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I. DETAILS ON THE ASSUMPTION

The update equation for pSGLD from the main text is written as follows.

θ(t,l) = θ(t,l−1) + ε(t,l)
(
G(θ(t,l−1))

(
NN−1

s t
∑

n∈S(t,l)

∇θ log p(xn|θ(t,l−1)) +∇θ log p(θ(t,l−1))
))

+ G
1
2 (θ(t,l−1))η(t,l). (1)

From [1], we propose to use the preconditioned matrix G(θ) defined as follows

G(θ(t,l)) = diag
(
1�

(
λ1 +

√
v(θ(t,l))

))
, (2)

where

v(θ(t,l)) =αv(θ(t,l−1)) + (1− α)ḡ(θ(t,l−1);S(t,l))� ḡ(θ(t,l−1);S(t,l)). (3)

In (3), α ∈ [0, 1] and

ḡ(θ(t,l−1);S(t,l)) = N−1
s t

∑
n∈S(t,l)

∇θ log p(xn|θ(t,l−1)).

Operators � and � denote element-wise product and division, respectively. Now, we introduce the local generator of pSGLD
(corresponding to (1))

L̃l =
(
G(θl)

(
NN−1

s t
∑

n∈S(t,l)

∇θ log p(xn|θl) +∇θ log p(θl)
))
· ∇θ +

1

2
G(θl)

(
G(θl)

>) : ∇θ∇>θ , (4)

where a · b denotes vector inner product between a and b, A : B by definition is equal to tr{A>B} for some matrices A
and B. Next, let Lk be the generator of the pSGLD with full gradient, i.e,

Ll =
(
G(θl)

(
t
∑

n∈S(t,l)

∇θ log p(xn|θl) +∇θ log p(θl)
)

+ Γ(θl)
)
· ∇θ +

1

2
G(θl)

(
G(θl)

>) : ∇θ∇>θ .

We have the relation

L̃l = Ll + ∆Vl + Γ(θl) · ∇θ, (5)

where ∆Vl = (Nḡ(θk;S(l))− g(θl))
>G(θl)∇θ is an operator and g(θl) = t

∑N
n=1∇θ log p(xn|θl) is the full gradient.

Let φ̄ =
∫
φ(θ)p(θ)dθ and φ̂ = 1

SL

∑L
l=1 εlφ(θl), where φ(θ) is a test function, SL =

∑L
l=1 εl and (θl)l is sampled according

to (1), (2), (3) (by fixing t and replacing θ(t,l) and θ(t,l−1) by θl and θl−1, respectively).
We suppose that the two following assumptions are satisfied.

A 1. The step-size {εl} are decreasing, i.e. 0 < εl+1 < εl, with 1)
∑∞
l=1 εl =∞; and 2)

∑∞
l=1 ε

2
k <∞.

A 2. For each l there exists a functional ψ such that the Poisson equation Llψ(θl) = φ(θl)− φ̄ is satisfied, and there exists
a function V such that ‖Ddψ‖ ≤ CdVpd for d ∈ {0, 1, 2, 3}, Cd, pd > 0. In addition, supl E[Vp(θk)] < ∞, and V is smooth
such that sups∈(0,1) Vp(sθ + (1− s)Y ) ≤ C(Vp(θ) + Vp(Y )) ∀θ, Y, p ≤ max{2pd} and for some C > 0.
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II. THE PROOF FOR MAIN THEOREM

With assumptions A 1 and A 2, we have the following lemma.

Lemma 1. Let φ̄ =
∫
φ(θ)p(θ)dθ and φ̂ = 1

SL

∑L
l=1 εlφ(θl), where φ(θ) is a test function, SL =

∑L
l=1 εl and (θl)l is sampled

according to (1), (2), (3) (by fixing t and replacing θ(t,l) and θ(t,l−1) by θl and θl−1, respectively). Then for some C > 0∣∣∣E[φ̂− φ̄]
∣∣∣ ≤ C( 1

SL
+

1

SL

L∑
l=1

ε2l +
1− α
α3/2

)
.

