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Fast and stable YAST algorithm
for principal and minor subspace tracking
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Abstract—This paper presents a new implementation of the
YAST algorithm for principal and minor subspace tracking.
YAST was initially derived from the Subspace Projection (SP)
algorithm by C.E. Davila, which was known for its exceptional
convergence rate, compared to other classical principal subspace
trackers. The novelty in the YAST algorithm was the lower
computational cost (linear if the data correlation matrix satisfies
a so-called shift-invariance property), and the extension to minor
subspace tracking. However, the original implementation of the
YAST algorithm suffered from a numerical stability problem (the
subspace weighting matrix slowly loses its orthonormality). We
thus propose in this paper a new implementation of YAST, whose
stability is established theoretically and tested via numerical
simulations. This algorithm combines all the desired properties
for a subspace tracker: remarkably high convergence rate, lowest
steady state error, linear complexity, and numerical stability
regarding the orthonormality of the subspace weighting matrix.

Index Terms—Adaptive estimation, Time series, Algorithms,
Numerical stability, Convergence of numerical methods, Com-
plexity theory.

I. INTRODUCTION

AST estimation and tracking of the principal or minor
Fsubspace of a sequence of random vectors is a major
problem in many applications, such as adaptive filtering,
system identification, source localization, and spectral analysis
for instance [1]. This problem can be stated as follows:
considering a sequence of n-dimensional random data vectors
{z(t)}+ez, whose time-varying correlation matrix is denoted
C..(t), we aim at estimating and tracking the r-dimensional
principal or minor eigensubspace! of C,.(t) (with 7 < n),
which can be represented by its orthogonal projector II(t),
of rank r. The exact solution of this problem is well known:
the principal (resp. minor) subspace of C,(t) is that which
maximizes (resp. minimizes) the generalized Rayleigh quotient

J (TL(t)) = trace (C.oy (1) TI(2)) (1)
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'The principal (resp. minor) eigensubspace of C.(t) is defined as the
subspace spanned by the 7 eigenvectors of Clz(¢) associated to r greatest
(resp. lowest) eigenvalues.

The orthogonal projector II(t) is generally parameterized by
an n X r orthonormal matrix W (¢), such that

(t) = W(t) W(t)", )

where the symbol 7 denotes the conjugate transpose of a
matrix (or a vector). In practice, a straightforward calculation
of this so-called subspace weighting matrix W (t) is com-
putationally demanding: its complexity is O(n?r), which is
inappropriate for real-time applications. Therefore the art of
subspace tracking consists in recursively updating a matrix
W (t), as close as possible to this exact solution, with a
minimum of computations.

A large number of algorithms have been proposed for
performing this task. Amidst this abundant literature?, the
PAST [3], LORAF3 [4], OPAST [5], and FAPI [6] algorithms
belong to the family of Principal Subspace Trackers (PST),
whereas the QRI [7] and HFRANS [8] algorithms belong to
the family of Minor Subspace Trackers (MST). Besides, some
algorithms such as ODKA [9], NOOIJA [10], and FDPM [2],
[11] can handle both principal and minor subspace tracking.
The performance of these various algorithms is generally
evaluated according to several criteria : their computational
complexity, which is quantified as the number of operations
performed at each iteration; the steady-state error, which is
the mean estimation error when the algorithm has converged;
and the convergence rate, which corresponds to the number of
required iterations before reaching the steady state. Another
desirable property for a subspace tracker is to guarantee the
orthonormality of the subspace weighting matrix W (¢) at
each iteration. It is then worth evaluating the stability of the
algorithm with respect to the orthonormality of W (¢).

Recently, a new PST, referred to as the Subspace Projec-
tion (SP) algorithm was proposed by C.E. Davila [12]. We
observed in [6] that the convergence rate of this algorithm is
much higher than that of other classical PST’s. However, this
remarkable subspace tracker is computationally demanding.
Indeed, the fastest implementation of SP relies on a so-called
shift invariance property of the correlation matrix C..(t)
(which typically holds in the case of time series analysis for
instance), and has a complexity of O(nr?), whereas a number
of existing subspace trackers only require O(nr) operations
per iteration (which is the case of all the above mentioned PST
algorithms). Nevertheless, we found out that this drawback
could be circumvented, and we proposed in [13] and [14] a
new algorithm, referred to as YAST, which computes the same
signal subspace as the SP algorithm, but only requires O(nr)
operations (when the correlation matrix C,,(t) satisfies the

2A recent literature review can be found in [2] for instance.
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shift invariance property). A version of YAST dedicated to
MST was then proposed in [15].

Despite the great diversity of approaches proposed in the
literature for performing PST and MST, most of the algorithms
can be interpreted in the same unified framework: at each
iteration ¢, the range space of W (t) belongs to a subspace
of dimension r+ 1, spanned by W (¢t — 1), plus one additional
direction, which is often chosen as the data vector x(t) (this
is the case of all the above mentioned algorithms for instance,
although some of them involve several additional directions
at each iteration). From this perspective, the exceptional
convergence rate of SP and YAST can be easily explained:
at each iteration, those two algorithms compute the "best"
r-dimensional subspace inside this augmented subspace, i.e.
the subspace which explicitly maximizes (or minimizes) the
generalized Rayleigh quotient. Several versions of YAST have
already been presented in the literature:

o Various additional search directions have been proposed,
such as x(t) and C,,(t — 1)x(t) in [13], [15]. A
conjugate gradient method was also presented in [16],
for computing an appropriate search direction in the case
of MST. This method can easily be adapted to PST.

o Several window shapes were proposed for estimating
the correlation matrix C,.(¢): an exponential window
in [13], [15], and a truncated (or sliding) window in [14].

