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Abstract. Several studies have pointed out the need of mid-level repre-
sentations of music signals for information retrieval and signal processing
applications. In this paper, we investigate a new representation based on
sparse decomposition of the signal into a collection of instrument-specific
harmonic atoms modelling notes of various pitches played by different
instruments. Each atom is composed of windowed harmonic sinusoidal
partials whose amplitudes are learned on a training database. An effi-
cient Matching Pursuit algorithm was designed to extract the best atoms
and to estimate the phases of their partials. The resulting representation
can be exploited for automatic instrument recognition. Preliminary ex-
periments on a test database of solo excerpts show promising results.

1 Introduction

Audio indexing is a field of growing interest and includes challenging goals such
as automatic music transcription [1], automatic genre classification [2][3], or mu-
sic instrument recognition [4][5][6]. Most music classification systems so far are
based on a set of timbral and temporal features computed from low-level signal
representations, such as waveforms, spectrograms or correlograms. These fea-
tures, which describe the signal as a whole on each time frame, do not account
for all the attributes of complex polyphonic signals. By contrast, the human au-
ditory system is generally able to assess the timbre of each note or the rhythm of
each instrument separately. It is expected that the decomposition of the signal
into a collection of musically meaningful sound objects could help automatic
systems achieving a similar performance. For example, several authors have de-
signed mid-level representations of music signals in terms of note-like objects
extracted using complex polyphonic pitch transcription algorithms and proved



their benefit for various applications, namely auditory scene analysis [7], recogni-
tion of multiple instruments [8, 9], measurement of harmonic similarity [10] and
source separation [11].

In this paper, we investigate a new mid-level representation of music signals
based on the concept of sparse decomposition. Sparse decomposition methods
have received a lot of attention recently in signal processing and approximation
theory communities. Their aim is to provide a representation (exact or approxi-
mate) of a given signal x as a linear combination of fixed elementary waveforms,
or atoms:

x(t) =
N∑

n=1

αn wn(t) (1)

where atoms wn are selected among a set D = {wn}n=1...P , called a dictionary.
Audio signals are typically modelled using Gabor atoms, which are sinusoids
windowed by Gaussian envelopes, and whose time support is bounded. The term
sparse refers to the property by which the number N of selected atoms is much
lower than the dimension of the signal space, that is the number of samples
of the signal. When this property holds, such decompositions can be seen as a
preprocessing step for many audio signal processing operations, including coding,
signal modification and information extraction [12].

Obviously, in order to get decompositions that are as sparse as possible, one
has to design dictionaries that contain atoms exhibiting strong similarities with
the analysed signal. Hence, the more a priori information is available on the
signal, the more informed dictionaries can be designed, and the more physically
meaningful the resulting decompositions are.

In the following, we assume that the analysed signal only contains sounds
from harmonic instruments and that the set of possible instruments is known.
Ideally, we would like to infer a MIDI-like representation of the signal, where each
atom wn would represent a single note signal parameterised by an instrument
class, a pitch value, a velocity parameter and other expressive parameters (vi-
brato, etc). However, such an ideal representation cannot be obtained by sparse
decomposition since the large range of possible note signals, even for a limited set
of instruments, would require huge dictionaries D and result in untractable com-
putations (computational requirements directly depend on the dictionary size).
Therefore, we design simpler frame-based Instrument-Specific Harmonic ISH)
atoms composed of windowed harmonic sinusoidal partials whose amplitudes
are learned on a training database for each instrument and pitch value.

In practice, some of the extracted atoms do not have a straightforward inter-
pretation as notes, but are selected to correct slight discrepancies between the
data and the model. Nevertheless, as we shall see, the decomposition algorithm
provides an approximate representation of the signal, where the information at
hand is intermediate between the raw signal and a high-level representation such
as a MIDI transcription. In other words, the loss in fine details of the signal (some
degradation is almost always audible and often quite significant) has to be bal-
anced with the ease of interpretation of the decomposition, which includes an
explicit clue about the instruments that are playing. Note that complex statis-



tical models are necessary to hopefully obtain a perfect transcription, but the
presented model could be sufficient to get an approximate one by using an ade-
quate post-processing or a more efficient decomposition algorithm than MP. In
fact, the mid-level representation comes at a smaller computational cost than the
results of more comprehensive approaches proposed in [1] and still makes possi-
ble several information retrieval tasks (key-finding, melodic similarity, automatic
instrument recognition) and coarse remixing.