Proof We will follow the proof techniques of Theorem 1 in [1].
From the assumptions, there exists a functional ψ that satisfies the following Poisson equation

Llψ(θl) = φ(θl)− φ̄. (6)

and the expectation of ψ(θl) can be decomposed as follows

E[ψ(θl)] = eεlL̃lψ(θl−1) +O(ε2l )

= (I + εlL̃l)ψ(θl−1) +O(ε2l ),
(7)

where I is the identity map. Sum over l = 1, . . . , L both sides of (7) and use (5), we obtain

L∑
l=1

E[ψ(θl)] =

L∑
l=1

ψ(θl−1) +

L∑
l=1

εlLlψ(θl−1) +

L∑
l=1

εl∆Vlψ(θl−1) +

L∑
l=1

εlΓ(θl) · ∇θψ(θl−1) + C

L∑
l=1

ε2l .

Divide both sides by SL then use (6), we get

φ̂− φ̄ =
E[ψ(θL)]− ψ(θ0)

SL
+

1

SL

L−1∑
l=1

(E[ψ(θl)]− ψ(θl))−
L∑
l=1

εl
SL

∆Vlψ(θl−1)−
L∑
l=1

εl
SL

Γ(θl) · ∇θψ(θl−1)− C
∑L
l=1 ε

2
l

SL
.

(8)

We note that the term |E[ψ(θL)]−ψ(θ0)| is bounded by the assumptions. By Lemma 4 of [1] and assumption A 2, we also
have ∣∣∣∣∣

L∑
l=1

εl
SL

Γ(θl) · ∇θψ(θl−1)

∣∣∣∣∣ = O

(
1− α
α3/2

)
.

Further, the expectation of the second term of the right side of (8) is equal to 0. Hence, it implies from (8) that there exists
some constant C > 0 such that∣∣∣E[φ̂− φ̄]

∣∣∣ ≤ C( 1

SL
+

L∑
l=1

εl
SL

E[‖∆Vl‖] +
1

SL

L∑
l=1

ε2l +
1− α
α3/2

)
.

Since, by definition, ∆Vl is an unbiased operator, the second term in the bracket on the right hand side of the above inequality
is equal to zero. Therefore, we obtain ∣∣∣E[φ̂− φ̄]

∣∣∣ ≤ C( 1

SL
+

1

SL

L∑
l=1

ε2l +
1− α
α3/2

)
.

�
We recall that, for STI, we evaluate log p(x) via the following identification:

log p(x) =

∫ 1

0

〈log p(x|θ)〉p(θ|t)dt (9)

where 〈log p(x|θ)〉p(θ|t) denotes the expectation of log p(x|θ) under p(θ|t), p(θ|t) = (1/z(t))p(θ)p(x|θ)t with z(t) =∫
p(θ)p(x|θ)tdθ.
The first step of the evaluation is to estimate the expectation under the integral sign using SG-MCMC:

〈log p(x|θ)〉p(θ|t) ≈
1

L

N

Ns

L∑
l=1

∑
n∈S(t,l)

log p(xn|θ(t,l)) (10)
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where θ(t,l) denotes samples drawn from p(θ|t), S(t,l) denotes random subsets of {1, 2, . . . , N} and Ns is the size of each
S(t,l). Then a trapezoidal rule is used for numerically approximating the integration over t:

log p(x) ≈
T−1∑
i=0

∆ti
〈log p(x|θ)〉p(θ|ti) + 〈log p(x|θ)〉p(θ|ti+1)

2
(11)

where 0 = t0 < t1 < . . . < tT = 1 and ∆ti = ti+1 − ti. The proof for the main theorem is as follows.

