allowing partial
synchronization path searches in the DTW alignment [21] or
in the online context, by running several trackers in parallel
[22].

In the recent literature, score following systems have em-
ployed probabilistic models such as Hidden Markov Models
(HMMs) [23] in order to take into account the uncertainty
of the matching [9], [12], [24]. In such systems, the hidden
variable represents the current position in the score. Flexi-
ble transition probabilities can also permit possible structure
changes. However as far as we know, the applicaton of
probabilistic models to this problem has only been tackled
in [24]. More sophisticated models handling a continuous
variable for position in the score [25], or a tempo variable
[11], [26], [27] have been proposed. In these latter models,
the note duration probabilities can be explicitly modeled as
functions of the current tempo.

The previous statistical models belong to the class of
Bayesian Network (BN) models [28]. BNs are used for align-
ment as generative models, which suppose a prior distribution
of the hidden variables and the probabilities of the observa-
tions given these hidden variables. However in our alignment
problem, the goal is to find the values of the hidden variables,
given the observations. Thus, a discriminative framework can
be employed. In this work, we introduce the use of Conditional
Random Fields (CRFs) [29], for the purpose of audio-to-
score alignment. These models have scarcely been applied
to the field of Music Information Retrieval (MIR) and, to
the authors’ knowledge, never been used for alignment. Yet,
CRFs represent a number of advantages over BNs. First, in
the context of alignment, they can be seen as a generalization
of BN. Second, the CRF framework enables the relaxation
of some conditional independence assumptions of BNs, thus

authorizing more general dependency structures, without in-
creasing the decoding complexity.

The contributions of the present work are multifold.
• We reformulate the audio-to-score alignment in the con-

text of CRF and show that the models in the literature can
be presented as CRFs with possibly different structures.

• We show that CRFs are particularly well suited to design
flexible observation functions. In particular, we consider
a whole neighborhood of a time frame, for a more precise
matching of this frame with a score position.

• We show how different types of features can be efficiently
exploited inside this framework. Namely, chroma features
characterizing the instantaneous harmony of the signal,
spectral flux detecting the note onsets and the “cyclic
tempogram” feature [30] characterizing the local tempo.

• Additionally, we propose a novel hierarchical decod-
ing approach, which takes advantage of a hierarchical
segmentation of the music into concurrencies (units of
constant-pitch content), beats and bars. This method
allows for a scalable alignment since it can be used to
reduce the search space in the decoding process, or to
obtain a fast, coarse alignment.

• We conduct an extensive experimental study on poly-
phonic, multi-instrumental music, over a database of
significant size and test the robustness and scalability of
the proposed framework.

The rest of this paper is organized as follows. The graphical
model framework is presented in Section II. The transition
models and the observation models of the CRF models are re-
spectively detailed in Sections III and IV. Then, a hierarchical
pruning method for an approximate decoding of these models
is proposed in Section V and the experimental results are
exposed in Section VI, before suggesting some conclusions.

II. CONDITIONAL RANDOM FIELDS FOR ALIGNMENT

In this section, we introduce the use of Conditional Random
Fields (CRFs) as a unified framework for the probabilistic
models used in the audio-to-score alignment task. We first
formalize our alignment task as a sequence labelling problem,
before presenting CRFs. We explain how this formalism can
represent the statistical models of the literature, and show that
it also enables new modeling possibilities.

A. Alignment as a Sequence Labelling Problem

Following [31], we define a concurrency as a set of notes
that sound at the same time. The musical score can be
represented as a sequence of notes (in monophonic music) or
concurrencies in the case of polyphonic music, as illustrated
in Fig. 1. In order to deal with recordings starting before the
first note of the score or stopping after the end of the last
note, we create artificial empty concurrencies (labeled with
numbers 0 and 7 in the figure) at the beginning and the end
of the concurrency sequence.

The goal of audio-to-score alignment is then to find in the
musical recording the positions of the concurrencies given; or
equivalently, to find in the score the position corresponding to
each time frame of the performance. This can be seen as a
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5:4: 6: 7:3:2:1:0:

Figure 1. Representation of a score as a sequence of concurrency labels.
The original score (up) is segmented into units of homogeneous polyphony:
each note onset or offset corresponds to a new concurrency. Middle: the
concurrency sequence representation. Bottom: the concurrency labels.

labelling problem, whose labels are possible score positions,
for example the score concurrencies.

The audio recording is converted into a discrete sequence of
observation features, which describe the instantaneous content
of the signal over short frames. Let y1:N = y1 . . . yN be this
observation sequence, of length N . Our task is to find the label
sequence that best matches the audio data.

The use of a probabilistic model allows for the calculation
of the optimal label sequence given the observation sequence.
Let X1:N = X1, . . . , XN be an (unobserved) random process
representing the labels. As in [27], we use the Maximum a
Posteriori (MAP) criterion, which defines the optimal label
sequence x̂1:N as:

x̂1:N = argmax
x1:N

p (X1:N = x1:N |Y1:N = y1:N ) . (1)

For the sake of clarity, the boundary indices 1:N will be
omitted in the following when no ambiguity is introduced.

B. Conditional Random Fields (CRFs)

A Conditional Random Field (CRF) is a type of discrimina-
tive undirected graphical model (see [32] for an introduction
on graphical models) initially introduced for the labelling or
segmentation of sequential data [29].

The graphical representation of a CRF is thus an undirected
graph, as depicted in Fig. 2 (right). Whereas a generative
model (such as an HMM) specifies the marginal distribution
of the hidden variable p (X) and the conditional distribution
of the observations given the hidden variables p (Y|X), a
discriminative model such as a CRF conditions the probabil-
ities on the observation sequence. Hence, it directly models
the conditional distribution p (X|Y) which is used in our
optimization problem of (1).

As in a HMM, the label process X is assumed to be
Markovian. Thus, the conditional probability of (1) can be
factorized as:

p(X|Y) =
1
Z
φ(X1,Y)

N∏
n=2

ψ(Xn, Xn−1,Y)φ(Xn,Y) (2)

where ψ and φ are non-negative potential functions. The
transition function ψ controls the transitions between the labels
and the observation function φ links the current label with
the observations. Z is a normalizing factor. Note that in the
general form of CRFs, the potential functions can depend on
the time frame n. However, we use a simpler model with
constant φ and ψ functions, since this dependency is difficult
to interpret in our case. An exception is made for the first and

Markov Network (CRF)

Xn

Bayesian Network (HMM)

Xn−1 Xn+1 Xn−1 Xn Xn+1

Yn−1 Yn Yn+1 Yn−1 Yn Yn+1

Figure 2. Comparison between HMM and CRF graphical representations.
Double nodes represent observed variables and shaded nodes (in CRF)
correspond to variables that the model conditions on.

last observation functions, which can express some constraints
at the extremities of the sequence. For example, one can set
φ(X1,Y) = 1{X1≤1} (where 1 is the indicator function) if one
knows that the recording starts with the first concurrencies of
the score (X1 = 0 or X1 = 1).