This paper focuses on the single task of automatic instrument recognition. In
the scope of this application, the proposed approach shares some similarities with
template-based instrument recognition algorithms [8, 9, 6], which also describe
instrument classes in terms of learned harmonic amplitude vectors.

The structure of the rest of the paper is as follows. The ISH atoms composing
the specific dictionary used as a signal model are defined in Section 2. Section 3
presents the algorithm used to obtain sparse decompositions on this dictionary.
Section 4 describes how ISH atoms are learned on isolated notes. Finally, the
results of automatic instrument recognition experiments are shown in Section 5
and commented in section 6.

2 Instrument-Specific Harmonic Dictionary

The main contribution of this study is the modelling of music signals as a
weighted linear combination of N harmonic atoms hsn,un,f0n ,An,Φn parame-
terised in terms of scale sn (atom duration), time localisation un, fundamen-
tal frequency f0n , partials amplitudes An = {am,n}m=1:M and partials phases
Φn = {φm,n}m=1:M :

x(t) =
N∑

n=1

αn hsn,un,f0n ,An,Φn(t). (2)

Each harmonic atom can be written as

hs,u,f0,A,Φ(t) =
M∑

m=1

am ejφmgs,u,m.f0(t) (3)

where the amplitudes of the M partials are constrained to
∑M

m=1 a2
m = 1 and

the signal corresponding to each partial is given by a Gabor atom1 normalised
to unit energy

gs,u,f = w

(
t− u

s

)
e2jπft (4)

with w a time- and frequency-localised window. For strictly speaking Gabor
atoms, this window is a Gaussian, although Hanning windows are also a con-
venient choice for our application. Note that harmonic atoms also have unit
energy.
1 Following the convention set in [13], atoms are denoted by complex-valued signals.

In practice, sparse decompositions of real-valued signals involve pairs of atoms con-
sisting of one complex-valued atom and its conjugate.



When partials amplitudes are learned from a database (see 4.1), these atoms
are called ISH atoms. Each amplitude vector A is then associated with a class
(in our case an instrument) and a discrete pitch value. Generally, several vec-
tors are used for each class and each pitch value. Indeed, allocating a single
amplitude vector to an instrument would oversimplify its timbre span: musical
acousticians and synthesiser designers know that inferring a note signal by sim-
ple pitch-shifting of another note signal is not relevant for large pitch intervals.
The dependency of signal characteristics on pitch has also been pointed and
exploited by Kitahara [5]. Furthermore, the relative amplitudes of the partials
depend on velocity and evolve over time. Examples of learned amplitude vectors
A are displayed in Figure 1.
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Fig. 1. Examples of learned amplitude vectors A corresponding to 5 oboe notes, each
played with 3 different velocities. Each partial is represented as a circle and each velocity
by a different gray level. MIDI codes are displayed on the right side of the vector groups.

3 Decomposition algorithm

Given a ISH dictionary, the problem becomes that of decomposing the signal as
a collection of ISH atoms from this dictionary. Many decomposition algorithms
suited for generic dictionaries have been proposed in the literature. We have
chosen Matching Pursuit (MP), as described below, for its simplicity and its rel-
ative speed due to its “greedy” nature. Although there is in general no guarantee
that the N -atoms approximation obtained with MP is optimal (i.e. minimises
the energy of the residual), many experiments have shown that its behaviour is
generally very close to optimal, at the fraction of the time required to get more
accurate approximations.



3.1 The Matching Pursuit Algorithm

The MP algorithm has been introduced in [14]. The algorithm proceeds as fol-
lows:

1. The correlations between the signal and all the atoms h of the dictionary
are computed using inner products 〈x, h〉 =

∑T
t=1 x(t)h(t).

2. The atom h that has the largest absolute correlation |〈x, h〉| with the signal
is selected, then subtracted from the signal with a weighting coefficient2

α = 〈x, h〉.
3. Correlations are updated on the residual signal, and the algorithm is iterated

to step 2 until the stopping condition is satisfied. This condition can be a
target Original-to-Residual energy ratio, or a fixed number of iterations.

3.2 Sampling the dictionary

In practical applications, the search step 2 can only be performed on a finite
number of atoms. Thus, one has to sample the dictionary by making the atom
parameters s,u, f0, A and Φ discrete:

– The scale s often spans a small set of powers of 2. For our application,
the choice of a single scale corresponding to a duration of about 100 ms
is sufficient. More scales should be chosen for other applications such as
analysis-synthesis or coding (for instance one small scale for the transients
and one long scale for the steady-state part).

– The time localisation u is typically set to equally spaced time bins, with a
time shift ∆u set to a fraction of the atom scale.