Unfortunately, it was observed in [17] and [18] that the
implementations of the YAST PST presented in [13] and [15]
suffer from a numerical stability problem (the subspace
weighting matrix slowly loses its orthonormality). In order to
solve this problem, we propose in this paper to apply a new
orthogonalization procedure to the YAST algorithm, which
is similar to that proposed in [2] for the FDPM subspace
tracker. The stability of the resulting algorithm is established
theoretically and tested via numerical simulations. To keep
the mathematical developments as concise as possible, the new
implementation of YAST introduced in this paper thus involves
the following changes with respect to earlier versions:

« this implementation stands for both principal and minor
subspace tracking;

« there is only one additional search direction, which is the
data vector x(t);

o the update of the correlation matrix is based on the
simplest window shape (exponential window);

« this implementation involves an orthogonalization proce-
dure similar to that proposed in [2].

Nevertheless, this implementation can be easily generalized
to truncated windows and other search directions (cf. [13]-
[16]). We also present a convergence analysis of the YAST
algorithm, and we prove the numerical stability of the new
implementation. The paper is organized as follows: in sec-
tion II, the basic principle of the YAST algorithm is sum-
marized. Then a fast implementation of YAST is proposed
in section III. The performance of this subspace tracker is
illustrated in section IV. The main conclusions of this paper
are summarized in section V. Finally, the convergence and the
numerical stability of the YAST algorithm are investigated in
the Appendix.

II. OVERVIEW OF THE YAST ALGORITHM
A. Principle

Consider a sequence of independent n-dimensional random
data vectors {x(t) } 1z, whose nxn correlation matrix C,.(t)
is estimated by applying an exponential window to the data,
leading to the update

Coo(t) = BC .t — 1) +z(t) x(t)? 3)

where 0 < 3 < 1 is the exponential forgetting factor. As men-
tioned in the introduction, the generalized Rayleigh quotient
is maximized (resp. minimized) when the subspace weighting
matrix W (t) spans the principal subspace (resp. the minor
subspace) of C.(t). Unfortunately, implementing this op-
timization over all orthonormal matrices is computationally
demanding, and does not lead to a simple recursion between
W (t) and W (¢t — 1). In order to reduce the complexity, the
implementation of YAST proposed below recursively performs
this search within the (r 4+ 1)-dimensional subspace spanned
by W (t—1) and x(t).

Let II(t) be the orthogonal projector on the augmented sub-
space, and W (t) an n x (r + 1) orthonormal matrix such that

I0(t) = W ()W (t)". )

Then any r-dimensional subspace of span(IL(t)) can be
represented by the orthogonal projector

II(t) = IL(t) — v(t) v(t) ", (5)

where the unitary vector v(¢) belongs to the range space of
II(¢). In particular, v(¢) can be written in the form

u(t) = W(t) (), (©6)

where ¢(t) is an (r 4 1)-dimensional unitary vector. Substi-
tuting equations (4) to (6) into equation (1), the criterion to
be optimized can be rewritten as

J (IL(#)) = trace (C,, (1)) — ¢()"C,,, () @(t) (D)
where C (t) is the (r + 1) x (r + 1) matrix
C,,y (1) = WH)" Coa(t) W (2). ®)

In this manner, the optimization of J with respects to the
n X1 orthonormal matrix W (t) is replaced by the optimization
of J with respects to the (r + 1)-dimensional unitary vector
¢(t). The result of this optimization is well-known: according
) equation (7), J is maximized (resp. minimized) when
@(t) is the minor (resp. principal) eigenvector of C,, (t).
Finally, given the new data vector x(t), the YAST algorithm
updates the previous subspace weighting matrix W (t — 1) by
successively computing
1) an orthonormal basis W (¢) of the augmented subspace;
2) the compressed matrix C,, (t) defined in equation (8);
3) the principal or minor eigenvector ¢(t) of C,, (t) (for
MST or PST resp.), and a basis W (¢) of the range space
of the projector II(¢) defined in equation (5);
4) the r x r compressed matrix C'y,(t), defined as

Cy(t) = W) Coa(t) W (1), )

which will permit a fast calculation of C, (t) in step 2).
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The convergence of this YAST algorithm is proved in
Appendix B page 8, and a fast implementation is proposed
in section III.

B. Numerical stability

As mentioned in the introduction, it was shown in [17] that
the implementation of the YAST PST presented in [13] suffers
from a numerical stability problem. Indeed, although YAST
was originally designed to compute an orthonormal subspace
weighting matrix W (¢) at each iteration, when the estimated
subspace gets too close to the exact subspace (which happens
in the case of stationary data with a high signal-to-noise ratio),
a sudden loss of orthogonality makes the algorithm diverge.
The solution proposed in [17] to cope with this problem
consisted in switching to another subspace tracker such as
FAPI [6] when this critical point was reached. In the context
of MST [15], we addressed the problem in a different way,
by modifying our implementation of YAST in order to restore
the orthogonality of the subspace weighting matrix at each
iteration. Although this modification prevents the sudden di-
vergence of YAST, it was proved in [18] that the accumulation
of rounding errors still leads to a loss of orthogonality of the
subspace weighting matrix, at a much lower rate however.
In order to alleviate this effect, it was proposed in [18] to
use a partial orthogonalization scheme called Pairwise Gram-
Schmidt (PGS), which improves the numerical stability of
YAST without increasing its computational cost. However, we
will show in section IV an example of instable behavior of
YAST-PGS.