One of the main advantages of CRFs is the relaxation of a
conditional independence assumption of HMMs. In an HMM,
an observation Yn is supposed to be independent of all the
other variables, given the hidden variable Xn. Thus, no direct
dependency can be modeled between a hidden variable and a
“remote” observation. In a CRF, no assumption is made on the
observation process. Hence, the whole feature sequence can
be used in the calculation of the observation function, without
increasing the decoding complexity. Indeed, the most probable
label sequence of (1) can be calculated by the Viterbi algorithm
with the same complexity as in a HMM. This property allows
for using a whole neighborhood of each observation as a clue
for the labelling of the corresponding time frame. For further
details on CRFs, see [29], [33].

It is worth noting that, for a labelling task, a HMM can
be seen as a particular case of a CRF. For a given HMM,
we construct an undirected graph with the same links as the
directed graph of the HMM. Then, we set, for n ≥ 2:

ψ(Xn, Xn−1,Y) = ψ(Xn, Xn−1) = pH(Xn|Xn−1)(3)
φ(Xn,Y) = φ(Xn, Yn) = pH(Yn|Xn) (4)

where pH denotes the probability according to the given
HMM. The special case is φ(X1,Y) = pH(Y1, X1). In that
case, the conditional probability of (2) can be written

p (X|Y) ∝ pH(Y1, X1)
N∏
n=2

pH(Xn|Xn−1)pH(Yn|Xn). (5)

Hence, from a decoding point of view, the obtained CRF
is equivalent to the given HMM. Since the CRF framework
encompasses many different models, including HMMs, we
will use the CRF formalism in the rest of this paper to present
different alignment models in a unified framework.

III. CHOICE OF TRANSITION FUNCTIONS

Several types of graphical model structures have been used
in previous works on alignment, in order to model the musical
performance. This corresponds to different choices for the
transition function ψ, which controls the prior probabilities
of the label sequences. Since in the alignment task the con-
currency succession is given by the score, the purpose of the
transition functions is an accurate modeling of the concurrency
durations. In this section, we propose a unified viewpoint of
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Figure 3. (a): Label automaton of a basic hierarchical structure. In this
example, the sub-label 1 corresponds to the attack phase whereas the sub-
label 0 denotes no attack. (b): The corresponding “flattened” automaton.

the graphical models used in the alignment literature, and
transpose them into the CRF framework by exhibiting the
corresponding transition functions.

A. Markovian CRF (MCRF)

1) Markovian Transition Function: The Markovian CRF
(MCRF) is the transposition of the HMM into the CRF
context. In this case, the label sequence is the sequence
C1:N of the played concurrencies. Note that the musical score
provides not only the set of concurrencies of the piece, but also
the order in which they are to be played. Thus, if this order
is trusted, there are only two possible transitions from one
concurrency: to the same one or to the following one. The
transition function is then of the form:

ψ(Cn+1, Cn) =

{
λ0(Cn) if Cn+1 =Cn

λ1(Cn) if Cn+1 =Cn + 1
0 otherwise.

(6)

As in a HMM, the prior probability of a concurrency length
L can be written P (L = l) ∝ λl−1

0 λ1. Thus, if an anticipated
length l is assumed for the concurrency c, the parameters can
be set to the values of the HMM transition probabilities which
maximize the probability of the duration l. These values are
λ0 = l−1

l and λ1 = 1
l . In the case where no prior duration

is known, both parameters are set to 1 so that all possible
durations have the same probability.

2) Hierarchical Label Structure: One of the limitations
of the previous structure is that the observations extracted
from the signal are supposed to be constant during a whole
concurrency duration. Indeed, it cannot take into account the
variations that may occur inside a concurrency.

However, modeling different phases within a concurrency
(for example attack and sustain phases) can be handled with
a structure equivalent to Hierarchical Hidden Markov Models
[34]. Here, a lower level of labels is used, representing the
phase. For each frame n, let An be a binary random variable,
which is equal to 1 iff the frame n corresponds to an attack
phase. The labels of the model are then: Xn = (Cn, An).

Fig. 3 displays an example ofautomaton representation for
a hierarchical structure. Once a new concurrency is reached,
the system enters a sub-label thanks to a unique “vertical
transition” (in dotted line). In the lower level of hierarchy,
it follows “horizontal transitions” (solid lines) until it reaches
an end state. Then, it switches back to the higher level and
follows a horizontal transition in this level.

A hierarchical structure can in fact always be converted
to a “flat” automaton [28], as represented in Fig. 3 (b).
However, the hierarchical structure allows for a more intuitive
interpretation of the labels.

1: 2:

end(1, 0, 3)(1, 1, 1)

(1, 1, 2)

(1, 0, 2)

. . . (1, 0, r1) (2, 0, 1) (2, 0, 2) end. . . (2, 0, r2)

Figure 4. Sub-label automata of two concurrencies. The first one contains
an onset, the second on does not. The three variables represent respectively
the concurrency Cn, the attack indicator An and the occupancy Dn.

For concurrencies which do not contain an onset i.e. corre-
sponding to note extinctions (such as the second concurrency
of Fig. 3), there is no attack phase. For the other concurrencies,
the first sub-label always corresponds to an attack. For a
concurrency c, let Ω(c) be a binary function which indicates
if c contains an onset. The transition function is then

ψ(Xn+1, Xn) =

{
λ0(Cn) if Cn+1 =Cn and An+1≤An

λ1(Cn) if
(
Cn+1, An+1

)
=
(
Cn+1,Ω(Cn+1)

)
0 otherwise.

(7)
The constraints which are added here express that an attack
phase (A = 1) cannot occur after a sustain phase (A = 0)
of the same concurrency, and that the first frame of an “onset
concurrency” corresponds to an attack phase.

B. Semi-Markov CRF (SMCRF)

The main drawback of the Markovian models presented
so far is that they cannot favor a particular concurrency
length. In order to introduce flexible duration priors, one can
exploit semi-Markov models, in which the label durations are
explicitly modeled. In our CRF context, we will call such a
model a Semi-Markov CRF (SMCRF).

A semi-Markov model can be represented as a hierarchical
label automaton, in which sub-labels are introduced for the
temporal modeling. The prior duration distribution depends
on the number of these sub-labels and the values of their
transition functions. Some possible structures are compiled in
[35]. Many of the works on alignment exploiting statistical
models use similar models (for example [7], [12], [9]).