Theorem 1. Let L =
∫ 1

0
f(t)dt be the log-marginal likelihood (Eq. (9)) with f(t) = 〈log p(x|θ)〉p(θ|t) and L̂ be the estimator

of L by STI (Eq. (10), (11)) using pSGLD as the sampling method for θ(t,l) with constant stepsize ε. Assume that {xn}Nn=1 is
i.i.d, log p(x|θ) satisfies Assumption 2 in [1] (assumption A 2 above), f(t) is twice differentiable and |f ′′(t)| ≤ U for t ∈ [0, 1]
and for some U > 0, a uniform partition of [0, 1] is choosen, i.e. ∆ti = 1/T for all i = 0, . . . , T − 1. Then we have for some
constant C > 0

∣∣∣〈L̂〉 − L∣∣∣ ≤ C( 1

Kε
+ ε+

1

T 2
+

1− α
α3/2

)
.

Proof We will follow the steps of the proof of Theorem 1 in [2]. First, we specify the formula of the estimator L̂. By
definition:

L̂ =

T−1∑
i=0

∆ti
f̂(ti) + f̂(ti+1)

2
,

where

f̂(t) =
1

K

K∑
k=1

N

Ns

∑
n∈S(t,k)

log p(xn|θ(t,k)).

Next, we define

f̃(t) =
1

K

K∑
k=1

N∑
n=1

log p(xn|θ(t,l)).

Now, we write the true log-marginal likelihood in the form

L =

T−1∑
i=0

∫ ti+1

ti

f(t)dt.

By applying integration by parts, each integrals in the above sum can be written as

∫ ti+1

ti

f(t)dt = ∆t
f(ti) + f(ti+1)

2
+ g(ti),

where ∀i ∆t = ∆ti = 1/T and

g(t) =

∫ ∆t

0

(
(y −∆t/2)2

2
− (∆t)2

8

)
f ′′(y + t)dy.

If S is a random data subsample, we denote 〈·〉 expectation with respect to θ and 〈〈f̂(t)|S〉θ|S〉S expectation with respect to
S of expectation with respect to θ|S of f̂(t). Then, we have
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∣∣∣〈L̂〉 − L∣∣∣ =
∣∣∣〈L − L̂〉∣∣∣

=
∣∣∣〈T−1∑
i=0

(
∆t

f(ti)− f̂(ti) + f(ti+1)− f̂(ti+1)

2
+ g(ti)

)
〉
∣∣∣

=
∣∣∣〈T−1∑
i=0

∆t
f(ti)− f̂(ti) + f(ti+1)− f̂(ti+1)

2
〉+

T−1∑
i=0

g(ti)
∣∣∣

≤
∣∣∣〈T−1∑
i=0

∆t
f(ti)− f̂(ti) + f(ti+1)− f̂(ti+1)

2
〉
∣∣∣+
∣∣∣ T−1∑
i=0

g(ti)
∣∣∣

=
∆t

2

∣∣∣ T−1∑
i=0

〈f(ti)− f̂(ti) + f(ti+1)− f̂(ti+1)〉
∣∣∣+
∣∣∣ T−1∑
i=0

g(ti)
∣∣∣

≤ ∆t

2

T−1∑
i=0

∣∣∣〈f(ti)〉 − 〈f̂(ti)〉
∣∣∣+

∆t

2

T−1∑
i=0

∣∣∣〈f(ti+1)〉 − 〈f̂(ti+1)〉
∣∣∣+
∣∣∣ T−1∑
i=0

g(ti)
∣∣∣

=
∆t

2

T−1∑
i=0

∣∣∣〈f(ti)〉 − 〈〈f̂(ti)|S〉θ|S〉S
∣∣∣+

∆t

2

T−1∑
i=0

∣∣∣〈f(ti+1)〉 − 〈〈f̂(ti+1)|S〉θ|S〉S
∣∣∣+
∣∣∣ T−1∑
i=0

g(ti)
∣∣∣

=
∆t

2

T−1∑
i=0

∣∣∣〈f(ti)〉 − 〈f̃(ti)〉
∣∣∣+

∆t

2

T−1∑
i=0

∣∣∣〈f(ti+1)〉 − 〈f̃(ti+1)〉
∣∣∣+
∣∣∣ T−1∑
i=0

g(ti)
∣∣∣.

By hypotheses, f ′′(t) is uniformly bounded, hence we can bound the last term as follows∣∣∣ T−1∑
i=0

g(ti)
∣∣∣ ≤ Cg

12T 2
.

