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We address the issue of underdetermined source separation in a particular informed

configuration where both the sources and the mixtures are known during a so-called

encoding stage. This knowledge enables the computation of a side-information which is

small enough to be inaudibly embedded into the mixtures. At the decoding stage, the

sources are no longer assumed to be known, only the mixtures and the extracted side-

information are processed for source separation. The proposed system models the

sources as independent and locally stationary Gaussian processes (GP) and the mixing

process as a linear filtering. This model allows reliable estimation of the sources

through generalized Wiener filtering, provided their spectrograms are known. As these

spectrograms are too large to be embedded in the mixtures, we show how they can be

efficiently approximated using either Nonnegative Tensor Factorization (NTF) or image

compression. A high-capacity embedding method is used by the system to inaudibly

embed the separation side-information into the mixtures. This method is an application

of the Quantization Index Modulation technique applied to the time–frequency

coefficients of the mixtures and permits to reach embedding rates of about 250 kbps.

Finally, a study of the performance of the full system is presented.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Source separation has been a popular field of research
in signal processing for about 20 years (see e.g. [1] for a
review and [2] for fundamental principles). Its goal is to
recover several signals called sources that were mixed
together in one or several signals called mixtures.

One possible classification of audio source separation
systems is given by the value of the ratio r between the
number of observed mixture signals, K, and the number of
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sources, M. If this ratio is greater than 1, the problem is
called overdetermined and source separation systems may
then rely on microphone array algorithms and can often
reach excellent performance. When the ratio decreases,
the problem becomes determined (r¼1) and can be solved
efficiently, for example through Independent Component

Analysis [3]. When ro1, the problem gets underdeter-

mined and systems’ performances are hardly predictable
and possibly very poor because the source separation
problem is then particularly difficult. However, this case
is of particular interest in music processing since most
music mixtures are composed of more than two sources,
while the number of observations K is often limited to one
or two (respectively for mono and stereo recordings).
Separating source signals from such music mixtures is of
great interest because it would enable to isolate the
different elements of the audio scene, leading to karaoke
rce separation through spectrogram coding and data
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applications, or to separately manipulate them, e.g. by
modifying the volume, the color or the spatialization
of an instrument, a process referred to as active listening

or remixing. In the present paper, we will focus on the
underdetermined source separation (USS) of music
signals.

In the case of USS, there are less observable signals
than necessary to solve the underlying mixing equations
and separation cannot be achieved without some prior

information about the signals that permits to eliminate
ambiguity. Research on the subject is hence largely
focused on how to model any such knowledge and take
it into account in the inference process. We can roughly
distinguish between three kinds of commonly used prior
information.

First, inspired by Auditory Scene Analysis [4], some
authors have proposed generative models for the signals
of interest, ranging from parametric harmonic models [5,6]
to acoustic generative models inspired from the speech
processing community [7]. In this case, source separation
consists in estimating the best parameters of these gen-
erative models from the observed mixtures. In the Bayesian
framework, informative prior distributions are furthermore
assigned to these parameters. Such priors can be obtained
from query signals as in [8] or from third party Music
Information Retrieval (MIR) methods such as fundamental
frequency estimation [9,10] or onsets detection.

Second, much research has also focused on algorithms
using prior knowledge about the mixing process. In
particular, it is common practice in musical production
to assign different spatial locations to the sources in
multichannel mixtures. Algorithms can then be designed
that exploit this spatial distribution of the sources to
perform separation [11,12]. A fundamental property of
audio sources is that they are often sparse in the Time–
Frequency (TF) domain (see [13] and chapter Sparse

Component Analysis in [1]), which means that few sources
are usually active in the same time–frequency bin. There-
fore, they can be distinguished by different directions
of arrival (DOA), and a filtering of the mixtures depending
on the estimated DOA can lead to very good separation
performance.
Encodingstage.

•An informed conf guration where both the sources and the mixtures
 are known
•A small side-information is computed and watermarked into the
mixtures.

M sources K mixtures

watermarked mixtures

Fig. 1. General architectur
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Finally, other methods were proposed in the last few
years that decompose the spectrograms of the mixtures
into additive elements corresponding to the sources.
Decomposition through Nonnegative Tensor Factorization
(NTF) techniques [14–16] was proved to be adequate to
this end. In this framework, the spectrograms of the
mixtures are decomposed as a time-weighted sum of
fixed spectral basis corresponding to the sources. Exten-
sions of NTF methods were subsequently proposed in a
Bayesian framework that make use of informative con-
jugate priors for parameters estimation [17,18].

In any case, all these methods for USS rely on a TF
representation of the mixtures and their objective can be
understood as determining the relative contribution of
each source in each time-frequency bin. Estimates of the
sources are then obtained either through a binary [19] or
a soft [20] TF masking strategy. The latter is equivalent to
a Wiener filter applied in each frame of the mixtures
[21,14,22], thus generalizing classical denoising methods
to the case of more than only two sources.

In this study, we focus on a special case of USS, called
Informed Source Separation (ISS) and depicted in Fig. 1. ISS
can be understood as an encoding/decoding framework in
which both the sources and the mixtures are available at
the encoder, but only the mixtures are available at the
decoder, as well as some side-information that has been
generated by the encoder and transmitted along with the
mixtures to assist the separation process. ISS thus aims at
making source separation robust by providing adequate
and case-specific prior knowledge to the separation algo-
rithms. Its main advantage is that it permits to reliably
recover the separated tracks from mixtures with only a
reasonable amount of side-information. This approach
was initially proposed in [23,24] for monophonic linear
instantaneous mixtures using Modified Discrete Cosine
Transform (MDCT) domain matrix quantization techni-
ques. It has been extended to stereo linear instantaneous
mixtures in [25,26], using local inversion of the mixtures
in the TF domain. Even if these studies settle the founda-
tions of the informed approach for source separation
within a two-step coding-decoding process, they are
confronted to at least two notable limitations: first, they
Decodingstage

•The side information is extracted
•It is used to perform reliable source separation.

estimated sources

e of an ISS method.

rce separation through spectrogram coding and data
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1 Assuming overlapping frames to be independent is classical in the

source separation literature. As demonstrated in [22], it leads to over-

confidence in the estimates, but provides smooth transitions between

the frames. Recent studies such as [33] focus on this issue, which is out

of the scope of this paper.
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are limited to linear instantaneous mixtures, which is too
restrictive if professional music production is to be
considered; and second, their performance relies either
on a proprietary (i.e. over-specific) source encoding tech-
nique or on a ‘‘weak form’’ of the sparsity assumption (in
[26], at most two sources are assumed to be predominant
in each TF bin) which may fail for a large number of
sources or for sources that significantly overlap in the
TF plan.