The sub-label structure used is depicted in Fig. 4. We intro-
duce a variable Dn representing the concurrency occupancy
i.e. the time elapsed since the beginning of the current con-
currency. The durations are modeled by letting the transition
function depend on this occupancy variable. Note that the
number of occupancy sub-labels rc is the maximum duration
of a concurrency c. Furthermore, we constrain the attack phase
of a concurrency to last one or two frames, as represented in
Fig. 4 (first concurrency). Thus, all combinations of variables
Xn = (Cn, An, Dn) are not possible. In all the following
equations, we will suppose that the given label values are
admissible. The transition function is then

ψ(Xn+1, Xn) =

{
1 if (Cn+1, Dn+1)=(Cn, Dn+1)

p(LCn =Dn) if (Cn+1, Dn+1)=(Cn+1, 1)
0 otherwise.

(8)
where LCn

denotes the random variable representing the
duration of the concurrency Cn.
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C. Hidden Tempo CRF (HTCRF)

A limitation of semi-Markov models appears for the tem-
poral modeling of music. Indeed, such models use a unique
duration distribution, whereas in a musical performance, the
concurrency durations depend on the instantaneous tempo.
Hence, the most elaborate models for audio-to-score matching
[27], [11] use yet another variable which models the tempo
process. Let Tn be this tempo variable. The value of Tn is
the tempo, given in number of frames per beat. The possible
labels are then of the form Xn = (Cn, An, Dn, Tn). We call
such a model a Hidden Tempo CRF (HTCRF).

In this model, the concurrency duration distribution depends
on the current value of the hidden variable T . For example in
[27], Raphael models the conditional duration distribution of a
concurrency c, given the tempo T = t by a normal distribution
centered on the value `ct, where `c is the theoretical length
(in beats) of c, with a variance set as a parameter. Our
model is similar, but the used variance is proportional to the
expected concurrency length (given the tempo). This choice is
supported by psychoacoustic results, since the just-noticeable
difference reported in [36] is proportional to the original
length, for lengths between 240 ms and 1 s. Let `ct be the
expected duration of a concurrency. If the actual length of
this concurrency is l, we set the duration deviation penalty
hd(l, `ct) as:

hd(l, `ct) = exp
(
− γd

∣∣∣ l − `ct
`ct

∣∣∣2) (9)

where γd is a parameter controlling the deviation tolerance.
For an intuitive interpretation of the tempo variable, the

value of this variable is forced to stay constant over a whole
concurrency duration, and changes only occur at concurrency
transitions. Following [37], we assume that the tempo changes
are relative rather than absolute and that for example, the
probability is the same for doubling the tempo and for halving
it. Thus, the tempo variation penalty ht is set to

ht(tn+1, tn) = exp
(
− γt

∣∣∣ log
tn+1

tn

∣∣∣2), (10)

controlled by the parameter γt ≥ 0. When the ratio between
two tempi is greater than 2 (or less than 1/2), we consider that
an abrupt tempo change occurs, in which all the possible tempi
have the same probability. Thus, we limit the term

∣∣log t2
t1

∣∣ to
log 2. Finally, the global transition function is

ψ(Xn+1,Xn)=

{
1 if (Cn+1,Dn+1,Tn+1)=(Cn,Dn+1,Tn)

h(Xn+1,Xn) if (Cn+1,Dn+1)=(Cn + 1, 1)
0 otherwise

(11)
with h (Xn+1, Xn) = hd(Dn, `CnTn)ht(Tn+1, Tn). The first
term of (11) expresses the case where no concurrency change
occurs. In this case, the final duration of the unfinished
concurrency is unknown and the tempo stays the same. Thus,
no penalty is applied. The second term corresponds to the case
where the current concurrency ends. The concurrency duration
is then equal to the occupancy Dn, and the corresponding
penalty is calculated, as well as the tempo change penalty.

The dependency structure of the presented models are
represented in Fig. 5. Note that although the occupancy and

MCRF

SMCRF

HTCRF

Dn−1 Dn Dn+1

Models:

Concurrency variableCn
Phase (attack) variableAn

Occupancy variableDn

Tn Tempo variable

Vn Chroma observation
Spectral flux observation
Tempogram observation

Variables:

TnTn−1 Tn+1

GnGn−1 Gn+1

Cn−1 Cn Cn+1

V1:N

Xn = (Cn, An, Dn, Tn)

Gn

Sn

An−1 An An+1

Sn−1 Sn Sn+1

Figure 5. Graphical model representation of the presented models. The
solid lines represent Markovian CRF links. Dashed arcs and dotted arcs are
additional links of Semi-Markov CRF and Hidden Tempo CRF respectively.
The observations are presented in the next section.

tempo variables Dn and Tn do not intervene in the MCRF
transition function, they do appear in the transition function,
as will be detailed in Section IV. The same holds for the tempo
variable in the SMCRF model.

IV. OBSERVATION FUNCTIONS

As presented in II-B, the observation function links the cur-
rent label with the observations. The observations should then
reflect the information represented by the labels. We use, for
each frame n, three types of features which will be presented
in the next subsections: a chroma feature vn, an onset feature
fn and a tempo feature gn. The global observation vectors can
then be written yn = (vn, fn, gn). We recall that the possible
labels have the form xn = (cn, dn, an, tn), where the variables
stand respectively for the current concurrency, occupancy
(time elapsed since the beginning of the concurrency), phase
and tempo.

Note that, although the occupancy and phase variables are
highly correlated, they are not completely redundant. Indeed,
since the attack phase of an “onset concurrency” can last
one or two frames, the second frame, corresponding to the
occupancy D = 2, can be either in attack (A = 1) or sustain
phase (A = 0). This is represented in the first concurrency of
Figure 4.

We assume that the observation function φ(xn,y1:N ) has
the form:

φ(xn,y1:N ) = φc (xn,v1:N )φa(an, f1:N )φt(tn,g1:N ). (12)

A. Chroma vectors

Chroma vectors are extracted according to [38], with a time
resolution of 20 ms, and normalized so that they sum to 1. For
each concurrency label, we build a synthetic chroma vector
template from the content of this concurrency, as in [13], [39].
The template is normalized so that it can be regarded as a
probability distribution over the chroma bins.

Under the assumption that the tempo can be considered as
constant over short time windows, the knowledge of the score
position and the current tempo at a time frame is sufficient
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δ δ

vn

un

Figure 6. Calculation of the chroma observation function. Up: observations
around frame n; Down: chroma templates created as the rendition of the score
around score position (cn, dn), at constant tempo tn (which is faster than
the interpretation tempo in this example).

to determine the score positions corresponding to any frame
in the given window. Then, the corresponding concurrency
sequence can be compared to the observation sequence, in
order to obtain a ”matching measure” between the observations
and the position/tempo hypothesis.