– The fundamental frequency f0 is sampled logarithmically. This is a notice-
able difference with the Harmonic MP algorithm [16], where fundamental
frequencies are sampled linearly. The main reason for this choice is that the
distribution of fundamental frequencies in music signals appears smoother
on a logarithmic scale. Thus it provides a constant f0 resolution for these
signals.

– Amplitude vectors A are by nature elements of a discrete set of vectors,
because they are learnt from a finite number of sound excerpts. The building
of this set is described in section 4. The number of amplitude vectors per
class and pitch value must not be too large for computational reasons. This
point is discussed in section 4.1.

– A brute-force sampling of phase vectors Φ would be very expensive in
terms of complexity, since this would multiply the size of the dictionary by
(2π/∆φ)M , where ∆φ is the phase bin width. Alternatively, phase vectors
are estimated a posteriori as explained in section 3.3.

2 Since we want to handle real signals, atoms are practically selected by couple of
conjugate atoms, that form a real atom. More details on the computation of the
amplitude and the phase of the weight can be found in [15].



3.3 Phase estimation

At each iteration of the MP algorithm, the partials phases of the selected atom
must be adapted to the analysed signal. Failing to do this, the subtraction of this
atom may add energy to some partials and result in the extraction of spurious
atoms during later iterations. The phase vector is thus given by the angle of
the inner product between the Gabor atoms constituting the ISH atoms and the
signal:

ejφm =
〈x, gs,u,m.f0〉
|〈x, gs,u,m.f0〉|

. (5)

This method can be shown to be nearly optimal for strongly sinusoidal signals
when the Gabor atoms gs,u,m.f0 are sufficiently uncorrelated (this is the case
when s and/or f0 are large enough) [16].

4 Learning on isolated notes

The amplitude vectors A corresponding to various classes and pitch values are
learned on a training database. The choice of the number of vectors and the
choice of the learning database both influence the cost and the relevance of the
decomposition.

4.1 Training database

In this study, the training database is composed of isolated note signals taken
from the RWC Musical Instrument Sound Database [17] for five instruments:
Oboe, Flute, Clarinet, Violin and Cello. These signals span the whole pitch range
of each instrument and correspond to three different velocities. We extract one
amplitude vector A per note signal. This results in a small number of amplitude
vectors for each class and each pitch value. However the fact that these vectors
are learnt from different velocities lets us expect that they span a significant part
of each instrument timbre. There are between 100 and 200 different A vectors
per instrument (between 3 and 6 per pitch and instrument). Further work will
deal with atoms taken on all the time frames of isolated notes, on which an
adapted vector quantization technique will be applied to reduce the size of the
dictionary.

4.2 Partial amplitude extraction

To keep a certain homogeneity between learning and signal decomposition, the
amplitude am of each partial is extracted by computing the absolute value of the
inner product between the training signal and a Gabor atom of frequency m.f0.
The annotated fundamental frequency f0 given by its integer MIDI pitch does
not exactly correspond to the true fundamental frequency, especially for bowed
strings instruments. This problem is solved as follows: harmonic combs of Gabor
atoms, sampled at a fine fundamental frequencies f0 around the annotated pitch,



are correlated with the signal. The best fundamental frequency f0n
is selected

by:

f0n = arg max
f0

M∑
m=1

|〈xn, gs,u,m.f0〉|2. (6)

The amplitude of each partial is then derived as:

am,n = |〈xn, gs,u,m.f0n
〉|. (7)

5 Application to automatic instrument recognition

5.1 Output of the signal decomposition

The “informed” sparse decomposition described in section 3 can be considered
as a front-end for some applications. The result of the MP algorithm is a book
of atoms that can be displayed on a time-pitch plane, along with other charac-
teristics such as overall energy and instrument class.

The decomposition of a real solo music signal is displayed in figure 2. It is
important to note that this analysed signal is not part of the training database.
Reconstructed sounds can be listened to on our web page3. Some interesting
features can be observed. In particular, the atoms can be visually grouped as
clusters corresponding to certain pitch values. Thus the mid-level structure of
the analysed signal as a collection of notes seems to be very well represented.
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Fig. 2. Time-pitch visualisation of the decomposition of a clarinet recording. Each
atom is represented by a rectangle whose height is proportional to its amplitude and
whose colour depends on its instrument class.
3 http://www.tsi.enst.fr/˜pleveau/LSAS2006/



As mentionned in introduction, the proposed signal model is too simple to be
used directly for polyphonic transcription or source separation. Here we evaluate
its usefulness for the task of automatic instrument recognition on monophonic
signals: this application can be easily performed. Indeed it is expected that the
atoms that are selected in this case mainly belong to the instrument that is
playing.