In the present paper, we introduce a new framework for
ISS which is based on modeling the sources as independent

and locally stationary GPs that are mixed together through
linear filtering into the mixtures [22,27], thus addressing the
more general case of convolutive mixtures. Moreover, the
sources are not assumed to be sparse and can possibly
significantly overlap in the TF domain. We will show in
Section 2 that source separation can be achieved very
reliably in this framework via generalized Wiener filtering
[28,21,29,14], provided the power spectrograms of the
sources that are used to build those Wiener filters are
available. As those spectrograms are too large to be used
directly as the side-information to be transmitted to the
decoder, we propose to use dimension reduction techniques
such as Nonnegative Tensor Factorization (NTF) or image
compression to encode them in a more concise way. This
new framework enables to perform ISS with any kind of
sources and realistic mixing processes, thus significantly
extending the range and potential impact of the informed
approach of audio source separation as compared to pre-
viously proposed ISS methods.

As for the side-information embedding, we use a high-
capacity data embedding technique based on the combi-
nation of Quantization Index Modulation (QIM) [30]
applied on time–frequency coefficients of the mixture
signals, and a Psycho-Acoustic Model (PAM) used to
control the inaudibility of the process. This embedding
technique has been presented in [31,32], and already
exploited for ISS in [25,26]. Therefore, we only provide
here a general overview of this technique and focus on its
use within the new ISS framework. In particular, a
thorough evaluation section allows assessing the conse-
quences of the embedding process on source separation
quality. Note that this study only focuses on uncom-
pressed, PCM signals.

This paper is organized as follows. In Section 2, we detail
the model used for the sources and the mixing process as
well as the corresponding source separation method. In
Section 3, we introduce two different approaches for the
choice of the parameters to be inaudibly hidden in the
mixtures through the high-capacity data embedding tech-
nique which is presented in Section 4. Finally, we give some
experimental results in Section 5 in which we study the
influence of both the dimensionality reduction technique
and data embedding on source separation quality. Finally,
we draw some conclusions in Section 6.

2. Source separation model

In this section, we make use of the Gaussian Process
framework for Source Separation (GPSS) that is presented
in full generality in [22]. In the case of audio processing
Please cite this article as: A. Liutkus, et al., Informed sou
embedding, Signal Process. (2011), doi:10.1016/j.sigpro.2011.
and locally stationary signals, its parameters reduce to the
spectrograms of the sources and separation is equivalent
to generalized Wiener filtering.

2.1. Notations

Locally Stationary Gaussian Processes (LSGP) [22] are a
common model for source separation. An LSGP is a signal
whose restriction to a small portion of time called frame is
a stationary Gaussian process and is independent from
the other frames. It is important to note that an LSGP is
not necessarily stationary, but only its restrictions to
small durations are stationary.

Let f9½f ðx1Þ � � � f ðxnÞ�
> be an LSGP observed on n sam-

ples. f is split into a set fftgt ¼ 1���NT
of NT overlapping frames

of length L. The Short Term Fourier Transform (STFT) of f is
defined as the matrix F whose tth column contains the
Fourier transform of ft. Since the different frames are
supposed independent,1 and since the coefficients of the
Fourier transform of each frame t are asymptotically inde-
pendent because ft is stationary, all coefficients of the matrix
F are assumed independent. In the following, Fo,t will
denote the frequency bin o of frame t.

Let us define the (power) spectrogram S of f as
So,t ¼ 9Fo,t9

2
. It is readily shown that if f is an LSGP, Fo,t

follows a centered complex Gaussian distribution of
variance So,t [34,14,21].

2.2. Separation of one mixture of locally stationary GPs

Suppose we observe the sum y(x) of M locally sta-
tionary signals fm(x): yðxÞ ¼

PM
m ¼ 1 f mðxÞ for n samples.

The STFT Y of the mixture is hence the sum of the STFTs
fFmgm ¼ 1���M of the sources. Since we suppose that the
sources are LSGPs, each time-frequency bin of Y is the
sum of M independent complex coefficients with Gaus-
sian distribution and can thus be modeled as a complex
Gaussian Mixture Model. This model is equivalent to the
Gaussian Scaled Mixture Model introduced by Benaroya
[20] and further studied by many others [21,29,15,14,22].
Let Sm be the power spectrogram of source m. It can be
shown that the Minimum Mean Squared Error (MMSE)
estimate F̂m0

of the STFT Fm0
of source m0 is

F̂m0
¼

Sm0P
mSm
� Y ð1Þ

where A=B and A � B respectively stand for component-
wise division and multiplication of matrices A and B. In
audio source separation, this result is referred to as
generalized – or adaptive – Wiener filtering.