Formally, let 2δ+1 be the number of frames over which the
tempo is considered as constant (in practice, we set δ = 50,
for a length of 2 s). Given a label xn = (cn, dn, an, tn), let
~c(xn) be the sequence of concurrency labels corresponding
to the theoretical rendition of the score at the constant tempo
tn around (cn, dn) –such that the score position at time n is
(cn, dn). This sequence is illustrated in Fig.6. Let u1, . . . , uN
be the corresponding chroma templates. The observation func-
tion φc (xn,v) associated to the chroma vector sequence is:

φc (xn,v) = exp−
δ∑

k=−δ

µkDKL

(
vn+k

∥∥un+k

)
(13)

where µk are parameters controlling the weights given to the
chroma observations at the different time-shifts. DKL(·‖·) de-
notes the Kullback-Leibler divergence. Intuitively, the weights
µk should be decreasing with |k|, so as to emphasize the
current observation vn. We use an exponential window with
decaying parameter 100. The weights are normalized so that
the sum is equal to a parameter α.

Note that in the case δ = 0, the value of φc(xn, vn) does
not depend on the tempo and duration variables.

B. Onset Feature

In order to discriminate the attack phase from the sustain
phase of a concurrency, a straightforward yet efficient onset
detector function based on spectral flux is used [40]. The
spectral flux is calculated on 40-ms windows with a 20-ms
hop-size. A local threshold is computed by applying a 67%
rank filter of length 200 ms to the spectral flux values. We
then obtain our “onset feature” by subtracting this value to the
spectral flux. Finally, a simple logistic model is applied and
the observation function φa associated to this onset feature is:

φa(an, f) = 1{an=0} + 1{an=1} exp
(
µffn

)
(14)

with the positive parameter µf .

C. Cyclic Tempogram

As a feature accounting for tempo, we adopt the cyclic
tempogram representation [30], which provides a mid-level

representation of the tempo. The local autocorrelation of the
spectral flux is first computed over sliding 5-s windows, for
time-lags between τmin = 200 ms and τmax = 3.2 s. Let wn(τ)
be the value of this autocorrelation function for a window
centered on frame n.

Similarly to a chromagram, the time lags are separated
into octave equivalence classes: two time-lags τ1 and τ2 are
octave equivalent iff there is a k ∈ Z s.t. τ1 = 2kτ2. The
value gn(τ) of the cyclic tempogram for a time-lag τ is
calculated by adding all the values of this autocorrelation
function corresponding to the same equivalence class:

gn(τ) =
∑
k∈Z

wn(2kτ). (15)

In practice, this sum is limited to the time-lags which are
considered in the previous step. The value of the observa-
tion function φt associated to this tempo feature is then:
φt(yn,g) = exp

(
µtgn(tn)

)
, where µt is a positive parameter.

V. A HIERARCHICAL PRUNING APPROACH FOR
APPROXIMATE DECODING

A. A Hierarchical Model

As presented in Section II, the optimal label sequence ŷ
defined in (1) can be found thanks to the Viterbi algorithm,
if the label set is finite. However, the complexity of this
algorithm is quadratic in the number of possible labels, which
can be very large in intricate models such as HTCRF, where
the label set is the set of all possible combinations of the
hidden variable values. Thus, the cost of a full-fledged Viterbi
decoding can be important and pruning methods are often used
in order to reduce the explored label set at each iteration.

The usual strategy for HMM and Bayesian Networks in
general (for example [27]) is beam search, which consists in
maintaining only the “most promising” partial label sequences
during decoding. If a fixed (small) number of hypotheses
is explored at each step, the complexity becomes linear in
the number of labels. The partial label sequences are usually
ordered according to conditional probability p̄n(X1:n) =
p(X1:n|Y1:n), or variants thereof. This causal strategy can be
performed in an online framework. However, it only considers
the observations up to the current frame. Therefore, there is
a risk of discarding the optimal label sequence if its partial
conditional probabilities p̄n is low for a frame n.

We propose another strategy, which takes into account the
whole signal for the pruning of the search space. It is a hi-
erarchical approach, inspired by the FastDTW algorithm [18].
The algorithm presented is a variation of the one proposed
in [41], in order to take into account the possible structure
changes between the performance and the score. The idea is
to first search for an alignment at a coarse level and then use
the result to prune the search space at a more precise level.
For this, we take advantage of musical structural units which
are given by the score, namely beat and measures (or bars)
whose variables are denoted by B and M respectively.

Since the alignments at these higher levels aim at speeding
up the global process, low complexity models are preferred.
Thus, we exploit Markovian CRFs, whose hidden variables
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Figure 7. Label automata and integration windows (over which are calculated
the observations) at the three considered levels of hierarchy. The sub-labels
used in the concurrency level are not represented.

are the position labels of the corresponding level (measure
or beat). Furthermore, as the corresponding labels account
for larger temporal scales, the observations are extracted over
longer time windows and their time resolutions (or sampling
rates) are smaller than the ones used at the concurrency level.
Any of the models presented in Section III can be used in
the lowest level. Fig. 7 illustrates the label automata and the
feature extraction, at the three levels of hierarchy.

The algorithm begins at the measure level. Let Ỹ be the
sequence of integrated observations considered at this level,
where Ñ is the number of integration windows. A Markovian
CRF as presented in Section III-A1 is used to model this
observation sequence. Let ψ̃ and φ̃ be the corresponding
transition and observation functions. According to this model
M we calculate, for every measure m and every window ñ,
the “maximum posterior path probability” at the bar level

p̂ñ(m) = max
M1:Ñ
Mñ=m

{
p(M1:Ñ |Ỹ;M)

}
(16)

where M1:Ñ = M1, . . . ,MÑ . This value can be computed by
an extension of the Viterbi algorithm which can be seen as
a transformation of the standard forward-backward algorithm,
where the operation sum is replaced by max.

If we assume that the simplified model used at this level is
consistent with the complete low-level model, and thus that the
values of p̂ñ(m) are close to the “real” probabilities, they can
be used to discard low-probability label hypotheses. For each
window ñ, we sort the measures m according to the values of
p̂ñ(m). Then, only a (small) fixed number KM of measures
are kept for the alignment at the lower level. The value of
KM is set in an adaptive way, depending on the “posterior path
probabilities”: it is the minimum number such that all the paths
whose posterior probabilities are above a threshold are kept.
This threshold is chosen as 1

η maxM p(M|Ỹ). The parameter
η controls the tradeoff between accuracy and complexity.
Fig. 8 illustrates this pruning process.