By applying Lemma 1 with εl = ε for all l = 1, . . . , L, we get∣∣∣〈f(ti)〉 − 〈f̃(ti)〉
∣∣∣ ≤ Ci( 1

Kε
+ ε+

1− α
α3/2

)
for some Ci > 0. Thus,

∣∣∣〈L̂〉 − L∣∣∣ ≤ ∆t

2

(
1

Kε
+ ε+

1− α
α3/2

) T−1∑
i=0

Ci +
∆t

2

(
1

Kε
+ ε+

1− α
α3/2

) T−1∑
i=0

Ci+1 +
Cg

12T 2

≤ ∆t

(
1

Kε
+ ε+

1− α
α3/2

)
T max

0≤i≤T
Ci +

Cg
12T 2

=

(
1

Kε
+ ε+

1− α
α3/2

)
max

0≤i≤T
Ci +

Cg
12T 2

≤ C
(

1

Kε
+ ε+

1

T 2
+

1− α
α3/2

)
,

where C = max{max1≤i≤T Ci,
Cg

12 }. �

III. FORMAL DEFINITIONS OF THE BLOCKS AND THE PARTS

Let us formally define the proposed procedure. We first denote the partition PB(S) as a collection of B different non-empty
disjoint subsets of a set S, and the union of these subsets is equal to S. Now, let us formally define a part and a block.

Definition 1. A block Λ ⊂ [I] × [J ] × [K] is the Cartesian product of three sets which belong to PB([I]), PB([J ]) and
PB([K]), respectively.

Definition 2. A part Π(l) ⊂ [I]× [J ]× [K], at iteration l, is a collection of mutually disjoint blocks and is defined as follows:

Π(l) = ∪Bb=1Λ
(l)
b = ∪Bb=1I

(l)
b × J

(l)
b ×K

(l)
b ,
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where I(l)
b ∈ PB([I]), J (l)

b ∈ PB([J ]), K(l)
b ∈ PB([K]) and ∀b 6= b′, I(l)

b ∩ I
(l)
b′ = ∅, J (l)

b ∩ J
(l)
b′ = ∅, K(l)

b ∩K
(l)
b′ = ∅.

In the parallelization scheme, the update equation of the STI with SGLD for the latent variable A is written as follows.

A
(t,l)
b = A

(t,l−1)
b + ε(t,l)

(
N |Π(l)|−1t

∑
(i,j,k)∈Λ

(l)
b

∇Ab
log p(xijk|A(t,l−1)

b ,B
(t,l−1)
b ,C

(t,l−1)
b ) +∇Ab

log p(A
(t,l−1)
b )

)
+ η

(t,l)
Ab

.

(12)

where

A
(t,l)
b ≡ {a(t,l)

ir |i ∈ I
(t,l)
b , r ∈ [R]},

B
(t,l)
b ≡ {b(t,l)jr |j ∈ J

(t,l)
b , r ∈ [R]},

C
(t,l)
b ≡ {c(t,l)kr |k ∈ K

(t,l)
b , r ∈ [R]}.

Using (12), we update A
(t,l)
b , for b = 1, . . . , B, in parallel. A similar process works for B and C.

IV. PARALLEL IMPLEMENTATION OF THE PSGLD: UPDATE RULES

Formally, for STI with preconditioned SGLD, the latent variables A,B,C are updated as follows. First, we rewrite the (1)
for the update of A in the form:

A
(t,l)
b =A

(t,l−1)
b + ε(t,l)

(
G(A

(t,l−1)
b )

(
N |Π(l)|−1t

∑
(i,j,k)∈Λ

(l)
b

∇Ab
log p(xijk|A(t,l−1)

b ,B
(t,l−1)
b ,C

(t,l−1)
b ) +∇Ab

log p(A
(t,l−1)
b )

))
+ G

1
2 (A

(t,l−1)
b )η(t,l).

where

G(A
(t,l)
b ) = diag

(
1�

(
λ1 +

√
v(A

(t,l)
b )