2.3. Separation of multichannel mixtures

Considering now the more general multichannel case
where K mixtures yk

� �
k ¼ 1���K

are available (in practice we
rce separation through spectrogram coding and data
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generally have two channels, for stereo signals). We can
assume that each mixture yk is the sum of filtered
versions of the M sources [35]:

ykðxÞ ¼
XM

m ¼ 1

f kmðxÞ ð2Þ

where f kmðxÞ is called the contribution of source m to
mixture k for time x and is defined as the convolution of
source m with a stable linear filter akm, that is called the
mixing filter from source m to mixture k:

f kmðxÞ9 akmnf m

� �
ðxÞ9

XP

t ¼ 0

akm tð Þf m x�tð Þ ð3Þ

We will only consider causal and Finite Impulse
Response (FIR) filters of order P here. Provided that P is
sufficiently small compared to the length L of each frame,
(3) can be simply written in the frequency domain.
Typical values for P are 150 in the following, whereas
L� 3000 in our implementation. Let Akm be the Fourier
transform of the mixing filter akm, Fkm be the STFT of fkm

and Sm be the power spectrogram of the source m. It is
readily shown that the MMSE estimate F̂km0

of Fkm0
is

approximately given by2

F̂km0
¼

ðdiag9Akm0
9:2ÞSm0PM

m ¼ 1ðdiag9Akm9:2ÞSm

:Yk ð4Þ

This permits to efficiently compute the estimates of the
contributions of all the sources within the mixtures
provided the mixing filters akm and the spectrograms Sm

are available.

3. Strategies for the side-information

3.1. Introduction

After having introduced source separation for locally
stationary GPs, we now focus on the particular informed

configuration depicted in Fig. 1, where the source signals
fm as well as the mixtures yk are perfectly known at the
encoder. We are then left to produce a set of parameters Y
that we can inaudibly embed into the mixtures to assist
source separation at the decoder. In all the following, the
signals are assumed locally stationary as in Section 2.

The model we introduced in Section 2 provides simple
ways to estimate the sources in the mixtures. To this end,
the separation method given in (1) and (4) requires
�

com

vec

P
e

the mixing filters fakmgk ¼ 1���K ,m ¼ 1���M ,

�
 the spectrograms fSmgm ¼ 1���M of the sources.
In the remaining of this section, we will thus devise
different possible strategies that allow recovering esti-
mates of fakmgk ¼ 1���K ,m ¼ 1���M and fSmgm ¼ 1���M given Y at
the decoder. Note that the informed approach highly
contrasts with blind or semi-blind source separation or
2 If V is a vector, diag V is the matrix whose diagonal elements are

posed of the elements of V . If M is a matrix, diag M is the column

tor containing the diagonal elements of M.

lease cite this article as: A. Liutkus, et al., Informed sou
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spectral subtraction methods based on Wiener filtering
where the parameters of the Wiener filter (mixing filters
and power spectrograms of the sources) have to be
estimated from the observations only.

3.2. Definition or estimation of the mixing filters

First of all, there are basically two possibilities for the
mixing filters at the encoder. Those filters are either
defined during the encoding process of the informed
mixtures and thus perfectly known, or the mixing process
is made separately (e.g. by a professional sound engineer)
and they have to be estimated at the encoder before the
encoding process. Previous studies in the automatic mix-
ing literature [35] have focused on the latter case. Given
some fixed length Pþ1 for their impulse response, esti-
mation of the mixing filters fakmgk ¼ 1���K ,m ¼ 1���M at the
encoder is straightforward. Indeed, for every mixture k,
everything is available at the encoder to estimate the
filters fakmgm ¼ 1���M that minimize the mean squared error
between yk and

PM
m ¼ 1 akmnf m through standard least

squares method.
It is noticeable that in real-world scenarios, the mixing

process may include very long mixing filters such as
reverberations or even nonlinear processing such as
compression. In this study, we nonetheless approximate
the mixing as a linear filtering of the sources by finite
impulse response filters of length P� 150. As demon-
strated in Section 5, this approximation yields good
results even in nonlinear mixtures, thus suggesting that
it is a reasonable simplifying assumption.

In the following discussion, we will thus simply
assume that the mixing filters are readily available at
the encoder and included in the side information Y. Note
also that in the present study, the mixing filters are
assumed to be constant over each whole piece of music
to process, hence the amount of side-information
reserved to encode those filters is very reasonable (at
least compared to the spectrograms information that is
computed for each frame).

3.3. Oracle configuration

The proposed separation method requires the spectro-
grams of the sources at the decoder. A first idea is to
simply embed the whole ‘‘raw’’ set of source spectro-
grams. This would result in

Yoracle ¼ ffakmgk ¼ 1���K ,m ¼ 1���M ,fSmgm ¼ 1���Mg

As this setting of Y is the one that guarantees MMSE
estimates, we will call it the Oracle configuration in the
following. Unfortunately, such a scenario is actually not
an option, since we cannot afford to embed the complete
spectrograms fSmgm ¼ 1���M inaudibly within the mixtures.
More precisely, the total number #Yoracle of parameters
included in Y in this case is

#Yoracle ¼M � No � NT|fflfflfflfflffl{zfflfflfflfflffl}
for each source

þM � K � ðPþ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
for A

ð5Þ

which clearly leads to an excessive bitrate considering
the embedding capacity: the typical bitrate necessary to
rce separation through spectrogram coding and data
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embed the parameters in this configuration is 20,000 kbps,3

which is larger than available: in the embedding method
presented in Section 4, typical capacity is about 200 kbps
per mixture signal, which is much insufficient for this
purpose. Still, as the Oracle configuration is guaranteed to
produce the best results the model is capable of, it will serve
as a reference method for evaluation in Section 5.

3.4. Dimension reduction techniques

As the spectrograms fSmgm ¼ 1���M of the sources cannot
be directly embedded into the mixtures because of
insufficient capacity, realistic but effective models have
to be devised to encode them concisely. For that purpose,
a simple idea we proposed in [27] is to approximate the
3-dimensional tensor S containing the stacked spectro-
grams of the sources.4

A first solution is to approximate S as the product of
low-rank nonnegative matrices, thus leading to an NTF
model [16] that greatly reduces the number of parameters
to include in Y. More specifically, we can chose the
Canonical Polyadic (CP) decomposition5 and approximate
S as

So,t,m � Ŝo,t,m ¼
XR

r ¼ 1

Q mrWorHrt ð6Þ

where Q , W and H are the new parameters YNTF of the
model, i.e. YNTF ¼ ffakmgk ¼ 1���K ,m ¼ 1���M ,Q ,W,Hg. The
approximation is graphically illustrated in Fig. 2.