The same procedure is then performed at the lower level,
where only the undiscarded labels are explored. At this beat
level, another Markovian CRF is used to model the observation
sequence, in order to maintain a low complexity. Further label
sequences are pruned out, and the final alignment is searched
for, only among the remaining label sequence hypotheses.

The difference between this pruning method and the version
proposed in [41] is that in the latter, we kept the states
which were inside a “tolerance radius” around the Viterbi path.

Pruning

Bar Level Beat Level

Figure 8. Principle of the hierarchical pruning method (first step). The grey
scale of a cell corresponds to the value p̂ñ(m) of (16). At the beat level, only
the domain delimited by the lines is explored.

However, this notion of adjacent concurrencies is no longer
applicable in the case where there can be structural difference
between the score and the performance.

Note that it would be possible to use the marginal probabili-
ties p(Mñ = m|Ỹ) instead of the whole sequence probabilities
p̂ñ(m) for the pruning process. However, we believe that the
latter are more relevant in our problem. Indeed, the marginal
label probability p(Mñ = m|Ỹ) is the sum of the probabilities
of all the sequences verifying Mñ = m. Hence there is a
risk that some label/observation cells corresponding to many
average-score label sequences be favored compared to a cell
containing an isolated high-score sequence.

B. Multi-Level Observations

In the measure and beat levels, only chroma vector features
are used as observations, since the onset feature and the cyclic
tempogram correspond to lower level variables and do not
appear in the CRF used at these levels. These higher level
chroma vectors are computed as the average of the original
chroma vectors over the integration windows (represented in
Fig. 7). The use of averaged observations is musically justified
since the harmony (and thus the chroma information) is in
general homogeneous over a whole beat (or measure) duration.
The integration windows are chosen in relation to the possible
tempi. In the hypothesis where the tempo is stable, one could
use an estimation of the average tempo for setting the window
lengths and hop-size. However, this can pose a risk in the
presence of large tempo changes, since the observation sample
rate must be at least as large as the corresponding beat or bar
frequency. For example, if the real local tempo were faster than
the beat observation sample rate, some beat labels would not
be reached by the algorithm, which would result in discarding
the corresponding path at lower levels.

In our case, we do not want to make any limiting assump-
tion. Hence, the integration parameters are chosen so as to
take into account the fastest acceptable tempo. We set the
integration length for the beat level to 240 ms, corresponding
to a very fast tempo of 250 beats per minute.A 1/3 overlap
is used, yielding a 160-ms hop-size. For the measure level,
the length and the time resolution of the integration window
depend on the time signature and it corresponds to the number
of beats in a bar. For example, for a 4/4 signature (four beats
in each bar), the length is 960 ms and the hop-size is 480 ms.

The observation function used at these levels is the same
as defined in Section IV-A. However, it compares averaged
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chroma vectors with an “integrated distribution” corresponding
to each label. This distribution is the superposition of the
chroma templates associated to the concurrencies that the label
(e.g. a measure) contains, weighted by their durations in beat.

C. Fast Alignment at a High Level: Beat Level CRF (BLCRF)

The same strategy can be exploited in order to obtain a
fast, coarse alignment, by stopping the hierarchical pruning
process higher than the concurrency level. Hence, we introduce
the Beat Level CRF (BLCRF), which only decodes the CRFs
down to the beat level. The concurrency-level alignment is
then deduced thanks to an interpolation of the concurrency
onset times between the detected beat frontiers, assuming that
the tempo is constant over each beat.

VI. EXPERIMENTAL STUDY

A. Database and Settings

1) Database: The database used in this work is composed
of two corpuses. The first one contains 59 classical piano
pieces (about 4h15 of audio data), from the MAPS database
[42]. The recordings are renditions of MIDI files played by a
Yamaha Disklavier piano. The alignment ground-truth is given
by these MIDI files. The target scores are built from the same
MIDI files as the ground truth. However, the tempo is fixed
to a constant value such that the piece duration corresponding
to this tempo is the same as the audio file length.

The second corpus is composed of 90 pop songs (about
6h) from the RWC database [43]. Aligned MIDI files are
provided with the songs. These files have been aligned thanks
to an automatic beat tracker and then manually corrected. In
this database, the tempi are almost always constant. Thus,
we introduced random tempo changes in the midi scores in
order to simulate tempo variations in the performance. Each
file is separated into segments of equal length in beats (about
16 beats) and for each segment, a unique tempo is randomly
sampled from a uniform distribution between 40 and 240 beats
per minute. These modifications represent an extreme case of
tempo changes. Since pop song scores which can be found on
the Internet (as in our application scenario) often contain errors
in the percussion part, or may not even include a percussion
part, we chose to discard the percussion in the scores.

A learning database has been created, containing one hour
from each corpus, in order to evaluate the model parameters.
The evaluation is then run on the remaining of both MAPS
and RWC datasets.

2) Evaluation Measure: The chosen evaluation measure is
the onset recognition rate, defined as the fraction of onsets
which are correctly detected (i.e. onsets which are detected
less than a tolerance threshold θ away from the ground truth
onset time). The value θ = 300 ms is based on the MIREX
contest. For a more precise alignment evaluation, we use two
other thresholds: 100 ms and 50 ms.

3) Tested Systems: We evaluate systems using the three
dependency structures exposed in Section III. The graphical
representations of these models are displayed in Fig. 5. For
each of these structures, the use of the neighborhood in
the observation function (see Section IV-A) is assessed by

comparing two versions of the system, using different values
of the neighborhood parameter δ. In the first version, we
have δ = 0, which means that no neighborhood is taken into
account. The second version uses a 1-s neighborhood.

For all systems which use a tempo variable, the set of
possible tempo values is, in beats per minute:

T ={28, 30, 34, 40, 48, 56, 64, 72, 80, 88, 96, 104,
112, 120, 132, 146, 160, 176, 192, 208, 224, 240}.

(17)

The values of the observation function parameters are esti-
mated on the learning dataset, thanks to a coarse grid search.
The chroma parameter α is set to 10. The value of the onset
parameter is µf = 100 for the MCRF and µf = 10 for the
SMCRF and HTCRF models. The tempogram parameter is
set to µt = 100 for the MCRF and to µt = 10 for the other
models. The onset and tempo parameters have higher values in
the MCRF models than in the others. This can be explained by
the fact that they compensate for the lack of temporal model
in the former system.

a) Markovian CRF: For the MCRF systems, we ob-
served that the values of λ0 and λ1 in the transition function
of (7) do not really influence the alignment results. They are
set as in Section III-A1, so as to maximize the probability of
the duration indicated in the MIDI score file.