5.2 Decision procedure

One way of achieving automatic instrument recognition is to compute a score
for each instrument class by summing the amplitudes |αn| of all the extracted
atoms from this class. In the case of a solo performance, the instrument with the
largest score is then the most likely to be played.

6 Experiments

6.1 Parameters

The decomposition algorithm has been applied on a test database of solo
phrases extracted from different commercial recordings, with a sampling fre-
quency fs = 22050 Hz. The database contains 5 sources for each instrument.
The total duration for each instrument is between 12 and 24 minutes. The test
items are 2 second excerpts taken from these phrases. It makes between 200 and
300 test items per tested class.

The parameters used for the decomposition are the following: s = 90 ms (1024
samples), ∆u = 45 ms, maximum number of partials M = 30. The fundamental
frequency f0 is sampled logarithmically with a step equal to 1/10 tone. The MP
algorithm is stopped when the Original-to-Residual ratio becomes larger than
15 dB or the number of extracted atoms equal to 500.

Classification tests have also been performed with a feature-based approach
that provides a good benchmark of the state-of-the-art performance on solo
excerpts. The test algorithm [4] has been developed by Essid, and is mainly based
on a feature selection algorithm called Fisher-Clustering (40 features selected out
of 543) and a classification with Support Vector Machine. It must be noted that
this algorithm is trained with numerous sources (solo phrases) extracted from
commercial CDs, that the features also extract longer-term informations, such as
amplitude- and frequency-modulations, and non-harmonic characteristics, while
our algorithm is trained on isolated notes from a single source and only considers
the harmonic part of the signal. For that reason, the two systems cannot be
strictly compared: the feature-based approach only gives a first goal to reach.

The feature-based approach is performed on the same test samples than the
signal analysed in the decompositions. The decisions are taken on the frames
contained in 2 seconds of signal (125 test frames).



6.2 Results

The confusion matrices obtained from the various algorithms are shown in Table
1. The feature-based algorithm appears quite robust, with an overall recognition
accuracy of 83.9%. The proposed algorithm achieves an average recognition rate
of 68.5 % using books obtained directly after the decomposition.

Although not comparable with the feature-based approach, the application
of our decomposition algorithm to automatic instrument recognition shows an
interesting feature: the recognition accuracy is higher for the Cello class. This is
certainly related to the explicit modelling of the instrument pitch range: Cello
has a lower pitch range than the other instruments, and thus low notes are
automatically detected as Cello notes. It must be mentionned that our approach
offers perspectives for the automatic instrument recognition on polyphonic music
while keeping the same learned data, whereas a feature-based approach would
need the learning of instrument ensembles.

Ob Cl Co Vl Fl

Ob 93.4 5.0 0.0 0.3 1.3

Cl 4.2 89.2 0.9 0.0 5.7

Co 0.4 7.4 71.7 20.5 0.0

Vl 0.4 1.9 1.5 91.6 4.6

Fl 7.2 19.1 0.4 0.8 72.5

Ob Cl Co Vl Fl

Ob 63.6 3.2 7.3 9.1 16.8

Cl 1.4 75.8 3.9 1.8 17.1

Co 0.7 4.6 77.8 7.7 9.2

Vl 3.7 8.9 6.8 60.7 19.9

Fl 2.6 27.7 0.9 4.3 64.7
Table 1. Confusion matrix for instrument recognition with a state-of-the-art feature
based approach(left), and based on decompositions on ISH atoms (right).

7 Conclusion

In this paper, a novel approach for music signal analysis is proposed. It is based
on sparse decompositions of the audio signal using instrument-specific harmonic
atoms extracted from real recordings. The preliminary results obtained in a
music instrument recognition task are very promising even if they do not yet
reach the performances of more traditional approaches. In fact, it is important to
note that this alternative approach has the potential to perform simultaneously
instrument recognition, polyphonic pitch transcription and source separation.
Future work will be dedicated to the use of smoothing techniques for the selection
of atoms with time (for example based on dynamic programming principles which
should permit to explicitly build coherent group of atoms, or molecules) and to
the design of optimal dictionaries (with the aim to maximise the coverage of
the acoustic space for the given instrument while at the same time minimising
its size). Future work will also be dedicated to the application of this approach
to more complex tasks such as instrument recognition and pitch extraction on
polyphonic music signals, by introducing more complex priors for atom selection.
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