In [27], we have shown that this technique is equiva-
lent to modeling the source signals as a sum of R

independent LSGPs with constant normalized power
spectrum called latent components. This approach leads
to finding YNTF such that the Itakura–Saito distance6

DISðS9Ŝ Þ between the spectrograms and their reconstruc-
tion is minimal. The main advantage of this approach over
the Oracle solution as presented in Section 3.3 is that the
number #YNTF of parameters included in YNTF becomes

#YNTF ¼No � R|fflfflfflffl{zfflfflfflffl}
for W

þNT � R|fflfflffl{zfflfflffl}
for H

þM � R|fflfflffl{zfflfflffl}
for Q

þM � K � ðPþ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
for A

ð7Þ

which is much smaller than #Yoracle given in (5) as we
show in Section 5. Typical bitrates necessary to convey
YNTF indeed drop to approximately 150 kbps. It is very
important to note that the latent variables W and H are
the same for all sources, whereas the specific structure of
a given source is modeled by Q , hence the very efficient
compression power of this representation.

This model has been thoroughly discussed in [29]. For
only one source, it is equivalent to the NMF approach that
was popularized by [36] when using IS divergence as a
cost function, which is a special case of b-divergence for
b¼ 0 (see [14,16] on this point). Algorithms in the afore-
mentioned papers can be generalized to the case of
3-dimensional tensors of M channels and the corresponding
3 This approximation is obtained using M¼5, No ¼ 1024 and

NT ¼ 100 frames=s.
4 That is, ½S�o,t,m ¼ ½Sm�o,t .
5 CP is also called CANDECOMP or PARAFAC [16].
6 DISðA9BÞ9

P
o,t,m½Ao,t,m=Bo,t,m�log ðAo,t,m=Bo,t,mÞ�1�.
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update rules for the parameters are summarized in
Algorithm 1 for any b-divergence.7 The main idea with
those iterative algorithms is to randomly initialize the
parameters of the model with nonnegative values, and then
iteratively update each matrix by multiplying it component-
wise in order to ensure a diminution of the cost function. In
Algorithm 1, we have also included component-wise expo-
nentiation of the update matrices through an exponent

stepsize ZðbÞ as suggested by recent convergence analysis
of tensor decompositions [37–39]. ZðbÞ is defined the
following way:

ZðbÞ ¼

1

2�b
if bo1

1 if 1obr2

1

b�1
if bZ2

8>>>>><
>>>>>:

Algorithm 1. Update rules for the parameters Q , W and H
of the source model (6) for one iteration.
�

�

�

rce
09.
Q m:’diag diagðQ m:Þ:
W>ðŜ

:b�2

m :SmÞH
>

W> Ŝ
:b�1

m H>

� ��ZðbÞ !
W’W:

PM

m ¼ 1
ðŜ
:b�2

m :SmÞðdiagðQ m:ÞHÞ
>PM

m ¼ 1
Ŝ
:b�1

m ðdiagðQ m:ÞHÞ
>

" #�ZðbÞ
H’H:
PM

m ¼ 1
ðWdiagðQ m:ÞÞ

>
ðŜ
:b�2

m :SmÞPM

m ¼ 1
ðWdiagðQ m:ÞÞ

> Ŝ
:b�1

m

" #�ZðbÞ
When the parameters have been estimated at the
encoder and transmitted to the decoder, separation can
then be performed by replacing Sm in (1) or (4) by its CP
approximation (6). Evaluation of this technique for sev-
eral orders R of the CP approximation is given in Section 5.

3.5. Spectrogram compression

Alternatively to NTF decomposition, another original
idea that we propose in the present paper to concisely
encode the source spectrograms is to compress them
using appropriate compression techniques borrowed from
the image processing literature [40,41]. Indeed, each
spectrogram Sm for a given source m is a matrix of
nonnegative numbers and can hence be understood (and
compressed) as a large image.

Since 8-bit image compression cannot encode more
than 256 levels for a grayscale image and since the
dynamic range found in typical spectrograms is generally
much larger, applying compression algorithms directly on
Sm leads to poorly encoded spectrograms. It was found
that instead of encoding Sm, one could rather encode
log Sm, which exhibits much less dynamic variations. In
addition, the log-spectrograms can be normalized
between maxðlog SmÞ and maxðlog SmÞ�X dB where X is
7 Notations:

Bm: is the mth row of matrix B,

Sm is the observed spectrogram of source m,

Ŝm ¼W diagðQ m:ÞH is the estimated spectrogram of source m with

current model parameters.

separation through spectrogram coding and data
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typically set to 80 dB for music spectra (values below the
new min value are set to this new min value). Corre-
sponding normalization factors are transmitted within
the side-information and used to denormalize the spec-
trograms at the decoder, but these factors occupy a very
limited embedding capacity. Of course, at the decoding
stage, log-spectra are converted back to linear scale.

In any case, we consider a compression algorithm
denoted C in the following that produces a buffer of data
ym which permits to concisely encode the spectrogram Sm

of each source through an image compression algorithm:

ym ¼ CfSmg ð8Þ

An estimate Ŝm of the spectrogram is then obtained by
applying the inverse transformation:

Ŝm ¼ C�1
fymg ð9Þ

Once such an estimate has been obtained, separation can
be performed by replacing Sm in (1) or (4) by its estimate
(9). In Fig. 3, we show an excerpt of an original log-
spectrogram and its corresponding estimation using the
classical JPEG algorithm [41] with a very low quality
setting.