In these models, the duration and tempo labels of different
frames (Dn1 , Tn1) and (Dn2 , Tn2) are considered as indepen-
dent given the other variables. Therefore, the maximizations
over the processes D and T can be done “at the observation
level”. We define:

φ̄ (cn, an,y) = max
dn,tn

{
φc (xn,v)φa (an, f)φt (tn,g)

}
. (18)

The label sequence (ĉ, â) corresponding to the optimum of
(1) is then:

(ĉ, â)=argmax
(c,a)

{
φ̄ (c1, a1,y)

N∏
n=2

ψ (xn, xn−1) φ̄ (cn, an,y)
}
.

(19)
The number of “cells” explored by the Viterbi algorithm
(without any pruning process) is 2QCN , where QC is the
number of possible concurrency labels (2 is the number of
possible phase labels). When using our pruning algorithm, this
space complexity (at the concurrency level) becomes 2Q̃CN
with Q̃C the average number of maintained concurrency labels
after the pruning process.

b) Semi-Markovian CRF: For the SMCRF systems, the
transition function seen in Section III-B is set so that the
duration model of each concurrency is Gaussian, whose mean
is the duration indicated in the MIDI score file and whose
standard deviation is 65 ms.

In the decoding of these models, the maximization factoriza-
tion can only be performed on the tempo variables, since the
occupancy variables are no longer conditionally independent.
Therefore QCQDN cells have to be explored by the Viterbi
algorithm (Q̃CQDN with pruning), where QD is the mean
number of possible sub-concurrency labels.
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Model MCRF SMCRF HTCRF
δ 0 1 s 0 1 s 0 1 s

300 ms 93.6 94.8 97.8 98.0 99.4 99.4
100 ms 81.8 85.7 90.6 93.8 98.0 98.0
50 ms 65.8 69.5 76.2 83.7 91.3 91.8

MAPS database

Model MCRF SMCRF HTCRF
δ 0 1 s 0 1 s 0 1 s

300 ms 86.1 88.3 94.2 94.0 99.2 99.2
100 ms 59.9 65.5 75.5 79.4 94.6 94.6
50 ms 38.7 43.2 52.3 57.8 75.5 75.2

RWC-pop database

Table I
RECOGNITION RATES (IN %) OBTAINED BY THE SYSTEMS FOR DIFFERENT
VALUES OF THE THRESHOLD θ AND THE NEIGHBORHOOD PARAMETER δ.

c) Hidden Tempo CRF: In the case of the HTCRF,
the full-fledged Viterbi algorithm explores QCQDQTN
(Q̃CQDQTN with pruning) cells, where QT is the number of
possible tempo labels. The parameters of the transition func-
tion are set thanks to a grid search run on the learning database.
Their values are chosen as: γd = 100 and γt = 1 000.

d) Comment on the Duration Penalties: One may wonder
why our SMCRF employs a duration model with a fixed
standard deviation whereas in (9), for the case of the HTCRF, it
is proportional to the expected concurrency duration. Through
preliminary experiments on the training database, we observed
that the “proportional strategy” led to higher recognition rates
with the HTCRF model which does not exploit neighboring
frames (96.6% against 94.6% with a fixed penalty for θ =
100 ms). This tends to confirm our intuition that the duration
deviations are proportional to the note lengths.

On the other hand, the results were different with the
SMCRF: the accuracy improved on the MAPS files (from
90.8% to 94.3%), where the score durations do not differ much
from the real audio ones, but it greatly decreased on the RWC
songs (from 71.2% to 64.7%) where large tempo changes
occurred. Indeed, the duration model becomes very rigid when
the score durations are short. The duration deviation penalties
would be comparatively higher for slow tempi than for fast
ones. Hence, in the presence of important tempo deviations, a
constant standard deviation proves more efficient.

B. Alignment Results

The recognition rates obtained by the tested systems are
presented in Table I. Since the annotation of the RWC database
is not perfect, the recognition rates for a 50-ms threshold are
not to be fully trusted. Therefore, they are only indicative but
it is worth noting that they exhibit the same tendencies. The
radii of the 99% confidence intervals are smaller than 0.4%.

All the tested systems obtain higher scores on MAPS than
on the RWC database, which can be explained by three main
facts. First, contrary to MAPS, the RWC database contains
percussive instruments (mainly drums) and other unpitched
sounds (talking voices, applause. . . ). The presence of these
sounds can affect the chromagram representation as well as
the onset feature. Second, RWC pieces often contain many in-
struments, whose relative mixing levels can be heterogeneous.
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Figure 9. Contributions of the instantaneous chroma observation (a) and of
the neighborhood (b) in the value of the MCRF chroma observation function
φ̄c (see Section VI-A3). White indicates higher value.

Hence, some “background” instrumental parts are barely au-
dible, and their note changes are difficult to detect. Finally,
the leading voice, which is dominant in most pop songs, may
contain various effects such as vibrato, pitch bend, etc. . . which
are not described in the score.

For both neighborhood parameter settings, the accuracy
increases with more intricate duration models. Indeed, the
Semi-Markovian CRF system always obtains higher recog-
nition rates than the Markovian CRF, and is outperformed
by the Hidden Tempo CRF system. For example, the MCRF
reaches a highest recognition rate of 94.8% for a 300-ms
tolerance threshold on the MAPS database. Adding an absolute
duration model is efficient, since the SMCRF obtains a 98.0%
performance. Finally letting the duration model depend on
a tempo variable allows the HTCRF to further increase the
accuracy, and the best recognition rate is then 99.4%.

Another important observation is that taking into account
the neighborhood does increase the fine-level precision of
the first two systems (MCRF and SMCRF). For the MCRF
system, discarding the neighborhood information comes to
ignoring both the occupancy variable D and the tempo variable
T . Hence, the neighborhood information corresponds to an
implicit model of duration and tempo and it allows for an
absolute 1% to 2% increase of the 300-ms recognition rates.
The benefit of considering the neighborhood is even greater
at finer levels of precision: improvements of at least 4% for
tolerance thresholds of 100 ms and 50 ms are obtained. Fig. 9
compares the contributions of the instantaneous observation
and of the neighboring frames on the observation function
for a pop song excerpt. In this example, the neighborhood
contribution visibly emphasizes the alignment path and some
repetitions of the same concurrency sequence.

For the SMCRF, setting the neighborhood parameter δ to
0 means discarding the tempo variable. The addition of a
dependency between the concurrency label and the tempo
increases almost all the recognition rates, especially at fine
levels of precision. For example on the MAPS database, the
absolute improvements for 100-ms and 50-ms thresholds are
respectively 3.2% and 7.5%.

There is an exception for the 300-ms recognition rate on the
RWC database, which is worse (although not significantly)
with the neighborhood exploitation (94.0% vs 94.2%). The
main reason for this accuracy loss is the fact that, on a few
pieces, the system does not follow the ground truth path, but
a repetition of it, i.e. very similar concurrency sequence.