In fact, the loss of orthogonality is a shortcoming common
to most of the existing MST’s of linear complexity. In partic-
ular, the classical Oja algorithm [19] is known to diverge. A
very classical approach for improving the numerical stability
of MST consists in using Householder transforms [8]-[10].
However this technique does not completely prevent the slow
accumulation of rounding errors, as observed in [2], and the
convergence rate of these algorithms is much lower than that
of the classical PST techniques. To the best of our knowl-
edge, the first MST of linear complexity which guaranteed
a perfect stability with respect to the orthogonality was the
Fast Data Projection Method (FDPM) by G. Doukopoulos and
V. Moustakides [2], [11]. This algorithm relies on a specific
orthogonalization procedure, whose numerical stability was
theoretically proved. Considering the exceptional stability of
FDPM, we propose in the following section to apply a similar
orthogonalization procedure to the YAST algorithm, in order to
solve the problems observed in our previous implementations.
The numerical stability of this new implementation is proved
in Appendix C page 9.

III. FAST IMPLEMENTATION OF YAST

Below, a fast implementation of the YAST algorithm is
proposed, whose global cost is only 5nr flops®. Following the
structure proposed in section II-A, it is composed of four steps:
computation of W (t) (section III-A), computation of C, (t)

3In this paper, a flop is a multiply / accumulate (MAC) operation.

(section III-B), update of W (t) (section III-C), and update of
C,,(t) (section III-D). The computational complexity of this
implementation is addressed in section III-E.

A. Computation of W (t)

Define the r-dimensional compressed data vector

y(t) = W(t—1)"a(t). (10)
Then the n-dimensional vector
et) = a(t) - W(t - 1)y(t) (11

is orthogonal to the range space of W (t — 1). Let o(t) be its
Hermitian norm:

o(t) = lle(®)ll2-

If o(t) = 0, then the new search direction x(¢) is actually
included in the old subspace spanned by W (t—1). This means
that the new subspace is equal to the old one, thus we can
simply choose W (¢t) = W (¢t — 1), and the iteration is over.
Otherwise o(t) # 0, and we can define the normalized vector

(12)

u(t) =e(t) /o(t). (13)
Then the n x (r + 1) augmented matrix
W) = [W(t-1)ju)] (14)

defines an orthonormal basis of span([W (t — 1), x(t)]).

B. Computation of C,(t)

Substituting equation (3) and equations (9) to (14) into
equation (8) yields

c;y<t>lz<>}
C,,(t) = [-2LoT2 15
Enl9 L(t)HTw(t) 4
where
Cyy (1) BCy,(t—1)+yt)yt)" (16)
z(t) = PW(t—1DIC.(t — Du(t)+o(t)y(t)(17)
A(t) Bu(t)EC o (t — Du(t) + o(t)?. (18)

In order to reduce the computational cost, it will be useful
to remark that z(t) and (¢) can be efficiently computed as

Ly —y(t)
z(t) = ﬂT +o(t)y(t), (19)
At = 8 x(t)Fa! (t)-2R(y() T y" (1) +y () Ty (1) +o(H)120)

o(t)?

where we have introduced the auxiliary vectors

x'(t) = Cop(t — 1) (1), (1)
y'(t) = ny (t - 1) y(t), (22)
y'(t) =Wt —DH/(t). (23)
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C. Update of W (t)

Let ¢(t) be the unitary eigenvector associated to the greatest
(or lowest) eigenvalue of the matrix C,,(t) of dimension
(r+1) x (r+1). The YAST algorithm consists in estimating
the new subspace as the orthogonal complement of the vector
v(t) = W(t) ¢(t) (defined in equation (6)) in the range
space of W (t). To this end, we will first introduce a non-
orthonormal matrix T'(¢) which spans this new subspace, then
we will describe how this matrix can be orthonormalized.

1) Computation of the non-orthonormal subspace weight-
ing matrix T (t): Vector ¢(t) is now decomposed in the form

(24)

where ¢(t)0(t) is the polar form of the last coefficient of
¢(t) (ie. p(t) € R is non-negative, and 0(¢) is a complex
number such that [0(t)| = 1), e(t) > 0, and ¢(t) is an r-
dimensional unitary vector. In particular, ¢(¢) and ¢(t) are
such that £(t)2 + ¢(t)? = 1. The following lemma which
involves £(t) is proved in Appendix A page 8.

Lemma III-C.1: £(t) is bounded by the distance between
the estimated subspaces at times ¢ and ¢ — 1, in the sense that

e(t)® < II(t) — Tt — 1)

where ||.||2 denotes the matrix spectral norm, or 2-norm.
Lemma III-C.1 shows that when the algorithm has reached
its steady state, i.e. when the subspace admits slow variations
(ITL(¢) — II(t — 1)||2 < 1), then (t) is much smaller than 1.
Next, the following lemma introduces the non-orthonormal
subspace weighting matrix T'(t).
Lemma III-C.2: The range space of the n x r matrix

T(t) = W(t—1) —et)u(t)p(t)” (25)
is a subspace of span(W (t)), such that
@ T, < (). (26)

Lemma III-C.2 shows that when £(¢) — 0, the range space
of T'(t) asymptotically matches the orthogonal complement of
v(t) in the augmented subspace span(W (t)). Lemma III-C.2
is also proved in Appendix A page 8.