When using such an Image Compression (IC) technique,
the side-information YIC to be inaudibly embedded in the
Fig. 2. Canonical Polyadic model. The spectrograms of the sources are

jointly modeled as an NTF model.
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mixtures becomes

YIC ¼ ffymgm ¼ 1���M ,fakmgk ¼ 1���K ,m ¼ 1���Mg ð10Þ

and the corresponding number of parameters and bitrate
then depends on the setting of the compression quality in
the chosen image compression routine C. In Section 5, we
see that the capacity required for the transmission of YIC

lies between 20 kbps and 200 kbps depending on the
Quality setting of the image compression algorithm. In the
following, we will use the standard JPEG compression
algorithm for still images [41].

3.6. Conclusion

In this section, we have presented two methods that
can be used by the encoder to encode the parameters
needed by the decoder to perform source separation in
the framework introduced in Section 2. These methods
lead to a sufficiently small amount of side-information
parameters to allow efficient inaudible embedding within
the mixtures. The uncompressed, full-accuracy, version of
the parameters can be used as a reference oracle config-
uration providing upper bounds for the separation results.

4. High-capacity data embedding

4.1. Introduction

In this subsection, we present the high-capacity embed-
ding technique that we use to embed the side-information
Y that contains all the hyperparameters needed to perform
separation of the mixtures. As mentioned in the introduc-
tion, this method has already been presented in [31,32], and
we thus only provide the general lines here. We refer the
reader to these references for technical details. The basic
principle of the method is that if time-frequency coefficients
number

gram (excerpt)

50 300 350 400 450 500

number

d spectrogram

50 300 350 400 450 500

g the JPEG algorithm with quality¼10.
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Fig. 4. Example of QIM using a set of quantizers for Cðo,tÞ ¼ 2 with their

respective gray code index and a global grid. The binary code 01 is

embedded into the IntMDCT coefficient Xðo,tÞ by quantizing it to

Xw
ðo,tÞ using the quantizer indexed by 01.

8 In [31], where the MDCT was used, robustness to the 16-bit PCM

conversion of the embedded signal was also considered as a constraint.

This is no more the case with the IntMDCT, since a 16-bit PCM

embedded signal is directly generated.
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can be quantized with a limited amount of binary resource
without noticeable quality impairments in perceptual audio
coding, they can also be modified to embed data. Note that
the complete side-information Y to transmit has to be split
and spread across the different TF bins of the different
mixtures depending on capacity values, so that each of them
carries a small part of the complete message. Conversely,
the decoded elementary messages have to be concatenated
to recover the complete side-information. For simplicity of
presentation, we do not focus here on such implementation
details, that are trivial and arbitrary.

4.2. Time–frequency transform

As briefly mentioned in Section 1, the data hiding
process used at the encoder to embed the side-information
Y needed by the decoder to perform source separation is an
application of the Quantization Index Modulation (QIM)
technique introduced in [30] and is applied to the coeffi-
cients of the TF representation of the mixture.

In [31] the Modified Discrete Cosine Transform (MDCT)
was used, and in [32] an integer version of the MDCT
(IntMDCT, see [42]) has shown to provide improved embed-
ding rates. In addition, IntMDCT maps integer values in the
time-domain with integer values in the frequency domain.
Therefore, it has the advantage to provide an embedded mix
signal which is fully compliant with the PCM format, while
an explicit conversion to this format was necessary with the
MDCT and introduced noise robustness issues. For these
reasons, we use IntMDCT in the present system. In our
implementation, the frames are W¼2048 samples long
(46.5 ms for a sampling frequency f s ¼ 44:1 kHz), with a
50% overlap between consecutive frames. This results in
matrices of IntMDCT coefficients of 1024 frequency bins
(denoted by o) times n=1024 time bins (denoted by t; n is
the total length of each signal). The time-domain signals are
recovered from embedded IntMDCT matrices by frame-wise
inverse transformation followed by overlap-add.

4.3. Embedding through IntMDCT quantization

We now present the principle of the embedding
process. Let Cðo,tÞ denote the capacity at TF bin ðo,tÞ,
i.e. the size of the binary code to be embedded in the
IntMDCT coefficient at that TF bin (under inaudibility
constraint). We will see below how Cðo,tÞ is determined
for each TF bin. For each TF bin ðo,tÞ, a set of 2Cðo,tÞ

uniform quantizers is defined, whose quantization levels
are intertwined, and each quantizer represents a Cðo,tÞ-
bit binary code. Embedding a given binary code on a given
IntMDCT coefficient is done by quantizing this coefficient
with the corresponding quantizer (i.e. the quantizer
indexed by the code to transmit; see Fig. 4).

At the decoder, recovering the code is done by com-
paring the transmitted coefficient with the 2Cðo,tÞ quanti-
zers, and selecting the quantizer with the quantization
level closest to the transmitted coefficient. Note that
because the capacity values depend on ðo,tÞ, those values
must also be transmitted in order to select the right set of
quantizers. To this purpose, a fixed-capacity embedding
‘‘reservoir’’ is allocated in the higher frequency region of
Please cite this article as: A. Liutkus, et al., Informed sou
embedding, Signal Process. (2011), doi:10.1016/j.sigpro.2011.
the spectrum, and the capacity values are actually defined
within subbands (see [32] for details).