An example is displayed in Fig. 10, where the final section
is an ad libitum repeat of the same sequence. In this example,
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Figure 10. Example of the “wrong repetition” phenomenon: in this case,
where the chroma observations are very noisy, the exploitation of the neigh-
borhood smooths out the observation functions and the system is more likely
to follow a wrong temporal model.

the percussion is strong, which makes the chroma observation
function very noisy. In this case, the use of the neighboring
values does not help, but rather further increases the noise
level. The system exploiting the neighborhood is then more
easily driven by the duration model, which indicates here a
faster tempo than the real one. Note that on this example,
the final backtracking of the algorithm does not disambiguate
the different repetitions, because the “end” concurrency label,
which models silence or noise has a high value for the
observation function, due to the strong percussion level. And
indeed, most of the “wrong repetition” problems occur at the
very end of the pop songs.

However, we believe that the importance of this phe-
nomenon is limited, since in fact most of the detected concur-
rencies are equivalent to the ground truth concurrencies, and
since this happens with the combination of both inaccurate
chroma models and untruthful score durations.

Thanks to the explicit tempo model, the HTCRF obtains
even higher results than the other systems. The “wrong rep-
etition” problem does not occur since the duration priors are
much more reliable in this case. However, the exploitation
of the neighborhood does not (in most cases) improve the
alignment performances. This may be explained by the fact
that the tempo process is explicitly modeled. Thus, the implicit
consideration of the tempo which is exploited through the
neighborhood does not add much information. However, the
exploitation of this observation function may lead to a small
improvement of the fine-level alignment precision, since there
is a 0.5% increase of the recognition rate on the MAPS
database for a 50-ms threshold.

C. Pruning Performances

We tested the performance of the proposed pruning strategy
for the simplest system, i.e. the MCRF model without use the
neighborhood information (δ = 0). The results on the whole
test database are presented in Table II, for different values
of the pruning parameter η (defined in Section V). Several
values are presented: the search space is the mean number
of labels which are considered in the decoding process, over
the total number of labels. Run times are given as times for
processing the whole database (119 pieces), excluding the
feature extraction phase. The implementation of the algorithms
is in MATLAB, and was run on an Intel Core2, 2.66 GHz with

Pruning Search Space Run time Errors
Beats Concurrencies in s (% RT) (nb)

None – 100% 3 489 (12%) 0
BS ν=600 – 27.24% 1 330 (4.4%) 1
η = 10 000 0.37% 15.86% 1 078 (3.6%) 0
η = 1 000 0.32% 13.38% 813 (2.7%) 0
η = 100 0.26% 10.62% 643 (2.1%) 0
η = 50 0.24% 9.74% 617 (2.0%) 0
η = 20 0.21% 8.52% 567 (1.9%) 1

Table II
PERFORMANCE OF THE MCRF SYSTEM WITH OUR PRUNING METHOD.

SEARCH SPACE IS THE RATIO OF THE LABELS EXPLORED AT EACH LEVEL,
OVER THE TOTAL LABEL NUMBER (IT IS 0.15% AT THE BAR LEVEL, FOR

ALL SYSTEMS). RT STANDS FOR REAL-TIME, BS IS “BEAM SEARCH”.

3 Go RAM under Linux. The number of “pruning errors”
is also presented. A pruning error occurs when the ground
truth alignment path is discarded by the pruning process. We
compare those results to a system without any pruning, as well
as a system exploiting the beam search strategy, where at each
step the ν “most promising” labels are maintained.

The results show the benefit of our pruning method, since
the search space and run time of all the tested systems are
lower than the reference systems. No pruning error occurs
until a value of η = 50, whose corresponding run-time is less
than 1/5 of the reference system (617 s against 3 489 s). In
terms of alignment precision, down to the value η = 20, the
obtained alignments are the same as for the reference system
with no pruning. Hence, the reduction of complexity does not
affect the alignment precision. In comparison, the beam search
strategy is underperforming: indeed its pruning performance is
significantly lower for a threshold leading to a single alignment
error. In this particular case, the ground truth alignment path
is discarded because a low partial Viterbi score is obtained on
the beginning of this path. With our method, the whole signal
is considered (although at a coarse level) and consequently,
the risk of discarding the searched path is attenuated.

This problem of beam search would probably be less likely
with the other dependency structures (SMCRF and HTCRF),
because the explicit duration model would prevent the system
from remaining “stuck” in the same concurrency. However,
our method has another advantage compared to beam search.
Indeed the latter strategy requires, at each step, a sorting of all
the considered partial Viterbi scores. The cost of this process
is not to be disregarded when the value of the parameter ν
is high. In our method, the sorting is performed at the higher
level and therefore at a significantly lower cost. At any rate,
both pruning strategies are compatible and it is possible to
perform beam search in a search space which has already been
reduced by our hierarchical method.

D. Scalability Considerations

As seen in the last section, the addition of dependencies
in the graphical model allowed for more precise alignments.
However, as shown in Table III, such performance improve-
ments are obtained with a clear increase of complexity. For
a given application, the appropriate system can be chosen
from this table according to the desired tradeoff between
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System Imprecision: percentile Complexity Run Time90th 95th (comparisons)

BLCRF (δ=0) 808 ms 1 545 ms Q̃BUBN 0.23% RT
MCRF (δ=0) 303 ms 525 ms 2Q̃CUN 1.7% RT
MCRF (δ=1) 255 ms 475 ms Q̃C(QDQT+U)N 98% RT

SMCRF (δ=0) 152 ms 255 ms Q̃CQDUN 9.4% RT
SMCRF (δ=1) 131 ms 250 ms Q̃CQD(QT+U)N 110% RT
HTCRF (δ=0) 62 ms 85 ms Q̃CQDQ

2
TUN 305% RT

HTCRF (δ=1) 62 ms 85 ms Q̃CQDQ
2
TUN 394% RT

Table III
PERFORMANCE/COMPLEXITY CHARACTERISTICS OF THE CONSIDERED

SYSTEMS. IMPRECISION IS THE TIME-DIFFERENCE BETWEEN THE
DETECTED ONSETS AND THE GROUND TRUTH. U AND UB ARE THE MEAN

NUMBERS OF TRANSITIONS TO EACH CONCURRENCY AND BEAT LABEL
RESPECTIVELY. Q̃B IS THE NUMBER OF BEAT LABELS (AFTER PRUNING).

performance and complexity. We also tested the Beat Level
CRF system presented in Section V-C. This system is not very
accurate (the 300-ms recognition rates are respectively 81.90%
and 63.88% on the MAPS and RWC databases), however it is
very fast: its run-time is only 0.23% of the audio duration.