2) Computation of the orthonormal subspace weighting
matrix W (t): The following developments aim at orthonor-
malizing T'(t) to obtain the new subspace weighting matrix
W (t) 4. In order to ensure the numerical stability of our
algorithm, the proposed orthonormalization method is similar
to that presented in [2]. First, equation (25) yields

THHT(t) = I, +2(t)” o(t) p(1)".

(here I, denotes the r x r identity matrix). Define the 7-
dimensional unitary vector

e (t) = —etanelel@r®y o )T,

27

(28)

4Actually, an exact implementation of YAST would require that T(t)
be exactly orthogonal to v(¢). However we observed in practice that this
(negligible) approximation improves both the stability and the convergence
rate of YAST, as illustrated in section IV-B2.

where the symbol 7" denotes the transpose of a vector (or a
matrix), and ¢ (¢) is the first coefficient of ¢(¢). Then define
the r-dimensional unitary vector

o(t) —er(t)

alt) = —F——-"—, (29)
[&(t) —er(®)ll,
and consider the Householder matrix
S(t) =1I, —2a(t)a(t)?, (30)

which transforms the vector ¢(t) into e;(t). Note that the
denominator in the right member of equation (29) can never
be zero (more precisely, it belongs to the interval [1, 2], which
prevents a division by zero). Let

Q) =T(t)S(1).
Then equations (27) and (31) yield
QW"Q() =1, +=(t)ex(t) ex ()",
which shows that the columns of the matrix Q(t) are orthog-

onal. Therefore an orthonormal matrix W (t) can be obtained
by normalizing the first column of Q(¢%):

3D

W (t) = Q(t) D(1) (32)
where D(t) is the r x r diagonal matrix
D(t) = diag(1/llg:(®)[[2,1 ... 1), (33)

q,(t) being the first column of Q(¢). Finally, substituting
equations (25) and (30) into equation (31) yields

Q1) = Wt — 1) — 2b()a(t)” — e(t)u(t) es(1)"”

where

(34)

b(t) = W(t — 1) a(t). (35)

D. Update of Cy,(t)

The auxiliary matrix C,(t) = W ()7 C,.(t)W (t) de-
fined in equation (9) can also be efficiently updated. Indeed,
substituting equations (31), (30), (25), and (14) into equa-
tion (32) yields

W(t)=W(t)U(t) D(t) (36)
where the (7 + 1) x r matrix U (¢) is defined as
I, - 2a(t)a(t)H}
Ut)= |[-L-Z=2222 37
© [ —e(t)es ()H &7

Then substituting equations (8) and (36) into equation (9)
yields

ny (t) = D(t) ng (t) D(t) (38)

where
c,,t=umn"c,, nU(). (39)
Finally, substituting equations (15) and (37) into equa-
tion (39) yelds
C,,(t) = Herm (C),,(t) — a/(t)a(t)" — £(t)2'(t)e1 (1))
(40)
where Herm(.) denotes the Hermitian part of a matrix
(Herm(M) = MM a5
a(t) = 4C,,(Ha(t)-4(a(t)"C,,(Ha(t)) a(t), (41)
Z(t) = 2:(0)-4(at) =)l (ber(t). 42)
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TABLE 1
PSEUDO-CODE OF THE YAST ALGORITHM

eq.: flops:
Input: x(t)
y(t) = Wt — DHax(t) 10) nr
e(t) =x(t) — W(t—1)y(t) 11 nr
o(t) = [le(t)]2 (12) n
if o(t) # 0,
u(t) =e(t) / o(t) (13)
' (t) = Cpu(t — 1) x(t) (21) 9In
y'(t) = Cyy(t — 1) y(t) @) | 7
y'(t) =Wt —1)Haz'(t) (23) nr
Cy (1) = BC,y(t - 1) +y(H) y(H)7 a6 | 2
z(t) =By @) -y’ (1)/o(t) +a(t)y(t) (19) r
y(t) = g el zR(y(ﬂ(’t{)z”(t)Hyu)Hy W 4o | 0 n
z(t
C,,t) = —1”—(1)—|—(—)-} b
" =" 1)
if Principal Subspace Tracking
(61, A1) = min{eieg (C,, 1) } o(r?)
else if Minor Subspace Tracking
(g(t), /\(t)) = max {eig (ny(t)) } o(r?)
end if
[cme® T, w(0)] 6(t) = p()” @y | o2
e (t) = —etansle@1y o, 07 (28)
a(t) = TS @ |
b(t) =W(t—1)a(t) (35) nr
Q(t) = W(t —1) —2b(t)a(t)? — e(t)u(t) er (1) (34) nr
D(t) = diag(1/[|qy (t)[]2,1...1) (33) n
W(t) = Q(t) D(t) (32)
a'(t) =4C,, (t)a(t) — 4 (a(t)HC;y(t)a(t)) a(t) 1) r?
2/(t) = 22(1) - d(a() " 2()alt) — c()r(Des(t) | @) | 2
C” L () = Hcrm(C/}/ (t)-a’ (t)a(t)H-e(t)2' (t)er (t)™) 39) 272
yy(t) = D(t)Cy/,(t) D(t) (40)
end if
Total: 5nr + O(v"2 +n)

E. Computational complexity

The complete pseudo-code of YAST is summarized in
table I°. Note that this implementation requires computing the
principal or minor® eigenvector ¢(t) of the compressed matrix
C yy(t) This operation can be performed by means of a recur-
sive algorithm, such as the shifted power iteration method [20],
whose dominant cost is 72 flops per iteration. This leads to
an overall complexity of O(r2) if we assume that the number
of performed iterations is much lower than 7, or O(r3) if
we consider that this number is proportional to 7. In order to
reduce the number of performed iterations, since £(t) is small
when the algorithm has reached its steady state (as mentioned
in section III-C), we propose to choose the vector [0...0,1]T
as an initial guess for starting this recursion. Alternately, we
introduced in [16] a conjugate gradient (CG) algorithm for
computing the minor eigenvector of a positive semidefinite
matrix, which presents a much faster convergence rate than the
power iteration method, for the same computational cost. The
pseudo-code of this CG algorithm applied to the computation
of the minor or principal eigenvector of C,, (t) is presented in
table II, with a proper initialization. In practice, we observed

SIn table I, the computational costs of multiplications and divisions of
complex numbers by positive numbers have been neglected.