4.4. Embedding rate and performance

The embedding rate r is given by the average total
number of embedded bits per second of signal. It is
obtained by summing the capacity Cðo,tÞ over the
embedded region of the TF plan and dividing the result
by the signal duration. The performance of the embedding
process is determined by the inaudibility constraint.8

Here, the inaudibility constraint induces an upper bound
on the number of quantizers, hence a corresponding
upper bound on the capacity Cðo,tÞ [31,32]. More speci-
fically, we constraint the power of the embedding error in
the worst case to remain under the masking threshold
Mðo,tÞ provided by a psycho-acoustic model (PAM)
inspired from Perceptual Audio Compression [43,44]. It
can be shown that the optimal capacity is given by [31,32]

Cðo,tÞ ¼ 1
2 log2ðMðo,tÞÞþ1
	 


: ð11Þ

where b:c denotes the floor function. The PAM leads to a
masking threshold which is signal-dependant and calcu-
lated for each signal frame. This masking threshold is
inspired from the MPEG-AAC model [45] and was adapted
to the present data hiding problem. In particular, it is
possible to control the embedding rate by translating the
masking threshold by a scaling factor a (in dB), i.e. using
the following variant of (11):

Ca
ðo,tÞ ¼ 1

2 log2ðMðo,tÞ � 10a=10
Þþ1

j k
: ð12Þ

Similarly to the rate-distortion theory in source coding,
signal quality is expected to decrease as the embedding
rate increases, and vice-versa. When a40 dB, the masking
threshold is raised, allowing for larger values of the
rce separation through spectrogram coding and data
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quantization error and thus larger capacities and embedding
rates, at the price of potentially lower quality. On the
contrary, when ao0 dB, the masking threshold is lowered,
leading to a ‘‘safety margin’’ for the inaudibility of the
embedding process, at the price of lower embedding rate.
An end-user of the proposed system can thus look for
the best trade-off between rate and quality for a given
application. It can be shown that the embedding
rate ra corresponding to Ca and the basic rate r¼ r0 are
related by9

raCr0þa � log2ð10Þ

10
� Fu ð13Þ

where Fu is the bandwidth of the embedded frequency
region. This linear relation enables to easily control the
embedding rate by the setting of a.

4.5. Conclusion

With this data hiding technique, maximum embedding
rates of about 250 kbps can be obtained for many musical
signals of different styles such as rock, pop, jazz, funk,
metal, electro, bossa, fusion, etc. Note that for stereo
signals, this embedding capacity is to be understood per

channel, and is approximately one third of the 16-bit
44.1 kHz PCM bitrate necessary to convey the original
signals (705 kbps/channel).10 Such rates generally corre-
spond to the higher level of the masking curve allowed by
the PAM and the limit of masking power can hence be
reached. More ‘‘comfortable’’ rates can be set between
150 and 200 kbps in each channel, to guarantee transpar-
ent quality for the embedded signals [32]. This flexibility
is used in the present ISS system to fit the embedding
capacity with the size of the side-information. Indeed, we
see in Section 5 that the required capacities to convey the
side-information vary from 30 kbps to 250 kbps, depend-
ing on the method.

5. Evaluation

5.1. Data and metrics

In order to perform objective evaluation of source
separation in general (and not only of informed source
separation), the original sources are needed and quanti-
tative evaluation can hence only be performed for mix-
tures whose constitutive sources are known beforehand.
Fortunately, thanks to the rapidly growing community of
musicians working with the Creative Commons licenses,11

such material is now readily available. In this study,
experiments were carried out with the internal source
separation corpus gathered for the Quaero programme,12
9 Actually, the approximation is an exact equality for a multiple of

10 log10ð4Þ, and the approximation is very good for other values of a,

since the embedding rate results from the averaging on a large number

of capacity values.
10 Note that the data embedding technique is not robust to lossy

audio compression such as MP3 or AAC. Some perspectives on ISS for

compressed music signals are discussed in the conclusion section.
11 www.creativecommons.org
12 www.quaero.org
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from which 15 different excerpts were chosen of various
musical styles along with their constitutive separated
tracks. The corpus includes excerpts composed of 5–11
separated tracks, which are of many kinds, including
acoustic instruments such as piano or guitar, male and
female singers, distorted sounds/voices, digital effects,
etc. All sampling rates were set to 44,100 Hz and all
signals are approximately 30 s long.

Since state of the art methods [26,25] only allow for
linear instantaneous mixtures, we created a set of 7 such
mixes from our corpus for comparison with the proposed
method. For the rest of the evaluation, all mixing was done
either in mono (5 excerpts) or in stereo (10 excerpts) using
Digital Audio Workstations (DAW). It includes equalizing,
panning and digital effects such as reverberation and
compression on some excerpts. The real contributions of
the different sources into their respective mixtures have
also been obtained as the separate outputs of the DAW
mixing tools. This permits to quantitatively evaluate the
estimation of the sources contributions fkm.

Objective criteria to evaluate the quality of the separa-
tion were used as defined in the BSSEVAL toolbox [46].
BSSEVAL is a popular evaluation toolbox that is used for the
international Signal Separation Evaluation Campaign
(SiSEC [47]) and that produces several metrics assessing
separation quality for each source. For each estimated
source the metrics produced by BSSEVAL are the Source to
Distortion Ratio (SDR), the Source to Artifact Ratio (SAR)
and the Source to Interference Ratio (SIR). All these
metrics are expressed in dB. Whereas the SDR is a global
measure of separation performance, the SAR and SIR
respectively measure the amount of separation/recon-
struction artifacts and the amount of energy from the
other interfering sources. In any case, higher is better. It
was shown in [48] that the metrics from BSSEVAL are
indeed representative of perceptual separation quality. In
the whole evaluation section, averages of the metrics
within a mixture are done by weighting the results for
its constitutive sources according to the logarithm of their
total energy. When comparing with the state of the art,
we also use the PEASS toolkit, which is a complementary
toolbox for perceptual evaluation.

We first compare the proposed method with the state
of the art in Section 5.2. Then, we evaluate the impact of
the embedding process on separation in Section 5.3 and
finally, in Section 5.4, we compare the different techni-
ques that we introduced to encode the spectrograms of
the mixtures in the side-information, namely dimension
reduction (see Section 3.4) and image compression (see
Section 3.5). Sounds from these evaluations can be lis-
tened to on our webpage.13
5.2. Comparison with state of the art

We performed a complete test of the state of the art
method [26,25], called PARVAIX in the following, on a
subset of our corpus, composed of linear instantaneous
13 See http://www.telecom-paristech.fr/� liutkus/iss/.
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Fig. 5. Comparison of the method of PARVAIX (red) with proposed method (blue). BSSEVAL (left) does not account for musical noise whereas PEASS (right)

does. OPS, TPS, IPS and APS respectively stand for Overall/Target/Interference/Artifacts Perceptual Score. For all metrics, higher is better. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

14 Very special thanks to A. OZEROV at IRISA (Rennes, France) that

assisted us on this point.
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mixtures only. The same bitrates (75 kbps) were used in
all cases. Results can be found in Fig. 5 (left) for BSSEVAL.