Since our exploitation of the neighborhood information
involves calculating different observation functions for each
value of (Cn, An, Dn, Tn), the decoding complexity of the
corresponding systems are higher than the ones which do
not exploit the neighborhood. Hence, the MCRF model us-
ing neighborhood information is not interesting, since the
alignment is costlier than with the “instantaneous” SMCRF
system for lower performances. The use of the neighborhood
information in the HTCRF system also seems questionable,
since there is no visible performance improvements compared
to the “instantaneous” HTCRF system.

E. Robustness to Structure Change

We now examine the case where structural differences occur
between the score and the audio recording. To address this
situation, we modify the scores so as to introduce jumps and
repeats. A repetition is created in each score by duplicating
an arbitrary sequence of eight bars. A jump is also added by
discarding the second instance of the longest repeated section
of at least four bars, when there is one.

In the models presented in Section III, the concurrency
succession is necessarily the same as in the score. Thus, the
transition functions have to be modified in order to take into
account possible structural differences.

We assume that we know a set of possible score positions at
which “jumps” can occur in the score. This set can be indicated
in the score, as it corresponds to repeat signs or other repetition
symbols. It can also be the result of a structural analysis of
the score, using the frontiers of the detected sections. Hence,
we call these positions “segment frontiers”. In this work, the
segment frontiers considered in the alignment process are the
same as those used for the modification of the score.

Let J be the set of possible jumps, that is all the transitions
from a segment frontier to another one. These new possibilities
are added to the transition functions, with a penalization factor
1
2 compared to the transition to the following concurrency. For

Jumps Forbidden Allowed
Score Exact Modified Exact Modified

MCRF δ = 0 88.9 75.6 87.4 87.3
MCRF δ = 1 90.7 77.2 89.9 89.5

SMCRF δ = 0 95.6 79.1 94.4 94.2
SMCRF δ = 1 95.5 79.5 94.1 93.7
HTCRF δ = 0 99.3 83.7 98.5 98.2
HTCRF δ = 1 99.3 83.6 98.4 98.0

Table IV
ROBUSTNESS EXPERIMENT: RECOGNITION RATES OBTAINED ON THE

WHOLE TEST DATABASE (RWC+MAPS) WITH θ = 300 MS.

example, the SMCRF transition function of (8) becomes:

ψ (Yn+1, Yn)=


1 if (Cn+1, Dn+1) = (Cn, Dn+1)

p(LCn=Dn) if (Cn+1, Dn+1) = (Cn+1, 1)
1
2
p(LCn=Dn) if (Cn, Cn+1)∈J and Dn+1 =1

0 otherwise.
(20)

Experiments were run on both exact and modified scores,
with the original systems (forbidding jumps in the score) and
the new ones (allowing them). The results of these experiments
are displayed in Table IV. Note that these figures are given on
the whole test database (MAPS + RWC).

First, one can notice a decrease of the recognition rates (of
about 1%) on the perfect scores when jumps are allowed. As
in the “wrong repetition problem” exposed in Section VI-B,
this is due to a few pieces where the observations poorly match
the chroma templates. On these pieces, the favored path jumps
to the end label, which accepts more or less any observation,
and stays there until the end of the recording. Note that only
9 pieces over 119 are concerned by this phenomenon with the
HTCRF model, all from the RWC database. A solution to this
problem could be to use more robust observations.

Then, consistently with one’s intuition, the precision of the
alignment with all the systems decreases when the score is
modified. However, whereas the performance of the original
systems dramatically collapses, this reduction is relatively
small, about 1% to 2% for the systems allowing jumps in the
score. Furthermore, even with imperfect scores, the HTCRF
obtains better recognition rates than the SMCRF with perfect
scores. This shows that the chosen framework is quite robust
to these score modifications.

VII. CONCLUSION

In this paper, we propose the use of the CRF framework to
address the audio-to-score alignment problem. We show that
this framework encompasses the different statistical models
which have been proposed in the literature. Furthermore, it
allows for the use of more flexible observation functions than
the different variants of the HMM framework. In particular
we introduce the exploitation of observations extracted from a
whole neighborhood of each time frame and we show that this
can improve the fine level precision of the obtained alignment.

We use several acoustic features characterizing different as-
pects of the musical content, namely harmony, note attacks and
tempo. A scalable framework is proposed, involving several
CRF with increasingly intricate dependency structures, for an
ascending accuracy in the concurrency duration modeling. We
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test these models on a large-scale database of polyphonic,
classical and popular music. We show that an improvement of
the alignment precision is obtained with more sophisticated de-
pendency structures. Our most elaborate system, the HTCRF,
obtains a very high accuracy, since more than 95% of the
onsets are detected with a finer precision than 100 ms.

We additionally show how the proposed framework can be
modified in order to take into account possible structural differ-
ences between the score and the performance. Our experiments
show that the accuracy loss in this case is quite small (1% to
2%) since it is lower than the difference between two systems
with different dependency structures.

Furthermore, we propose a novel pruning approach, which
exploits the hierarchical structure of the score for a decoding
of the model in a coarse-to-fine fashion, in order to reduce the
decoding complexity. We show that this strategy allows for
a significant reduction of both the explored search space and
the run time. Experiments also show that, with our Markovian
model, our approach outperforms the beam search method.
The same coarse-to-fine strategy is also exploited in order to
obtain a very low-cost alignment.

Some results indicate a greater sensitivity of the observa-
tion function exploiting neighboring frames to noisy chroma
observations coupled with inaccurate duration priors. This
“noisiness”, only encountered in the pop music database, is
mainly due to the strong level of unpitched sounds (such as
percussion). The exploitation of a drum separation algorithm
or of an explicit noise model would constitute an interesting
perspective in order to “clean” the observation function values.

The CRF framework also allows for the design of other
forms of potential functions. In particular the transition func-
tions, which are here constant, can vary as functions of the
observation sequence. This would permit the use of features
expressing structural relations between different frames, such
as the similarity of the observations, in addition to features
expressing the match between the observations and the labels.
One could for example imagine a transition function which
would favor self-transitions (to the same concurrency) when
no variation occurs between several adjacent frames. Such
features would probably be robust to some deviations between
the observations and the concurrency templates, such as tuning
differences or pitch imprecisions. In the case of the MCRF
system, one could also imagine a transition function depending
on the position of the last preceding peak in the onset detection
function, for an implicit temporal modeling without the cost
of decoding the occupancy variable sequence.

The parameters, which have here been set thanks to a
coarse grid search, could also be learned, for example through
a maximum likelihood estimation. However, this estimation
process is very complex, and one needs a sufficiently large
learning database. Finally, it is worth mentioning that the CRF
framework could also be applied in a real-time context with
few modifications (for example, only the past frames could be
considered in the calculation of the potential function).
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