SIn the case of PST, this pseudo-code involves the computation of the minor
eigenvector of ny (t). Since this operation is generally more complex than
computing the principal eigenvector, an other possible implementation of the
YAST PST algorithm consists in recursively updating the inverse of C, , (t),
and computing ¢(t) as the principal eigenvector of this matrix, as initially
proposed in [13].

that the performance of the YAST algorithm was unaltered if
one iteration only of the CG algorithm is performed’, which
permits to compute ¢(¢) with an overall complexity of O(r?)
flops only. a

In other respects, the calculation cost of the vector ' (¢) =
C..(t — 1) z(t) is normally n? flops. However, if the data
correlation matrix satisfies a shift invariance property, this cost
can be reduced to 9n flops by means of the technique described
in [12]. Therefore the global cost of the YAST algorithm is
reduced to 5nr flops. This cost can then be compared to that
of other existing subspace trackers. In the PST category for
instance, the complexity of PAST [3] and FAPI [6] is 3nr,
that of OPAST [5] is 4nr, that of LORAF3 [21] is 18nr, and
that of SP1 [12] is 4nr2. In the MST category, the complexity
of HFRANS [8] and NOOIJA [10] is 4nr, that of FDPM [2],
[11] and YAST-PGS [18] is 5nr, that of ODKA [9] is Tnr,
and that of QRI [7] is n?r.

TABLE II
PSEUDO-CODE OF THE CONJUGATE GRADIENT ALGORITHM
flops:
Initialization of the CG algorithm at time ¢
g=z(t)/lIz(0)] T
p=C,,(t)g—(g"C,,()g) g r?
0r
S(0) = 1 »/lol g \
C,.(0) = (t)S(O) 2
Cus(0) = s<o>Hcys<o> 6r
Repeat at each iteration £ > 1
if minor elgenvector computation

(6(k), A\(k)) = min {eig (Css(k — 1))} O(1)
else if pr1n01pal eigenvector computation

(8(k), A(k)) = max {eig (Css(k — 1))} o(1)
end if

—V/102(k)[% + 103 (k)2
2
oty = | G0/ |8l || o
. 03 (k 02 (k
sty / 1+ |5
(k) = [6(k), B(k)]

k?)( 12) —S(k—l) @(k?) 6r
Cus(k)( 12) =C, (k—1)O(k) 6r
Cis (k) (1:2,1:2) = O (k) Cuulk — 1)O(K) 12
3VI(k) = C, (k) 1) — ME)S(k) (1) T
g(k) = VJ(k) /IVJ (k)| r
glk) — g(k) = S() . 1.2) (S |y a(k)) | 4r
g(k) — g(k) / gkl T
S(k)(.,3) = g(k)

C, (k)3 Zny(t S(k)(.,3) r?
Css(k)(.,3) = S(k) Cys(k)< 3) 3r
CSS(k)(S ) = CSS(]C) 3

Until | VJ(k)| < threshold

A(t) «— (k)

P(t) — S(k):1)

IV. SIMULATION RESULTS

In this section, the performance of YAST is illustrated and
compared to that of other existing algorithms: the FAPI, LO-
RAF3, and SP1 PST’s, and the FDPM, HFRANS, and YAST-
PGS MST’s. Other performance comparisons, involving the
same test signals, can be found in references [13], [15], [16],

7In particular, the simulation results presented in section IV are unchanged.
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where the OPAST, QRI, NOOJA, and ODKA algorithms were
compared to YAST. In the following simulations, the subspace
trackers are initialized with the subspace weighting matrix
formed by the r first columns of the n x n identity matrix.

A. Principal subspace tracking

In this section, the performance of the subspace estimation
is analyzed in terms of the maximum principal angle between
the true principal subspace of the correlation matrix C.(t)
(obtained via an exact eigenvalue decomposition), and the
estimated principal subspace of the same correlation matrix
(obtained with the subspace tracker). This error criterion was
initially proposed by P. Comon and G.H. Golub as a measure
of the distance between equidimensional subspaces [20], and
used as a PST performance factor in [6], [13], [21], [22]. The
test signal is a sum of » = 4 complex sinusoidal sources plus
a complex white Gaussian noise (the SNR is 5.7 dB). The
frequencies of the sinusoids vary according to a jump scenario
originally proposed by P. Strobach [21]: their values abruptly
change at different time instants, between which they remain
constant. Their variations are represented in Figure 1-a.