))
,

v(A
(t,l)
b ) = αv(A

(t,l−1)
b ) + (1− α)ḡ(A

(t,l−1)
b ,Λ

(l)
b )� ḡ(A

(t,l−1)
b ,Λ

(l)
b ),

ḡ(A
(t,l−1)
b ,Λ

(l)
b ) = |Π(l)|−1t×

∑
(i,j,k)∈Λ

(l)
b

∇Ab
log p(xijk|A(t,l−1)

b ,B
(t,l−1)
b ,C

(t,l−1)
b ),

and

A
(t,l)
b ≡ {a(t,l)

ir |i ∈ I
(t,l)
b , r ∈ [R]},

B
(t,l)
b ≡ {b(t,l)jr |j ∈ J

(t,l)
b , r ∈ [R]},

C
(t,l)
b ≡ {c(t,l)kr |k ∈ K

(t,l)
b , r ∈ [R]}.

Then we update A
(t,l)
b , for b = 1, . . . , B, in parallel. A similar process works for B amd C.

V. ADDITIONAL EXPERIMENTS ON A GAUSSIAN ADDITIVE MODEL

In this section, we use SGLD and pSGLD on a simple model in order to show the differences between the two methods.
In this model, the log-marginal likelihood can be calculated explicitly, this is a good criterion to have the first perspectives of
the two methods. The model is given as follows:

θr ∼ N (θr;µθ, σ
2
θ), xn|θ ∼ N (xn;

R∑
r=1

θr, σ
2
x),

where {θr}Rr=1 is the set of the latent variables and {xn}Nn=1 is the set of the observations drawn from a Gaussian distribution
whose mean is the sum of R i.i.d Gaussian latent variables θr. In this model, R is unknown a-priori. Our task is to estimate
the marginal likelihood p(x|R) of the data for M different values of R to determine which R is the most suitable for the
model.

First, we set µθ = 5, σ2
θ = 3, σ2

x = 3, N = 5000, and we choose T = 10, Ns = 250. For each run of STI (for pSGLD
or SGLD as well), we generate L = 20 samples, i.e we go through the observed data just once, but we use only the last 10
samples for evaluating the log-likelihood. For the step-size, we choose aε = 10−8, bε = 0.51, and keep the step-size fixed
after first 10 generating samples. For pSGLD, we set α = 0.99 and λ = 10−5. The result is shown in Fig. 1(a).
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Fig. 1: Simulation results on a Gaussian model with 1(a) small number of iterations and 1(b) large number of iterations.

After running the experiment for R true = 5, 10, 15, 20, Fig. 1(a) shows that STI-PSGLD predicts well the true value of
R, and the values of the log-marginal likelihood predicted by STI-PSGLD fits very well their true values. For STI-SGLD, the
estimated values for log-marginal likelihood is far from the true values and the prediction of the true rank R of the model
is inexact. To understand why STI-PSGLD performs well while STI-SGLD has poor performance, we increase the number
of iterations by setting L = 3000, use the last 1000 samples for evaluating the log-likelihood. The other parameters are kept
unchanged. We obtain the result as in the Fig. 1(b).

In this experiment, both methods predict well the true value of R and the estimated values of the log-marginal likelihood of
both methods are close to the true ones. In Fig. 1(b), the log-marginal likelihood curve of STI-pSLGD is almost unchanged
compared with the previous experiment and this curve for STI-SGLD in fact coincides the one of STI-PSGLD when we use
a large number of iterations. The STI-SGLD needs more iterations to converge since it does not have flexible step-sizes like
STI-PSGLD. Hence if we use pSGLD, we can reduce the computational cost.

VI. EXPERIMENTS ON REAL DATA: COMPUTATION TIME BY STI-PSGLD

In this section, we analyze the computational time of STI-PSGLD within the experiments conducted on the Facebook dataset.
Fig. 2 shows the duration of the STI-PSGLD run for each rank. It can be verified that the total time consumed by STI-PSGLD
for this experiment is 30% less than the time consumed by CORCONDIA [3].
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