As can be seen in Fig. 5 (left), results are very good
with both methods. SDR values systematically range
between 5 dB and 15 dB, largely outperforming under-
determined blind source separation. Furthermore, SIR is
seen to lie between 10 dB and 30 dB for PARVAIX and
between 10 dB and 20 dB with the proposed method,
thus clearly confirming that the sources are very well
separated in both cases. However, it is noticeable that
PARVAIX performs better with respect to the BSSEVAL cri-
teria, which are close to signal to noise ratios. Still, it does
not perform as well on perceptive grounds and the
difference in performance seen on Fig. 5 (left) may be
explained by several facts. First, it is not surprising that
PARVAIX obtains very good BSSEVAL performance. Indeed,
this method aims at optimizing the output signal to noise
ratio of the different sources given the assumption that
only two sources are active in each TF bin. Doing so, it
leads to musical noise in the separated sources, caused by
setting many TF bins to zero, contrary to the Wiener filter
used in this study. The fact that musical noise is not well
accounted for by BSSEVAL has already been noticed in the
literature [49]. Second, it is well known that Wiener
filtering, which uses the phase of the mixtures, may lead
to slight desynchronizations of the signals, that are not
perceived perceptually by the human auditory system but
that may cause signal to noise ratios to drop dramatically
in some cases.

For these reasons, it was demonstrated by EMIYA et al.
in [49] that further evaluation metrics based on percep-
tual features may provide better assessment of separation
quality. For that purpose, they introduce a toolkit for
Perceptual Evaluation of Audio Source Separation (PEASS),
available from their website. We therefore evaluated the
Please cite this article as: A. Liutkus, et al., Informed sou
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separated sources with this toolkit14 and obtained the
results given in Fig. 5 (right), which are slightly better
for the proposed method, especially when considering
artifacts. If the technique proposed by PARVAIX handles
well sources that have a sparse power spectrogram, it
produces poorer estimates of sources with non sparse
spectrograms, such as distorted or noisy sounds. On the
contrary, the proposed method achieved good perfor-
mance in every case.

Nevertheless, this evaluation also confirms that objec-
tive metrics for the evaluation of source separation is a
delicate and open issue, especially for ISS where quality of
the estimates is often very good. As recent studies showed
that strong connections exist between source coding and
ISS [50], evaluation for comparing different techniques in
ISS may even need to switch from a source separation
paradigm as is the case here to perceptual evaluations
that are classical in source coding. Still, for the remaining
of this study, we use BSSEVAL for evaluation, because
within the same technique, it gives scores that match
perceptive observations. In any case, the reader is encour-
aged to visit the webpage of this study and listen to the
separated tracks himself (see footnote 13).

Anyway, it must be reminded that state of the art is
limited to linear instantaneous mixtures only, which is a
serious drawback when considering practical applications
that involve mixing done by a professional sound engi-
neer. On the contrary, the proposed method proves to be
efficient even for mixtures including reverberation of the
sources or processed through digital dynamic compres-
sors as demonstrated in the remaining of this evaluation.
rce separation through spectrogram coding and data
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5.3. Impact of the embedding process

Since the ISS system presented in Section 1 and
depicted in Fig. 1 can lead to several kinds of artifacts
coming either from data embedding or imperfect Wiener
filtering, two evaluations have been performed on the
complete dataset. The goal of the first evaluation pre-
sented in this section is to assess the impact of the
embedding process on separation quality. The second,
presented in Section 5.4, is to compare the different
strategies we proposed for encoding the spectrograms.

To evaluate the impact of embedding, we have per-
formed Oracle separation, i.e. using the original spectro-
grams of the sources (see Section 3.3), on the original and
embedded mixtures for various bitrates. Since embedding
can only decrease performance, we computed the average
loss in BSSEVAL criteria induced by embedding. Results are
given in Fig. 6, where each line corresponds to one of the
10 stereo signals of our dataset.

Several remarks can be made when considering results
in Fig. 6. First, the performance obtained by the Oracle
configuration is very good. Perceptually, it is very hard to
distinguish the extracted sources from the original. Second,
we observe that compared to separation of the unembedded
Please cite this article as: A. Liutkus, et al., Informed sou
embedding, Signal Process. (2011), doi:10.1016/j.sigpro.2011.
mixtures, the embedding process does not lead to any
significant loss in performance up to bitrates of approxi-
mately 200 kbps for all signals and approximately 250 kbps
for most signals.15 Perceptually, it is very hard to notice any
difference between the sources extracted through this
method and the original source signals, which confirms that
the proposed complete model is adequate for the ISS
problem. Second, when very high bitrates are required for
the embedding of the side-information, Oracle performance
drops rapidly after 250 kbps. This occurs sometimes with
the NTF method on mono mixtures for R¼150. These results
are very similar to those obtained when assessing the
perceptual quality of the embedded mixtures in [32]. This
suggests that above 250 kbps the mixtures are too degraded
for both listening and source separation.

5.4. Comparison of image compression and dimension

reduction

The second evaluation performed on the complete
dataset concerns comparison of the different methods
rce separation through spectrogram coding and data
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we suggested in Section 3 to encode the spectrograms of
the mixtures. The first of these techniques is dimension
reduction—called NTF in the following—and has been
presented in Section 3.4. The number of its parameters
YNTF is mainly controlled by the number R of components
used in the tensor decomposition. The second method
uses direct image compression of the spectrograms and it
is called IC in the following. It has been presented in
Section 3.5 and the size of its corresponding side informa-
tion YIC is controlled by the quality parameter of the lossy
compression algorithm.