Figure 1-b shows the maximum principal angle error trajec-
tory (averaged over K = 50 independent runs) obtained with
several PST algorithms: FAPI [6], LORAF3 [21], SP1 [12],
and YAST. Those algorithms were applied with the same
vector length n = 80 and the same forgetting factor § =~ 0.99.
It can be noticed that FAPI and LORAF3 behave similarly®.
Besides, the results obtained with YAST and SP1 cannot be
distinguished, which is not surprising, since those two algo-
rithms compute the same subspace estimate (the computational
complexity of YAST, however, is lower than that of SP1). It
can be noticed that those two algorithms converge much faster
than the other ones, and their principal angle error is always
much lower. To the best of our knowledge, YAST and SP1 are
the only PST algorithms which present such an exceptional
convergence rate.

In order to measure the orthonormality of the estimated
subspace weighting matrix, we calculate the same average
performance factor as in [7]-[10]:

K
n(t) = % S IWe@) Wit - L] @3)

k=1

where the number of algorithm runs is K = 50, k indicates
that the associated variable depends on the particular run, and
l.ll= denotes the Frobenius norm. This orthogonality error
is plotted in Figure 1-c. Computations were performed in
double precision with Matlab® (64 bits precision). Aside the
somewhat erratic behavior of SP1, the four algorithms prove
to be stable. Besides, it can be noticed that YAST provides
an improved orthonormality compared to SP1. The lowest
orthonormality error is reached by FAPL

8Contrary to what we erroneously suggested in the introduction of refer-
ence [6], the performance of LORAF3 in terms of subspace estimation also
proves to be comparable to that of other classical implementations of the
power iteration method, such as PAST [3], LORAF2 [4], OPAST [5], and
NIC [23].
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Fig. 1. Simulation results
(a) Normalized frequencies of the sinusoids,
(b) Angle error trajectories,

(c) Departure from orthonormality.

B. Minor subspace tracking

1) A classical example: In the following, (t) is a sequence
of n = 4 dimensional independent jointly-Gaussian random
vectors, with zero mean and covariance matrix

09 04 07 03
C— 04 03 05 04
0.7 05 1.0 0.6
0.3 04 06 09

This is a classical example, which served as a reference
for testing several MST algorithms [7]-[10], with parameter
r = 2. In order to measure the performance of the algorithms
in terms of subspace estimation, we calculate the ensemble
averages of the following performance factor, as in [7]-[10]:

1 K trace (Wk.(t)HEl E{{Wk(t))

p(t)

K L—1 trace <Wk(t)HE2 EfWk(t)) 7

where the number of algorithm runs is K = 50, E; is the
exact (n — r)-dimensional principal subspace, and E5 is the
exact r-dimensional minor subspace of C.

Figure 2-a shows the tracking results obtained with four
MST’s: our new implementation of YAST, the Pairwise
Gram-Schmidt (PGS) implementation of YAST called YAST-
PGS [18], and the HFRANS [8] and FDPM [2], [11] algo-
rithms, which were derived from the Data Projection Method
(DPM) of Yang and Kaveh [24] °. It can be noticed that
the results obtained with HFRANS and FDPM cannot be

9The HFRANS and FDPM algorithms were implemented with parameter
w = 0.13, and YAST with 8 = 0.99.

00
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Fig. 2. A classical example

(a) Error trajectories,

(b) Departure from orthonormality.

distinguished, and that those obtained with YAST and YAST-
PGS are almost identical. Moreover, both versions of YAST
converge much faster than the algorithms derived from DPM,
and the steady-state error obtained with YAST is lower.
Figure 2-b shows the departures from orthogonality of the
four above-mentioned subspace trackers, as defined in equa-
tion (43). It can be noticed that YAST, YAST-PGS and FDPM
are stable, whereas the orthonormality error obtained with
HFRANS keeps growing.

Note that this example, usually encountered in the literature,
does not belong to the field of times series analysis. Therefore
the optimization mentioned in section III-E cannot be applied,
and the global complexity of YAST becomes n? in this case!?.

2) Time series analysis: Here the YAST algorithm is ap-
plied to frequency estimation, so that its complexity is only
5nr. The test signal is a sum of 4 complex sinusoidal sources,
of same unitary amplitude, random phases, and normalized
frequencies equal to 0.2, 0.4, 0.5 and 0.8. This signal is
perturbed by an additive white Gaussian noise, so that the
SNR is 30 dB. The data vectors are composed of n = 12
successive samples of the noisy signal, so that the dimension
of the noise subspace is » = 8. However, the n X n matrix
C' is defined as the covariance matrix of the noiseless data
vectors. The performance of the various subspace trackers is
measured by the functions p(¢) and 7(t) defined above.

Figure 3-a shows the tracking results obtained with the four
MST’s, with the same parameters as above. The same obser-
vations can be made regarding the convergence properties of
the various algorithms in terms of subspace estimation, except
that our new implementation of YAST converges even faster
than YAST-PGS. This is due to the negligible approximation
introduced in section III-C, which surprisingly improves the

10Note that even in this unfavorable case, YAST remains competitive in
comparison with the subspace trackers of linear complexity, since its much
higher convergence rate reduces the total number of operations required for
reaching a given error level.

convergence rate of YAST. Regarding the departures from
orthogonality, represented in Figure 3-b, it can be noticed
that the YAST-PGS algorithm slowly loses the orthogonality,
whereas FDPM and our new implementation of YAST remain
perfectly stable.
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Fig. 3. Time series analysis

(a) Error trajectories,

(b) Departure from orthonormality.