Both techniques were evaluated with various sizes for
their corresponding side information. Since their perfor-
mance is bounded above by the Oracle technique, we
computed the difference between the results given by
BSSEVAL on each case with the corresponding Oracle
performance (with the same embedded mixtures). Results
are given in Fig. 7.

Considering Fig. 7, we see that performance obtained
by IC or NTF is directly controlled by the quality setting
considered: the quality parameter of the image compres-
sion algorithm for IC and R for NTF.16 This can be
explained by the fact that sophisticated models permit
very reliable estimates of the spectrograms whereas small
models only permit crude modeling. Still, large models
also lead to higher bitrates, and thus to a degradation of
the performance as demonstrated in Section 5.3. This
suggests that a trade-off is to be found between the
improvement of spectrograms modeling through higher
quality settings for side-information, and the correspond-
ing loss in performance induced by embedding more data.
For example, Fig. 7 shows that the loss in SDR induced by
using IC rather than Oracle is lower than 1 dB at 200 kbps
and Fig. 6 shows that the loss induced by embedding at
this rate is negligible. It is not interesting to increase the
side information rate to 300 kbps because the loss due to
16 In NTF, we used the same number of 60 iterations for Algorithm 1

for all cases in our evaluation, which may not be sufficient for very large

R, explaining why high bitrates do not necessarily lead to better

performance for NTF.
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embedding in this case is higher than the gain induced by
better encoding of the spectrograms.

In any case, we see that both techniques are very close
to Oracle performance, which is very satisfactory. Further-
more, considering Fig. 8 on which boxplots17 of the
encoding/decoding times18 over all experiments are dis-
played, we see that source separation at the decoder can
be done extremely rapidly and does not require large
computational resources. Whatever the chosen method,
the complete system thus permits to successfully model
the spectrograms of the sources and embed the corre-
sponding information within the mixtures. The sources
recovered through generalized Wiener filtering at the
decoder are seen to be very well separated, with almost
no interferences and only a very small amount of artifacts.
Active listening applications such as karaoke or remaster-
ing are hence made possible with such a system on
realistic mixtures.

Now, comparing the respective performance of IC and
NTF, we see that in our evaluation, IC always yields better
results than NTF for a given bitrate and a given excerpt.
However, this fact may be tempered by noting that the
parameters for NTF are not optimally coded in this study,
leading to an overestimation of the bitrate necessary to
convey YNTF. Future work may hence demonstrate better
performance for NTF than obtained here, notably through
appropriate compression of YNTF. Still, considering encoding
times given in Fig. 8 we see that IC performs approximately
10 times faster for coding than the NTF method. Even if the
image compression method we used is implemented in an
extremely mature and optimized library, contrarily to our
Matlab implementation of NTF, this difference of encoding
time between IC and NTF is mostly explained by the fact
that the computations presented in Algorithm 1 are per-
formed many times for NTF, thus leading to heavy compu-
tational costs, whereas JPEG encoding of a spectrogram only
requires quantization of a cosine transform and can be
17 See e.g. http://en.wikipedia.org/wiki/Box_plot
18 Experiments were done on a Quad Core computer with 4 GB RAM.
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performed very rapidly [41]. Computational complexity of
NTF is hence inherently much greater than IC. Altogether,
spectrograms compression through the IC method leads to
lower necessary bitrates, higher separation quality and
lower computational costs. It is thus the preferred method
to perform ISS.19
6. Conclusion

Informed source separation consists in providing valu-
able prior knowledge to a source separation algorithm.
This study considered the case where this knowledge has
been computed at an encodingstage where both the
mixtures and the original sources are known, and then
inaudibly embedded into the PCM mixtures through an
adequate high-capacity data embedding technique. At the
decoding stage, this side-information is extracted and
separation is performed using the side-information.

The statistical framework presented in this study models
the sources as locally stationary Gaussian processes that are
mixed using linear FIR filters. We have shown that very
reliable source separation can be performed in this case
when the spectrograms of the sources are known at the
decoder. Since these spectrograms are much too large
matrices to be possibly embedded into the mixtures, several
approaches were proposed to approximate them, including
dimension reduction through tensor factorization and image
compression.

In this study, we have performed a thorough evaluation
of the proposed ISS method. The corpus we considered
includes sources that are highly non-sparse in the frequency
domain, such as distorted drums or guitars and mixtures
that were obtained with professional DAW, including non-
linear compressions. These settings correspond to use cases
19 Other lossy image compression techniques such as JPEG2000

have also been tested, but because of the lack of space, we decided to

only report on JPEG, since it is a free, readily available algorithm. Note

however that JPEG2000, based on wavelet transforms, exhibited better

separation performance than JPEG for very low side-information

bitrates: SDR, SAR and SIR were respectively approximately 0.3 dB,

1.5 dB and 1.5 dB better for JPEG2000 than for JPG.
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that were not possibly handled by previous methods
proposed for ISS. In any case, performance was extremely
encouraging and the proposed model based on generalized
Wiener filtering of the mixtures is hence adequate for the
ISS problem and allows active listening applications of
musical content such as karaoke or musical remixing.

Interesting features of the proposed statistical method
for informed source separation are first that the embedding
process at appropriate rate does not perceptually nor
quantitatively lead to significant degradation during the
source separation step and second that it makes it possible
to use any algorithm suitable for image compression as a
candidate for side-information. Possible extensions to this
work would include synchronized data embedding to allow
real-time separation at the decoder and embedding meth-
ods that are either robust to compression algorithms such as
MP3 or that benefit from dedicated adjunct channels as for
example defined in MPEG-SAC/SAOC [51,52]. Preliminary
experiments show that the proposed separation method is
quite robust to audio compression of the mixture signals.
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