V. CONCLUSIONS

In this paper, we presented a new implementation of the
YAST algorithm for principal and minor subspace tracking,
whose convergence and numerical stability are proved in
Appendix B and Appendix C. The exceptional performance
of YAST observed in our simulation results, both in terms of
convergence rate and steady state error, is inherited from the
SP1 algorithm by C.E. Davila [12]. Besides, the remarkable
stability of this new implementation was obtained by applying
an orthonormalization procedure similar to that of the FDPM
algorithm by X.G. Doukopoulos and G.V. Moustakides [2],
[11]. Regarding the computational complexity, if the data
correlation matrix satisfies a shift invariance property, which
typically holds in the case of time series analysis for instance,
YAST involves only 5nr flops (instead of n? flops otherwise).
This is to be compared to the 3nr complexity of the fastest
PST algorithms, PAST [3] and FAPI [6], and the 4nr complex-
ity of the fastest MST algorithms, among which NOOJA [10]
and HFRANS [8].

For the clarity of the presentation, the proposed imple-
mentation involves a simple window shape for updating the
correlation matrix, and a simple additional search direction at
each iteration. Nevertheless, this implementation can be easily
generalized to various window shapes and search directions,
as proposed in [13]-[16].



8 THE FINAL VERSION OF THIS PAPER WAS PUBLISHED IN IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

APPENDIX
A. Asymptotic analysis

Proof of lemma III-C.1 (page 4): Substituting equa-
tions (2), (4), and (14) into equation (5) yields

() — T(t — 1) = u(t)u(t)? —v(t)v(t).

This equation can be interpreted as follows: the new subspace,
represented by the projector II(¢), is obtained by adding
the search direction w(t), and then removing the direction
v(t) to the old subspace represented by II(¢ — 1). Then left
and right multiplying this equation by w(t) and substituting
equations (6), (14) and (24) yields

—TI(t — 1)) u(t) = e(t)2

Finally, since the matrix 2-norm is the norm induced by the

Hermitian vector norm, we obtain (¢)? < | TI(t) —TI(t—1)]|2.

|

Proof of lemma I1I-C.2 (page 4): Equations (6) and (25)
yield

()" T(t) =

u(t)" (T(t)

()TW ()T (W(t—1) —e(t)ut)pt)").
(44)
Substituting equations (14) and (24) into equation (44) yields

()T (1) = (t)(1 - ()0(1) (1)
Noting that 1—(t) = %, we finally obtain equation (26).

B. Convergence analysis

In this section we show that, assuming stationary data vec-
tors of constant correlation matrix C,,, the YAST algorithm
converges to the true principal or minor subspace of C,.,.
More precisely, assuming that V¢, C.(t) = C ., and that the
r-dimensional principal or minor subspace of C is unique'!
we show that the range space of the orthogonal projector
TI(t) = W (t)W (t)" converges to this subspace. In order to
simplify the discussion, the following proof focuses on PST,
but the same proof stands for MST. This proof is decomposed
into 5 steps. We thus successively prove that:

1) there is a subsequence {IL(t,)} of {II(¢)}, which

converges toward a rank-r orthogonal projector IT*;

2) II" is a critical point of the generalized Rayleigh quo-

tient on the manifold P of rank-r orthogonal projectors;

3) J(II(t)) is an increasing convergent sequence;

4) II* is the global maximum of the generalized Rayleigh

quotient on P,

5) J(II(t)) converges to J(II*);

6) the whole sequence II(¢) converges to IT".

We first need to introduce the natural gradient VpJ of
function 7 on the manifold P. By definition, Vp7 (II) is the
orthogonal projection of the gradient of function J onto the
tangent space of P at point II. More precisely, it can be proved

n the case of PST, the r-dimensional principal subspace is uniquely
defined if and only if A\, > Ap41, where A1 > ... > A, > 0 are the
eigenvalues of Cy; sorted in decreasing order.

that the natural gradient of the generalized Rayleigh quotient
12
is

VeJ (II)

This expression shows that the critical points of the generalized
Rayleigh quotient (for which VpJ(II) = 0) are the rank-r
projectors which span an invariant subspace of C,.

Step 1): Since P is a compact set, the Bolzano-Weierstrass
theorem proves that there is a subsequence {II(¢,)} of
{II(t)}, which converges toward a rank-r orthogonal projec-
tor IT*.

Step 2): Since II(t) is the global maximum of the gen-
eralized Rayleigh quotient 7 on the subset of orthogonal
projectors whose range space is included in span(IL(t)),

=1IC,, + C,,II — 2TIC,,II.  (45)

VpJ (IL(t)) L IL(t). In particular, since x(t) € span(II(t)),

Vt, x(t) L span(VpJ (IL(t))). (46)
Let ¢ > 0. Since J is C!, Ing such that Yn > ng
IVpJ(IT*) — VpJ (IL(t,))]l2 < e. Therefore ¥n > no,

equation (46) yields

H ; L)|2 VeI () 2
|t (Vo) - Vg
< VeI (ITY) = VeI (H(tn)) ]2 < e
However x(t,,) is a sequence of independent random vectors

of full-rank covariance matrix; thus any family of n vectors in
this sequence almost surely spans the whole space C™. This
finally proves that Vp7 (IT*) = 0, i.e. IT" is a critical point
of the generalized Rayleigh quotient on P.

Step 3): Substituting equations (5), (4), (2), and (14) into
equation (1) yields

J (I(t) = J (W(t-1)) + u(t)" Cozult)

In this equation, both unitary vectors u(t) and wv(t) be-
long to the augmented subspace span(IL(¢)). However, v(t)
corresponds the global minimum or the function w ~—
wHC,w/||wl||3 within this subspace. Thus J(II(t)) in-
creases at each iteration. Moreover, since 7 (I1(t)) is bounded,
J(II(t)) is an increasing convergent sequence.

Step 4): Therefore the sequence II(t,), which converges
to a critical point IT* of J on P, is such that J(II(¢,))
is increasing. However it is well known that the generalized
Rayleigh quotient admits a unique local maximum on [P, which
is the global maximum (other critical points are either unstable

- g(t)Hszg(t) .

2Let Try denote the tangent space of the manifold P at point IT, and
note that the standard gradient of function J is the constant matrix Cgz.
By definition, Vp7(II) is the orthogonal projection of Cyz onto Try.
Equation (45) thus follows from the following observations:

o Ty is the (nr — r2)-dimensional space of Hermitian matrices X such
that TIX + XTI = X.

e Ty is also the linear space of all matrices of the form ITH + HII —
2ITHTI, where H is Hermitian.

o the orthogonal complement Ti; of Try is the (n? + r?2 — nr)-
dimensional space of all matrices of the form A+ H —TI1H — HII+
2TTHTI, where A is skew-Hermitian and H is Hermitian.

e Let M be any n X n matrix, and let A denote its skew-Hermitian part
and H denote its Hermitian part. Then the orthogonal projection of M
onto Tyy is ITH + HII — 2ITHTI, and the orthogonal projection of
M onto T is A+ H — TILH — HII + 2ITHIL
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saddle points, or the global minimum). Thus IT* is the unique
global maximum of the generalized Rayleigh quotient on PP.

Step 5): Since J(I1(t,)) converges to the maximum value
J* of the generalized Rayleigh quotient and the whole se-
quence 7 (II(¢)) is increasing, 7 (II(t)) also converges to J *.

Step 6): Finally, let prove by contradiction that the whole
sequence II(t) converges to IT*. Suppose that 3 ¢ > 0 and a
subsequence TI(¢;) of II( (tr)—II||2 > e.
Let P, be the set of all rank-r orthogonal projectors IT such
that ||[IT — II*|| > &, and let J* be the supremum of 7 on
P.. Since J is a continuous function, and P, is a compact set,
the extreme value theorem proves that 7 attains its supremum
JZ on P.. However IT" is the unique global maximum of J
on P; thus J* > J. Consequently, the subsequence II(t;)
satisfies Vk, J (I1(t;)) < J < J*. This contradicts the fact
that 7 (II(¢)) converges to J*. As a conclusion, the whole
sequence II(¢) converges to IT*.

C. Numerical stability

As mentioned in the introduction, our previous implemen-
tations of YAST [13], [15] suffered from numerical stability
problems when the algorithm had converged, as observed
in [17] in the case of PST, and as proved in [18] in the case of
MST. In this section, we prove that our new implementation is
stable both for PST and MST. Indeed, suppose that, because
of rounding errors, W(t — )2W(t —1) = I, + E(t — 1)
where E(t— 1) # 0, and let show that the orthogonality error
E(t) induced at time ¢ is smaller than that at time ¢ — 1. In
the following developments, we first show that matrix E(t)
satisfies a simple recursion. Then, noting that this recursion fits
into the framework of the proof presented in [2], we refer to
this proof to conclude about the numerical stability of YAST.

First, let e(t) = —W (t —1)7 wu(t). Equations (10) and (13)
show that e(t) = w Then matrix T'(t) defined in
equation (25) satisfies

T(t)HT(t)—I +e(t)?p(t)d () +E(t71)
+e(t)(e(t)p(t) + p(t)e(t))
=I. +O((t)?) +E(t = 1)+ O(e®)|E(t —1)2).

As mentioned in section III-C, when the algorithm has
reached its steady state, €(¢) < 1. Thus the previous equation
can be simplified in the form T'(t)7T(t) = I, + E(t — 1),
where = stands for the approximation () < 1. Then
equation (31) yields Q(1)#Q(t) ~ I, + S(t)E(t — 1)S(¢t).
Since matrix W (t) is obtained by normalizing the first col-
umn of Q(t), this last equation shows that matrix D(t) in
equation (32) is of the form D(t) = I, — E(t)e el', where
e(t) O(|E(t — 1)||2) and e, = [1,0...0]T. Finally,
equation (32) yields W ()XW (t) ~ I+ E(t)+O(||E(t)|3),
where

E(t) = S(t)E(t —1)S(t) — e(t)esel . (47)
However it can be noticed that the top left coefficient of E(t)
is necessary zero since the first column of W (¢) is explicitly
normalized. Thus €(t) is also the top left coefficient of matrix
SH)E(t—1)S(t), ie e(t)=elSH)E(t —1)S(t)e;

By considering the column-wise version col{ E(t)} of the
error E(t) (i.e. where the matrix elements are read in a column
by column manner), equation (47) can be rewritten in the form

col{E(t)} = P2 (S(t) ® S(t)) col{ E(t-1)} (48)

where ® denotes the Kronecker product, and P,2 = I,> —
(e;1 ® e)(el ® eT'). Based on an equation similar to equa-
tion (48), detailed mathematical developments proving the
numerical stability of FDPM were provided in Appendix III
in [2], in the framework of stochastic approximation theory.
These developments can also be applied here, to finally prove
the stability of the YAST algorithm. The basic idea is the
following: the algorithm is stable if and only if the eigenvalues
of P2 (S(t) ® S(t)) are strictly smaller than one. This
is almost surely the case because P,z is a rank deficient
orthogonal projector (which generally lowers the vector norm),
and S(t) ® S(t) is a random unitary matrix (which maintains
the vector norm).
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