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ABSTRACT

Sinusoidal modeling is based on the decomposition of audio signals into a sum of sinusoidal components
plus a noise residual part. It involves accurate sinusoid parameters estimation and, in particular, accurate
frequency estimation. A broad category of methods uses the Fast Fourier Transform (FFT) as a starting
point to compute frequency. All these methods present very similar forms of estimators, but the relations
between them are not yet fully understood. This work proposes to take a deeper look into these relations.
The first goal of this work is to present a clear review and description of the classical FFT-based frequency
estimators. A new estimator similar to the phase vocoder is presented. The second goal of this work is
to identify the common hypotheses and the common steps of the processes for this category of estimators.
Lastly, experimental comparisons are given.

1. INTRODUCTION Fourier Transform (STFT) as a starting point. Since
the STFT is parametrized in terms of analysis time
index t,,, frequency bin wjy and analysis window
h, a typology can be derived according to whether
the derivation of the estimator uses the transform
evaluated at different instants ¢,,, different frequen-
cies wy or different windows. To the first cate-
gory belongs the phase-vocoder [5] and, more gener-
ally, the phase-derivative-based algorithms [6]. The

Sinusoidal modeling [1] is a very popular and effi-
cient representation for speech and music signals. A
number of related applications in coding [2], analy-
sis/synthesis [3, 4] or sound effect processing bear
witness to its popularity. This work adresses the es-
timation issues that all the associated methods have
to cope with.

Many frequency estimators use the Short-Time
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Fig. 1: FFT-based analysis method

amplitude or phase spectrum interpolation meth-
ods [7, 8, 9] can be attached to the second one while,
for some specific implementation, the reassigned
spectrogram falls into the last category [10]. A com-
parison of these state-of-the-art frequency methods
can be found in [11, 12].

The first purpose of this article is to present a re-
view of these methods and, during the review, two
new estimators will be described, one similar to the
derivative method, and one similar to the DFS inter-
polators using phase. For each estimator, the con-
ditions of application, the formula and the precise
algorithm used in practice will be given. The second
purpose is to highlight the similarities between the
STFT-based frequency estimators. It will be shown
that all the methods presented in this work are ac-
tually based on a DFT ratio. In order to emphasize
this remark, the ratio used by each method will be
clearly defined.

The outline of the paper is the following: a short
description of the general structure of the methods
is given in section 2, before a presentation in sec-
tion 3 of the two sinusoidal models on which these
estimators are based, namely the linear phase model
and the quadratic phase model. Then, a wide vari-
ety of estimators is described in detail, section 4. In
section 5, the common principles of these estimators
are discussed. Experimental comparisons end the
main part of the document, section 6, preceding a
conclusion note.

2. SYSTEM OVERVIEW

All the estimators presented and compared here use
the scheme illustrated on figure 1. The first step
is the STFT: the signal is analyzed using a sliding

window and a Discrete Fourier Transform (DFT)
is performed on the windowed signal. In the sec-
ond step, a combination of the STFT time-frequency
points leads to the estimation of the sinus parame-
ters. Based on this scheme, all the methods pre-
sented in this work use a unique STFT, which means
that all the methods compared have the same order
of complexity.

In this work, the STFT is defined as:

N—1
X (tm,wi; h) 2 Z (Tp, + tm) h(mh) eI Tnwk (2.1)

n=0

where N is the size in samples of the window support
h, F' is the sampling frequency, k is the frequency
bin, 7, £ n/F is the time in seconds of the corre-
sponding sample number n. t,, £ m/F is the begin-
ning time of the STFT window. Finally, wy £ %
is the pulsation of the bin k. The length of the STFT
P and the length of the window N are supposed to

be equal: P = N.
During the second step, the estimation is usually
performed using maximum bins. A maximum bin k
at the instant t,, is defined as:

| X (tm, wi—1; R)| < | X (m, wi; h)]

| X (b, wrt1s B)| > [ X (B, wis 1)

Other definitions of maximum bins are possible, but
are beyond the scope of this article.

3. SIGNAL MODEL

Our purpose is to study the evolution of partial pa-
rameters. A partial is an oscillator whose amplitude
and frequency may vary upon time:

z(t) £ A(t) 7 (3.1)
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where A denotes the amplitude and ¢ the phase.
In this article, only the case of a complex sinusoid
(cisoid) is considered, but with no loss of generality
because the problem of the real sinusoid is usually
reduced to the cisoid problem.

The model defined in equation (3.1) is very general
so hypotheses are usually added to the model, on
amplitude and on frequency. From these hypotheses
a local model, valid in the neighborhood of a time
t, will be defined. In literature, two models can be
found.

The first one, the linear phase model, supposes a
quasi-constant frequency and quasi-constant ampli-
tude, which corresponds to the local model:

z1(7) & Aed (@A) (3.2)

where « is the initial phase and § the frequency!.
This model is the most widely used. It is the base
for the phase vocoder estimation [5], for the deriva-
tive algorithm [13], for amplitude spectrum interpo-
lation [7] and for amplitude spectrum interpolation
using phase [14, §].

The second model is the quadratic phase model. It
supposes a quasi-linear frequency (quadratic phase)
and a quasi-constant amplitude:

2o (1) & AeilethATHT?/2) (3.3)
where + is the frequency slope. This model is much
less used. Frequency reassignment [10] is known for
localizing perfectly chirp signals. So one can say that
it is the model supposed in the frequency reassign-
ment method.

When considering the quadratic phase model, a fre-
quency estimation B is made for a particular time
t which must be specified. In a constant frequency
model, there is no particular time for the estimation
as the frequency is supposed to be constant.

4. DESCRIPTION OF THE ESTIMATORS

4.1. Phase-vocoder-based methods

The term “vocoder”, derived from “voice coder”, orig-
inally refers to a speech analyzer and synthesizer.

IThe terms ‘frequency’ and ‘pulsation’ are used equally in
this article. It is a misuse of language but the term ‘frequency’
is more suggestive than ‘pulsation’.

This method of analysis/synthesis has become fa-
mous for its ability to modify sound and its use as
an electronic musical instrument.

The phase vocoder is a particular vocoder which uses
a representation based on short-time amplitude and
phase spectra [15]. It was the very first method to be
used in trying to extract the sinusoidal parameters
in an analysis step. Portnoff [16] demonstrated an
efficient method of building the required filter banks
digitally, using the FFT algorithm, which allowed a
broad number of real-time applications. The heart
of the method is the frequency computation, which
is done by using a discrete derivation of the phase,
as an approximation of the continuous definition of
frequency?.

All the phase vocoder methods suppose a linear
phase model.

Short-term phase vocoder

The frequency is, by definition, the derivative of the
phase function. For a single cisoid with linear or
constant frequency, the continuous derivative can be
replaced by the discrete derivative without any ap-
proximation:

P(t2) — o(t1)
B = T (4.1)
where T is the time length between the two mea-
sured phases used to compute the frequency. When
measured in samples, this interval is called hop size.
The problem is reduced to a phase estimation prob-
lem: if the phasesin ¢; and in ¢, are perfectly known,
the frequency will be perfectly computed. The usual
phase vocoder estimation of frequency makes use of
the identity between the Fourier phase and the cisoid

phase, when the frequency is constant:

X (ta,wi; h)

o Xeoen @Y
» arg(H,)
b= —5 (4.3)

The first phase vocoders, as the one described in [15],
used two phases computed at one sample interval
(T = 1/F). One frequency estimation required two

2 Another more restricted meaning for the term phase
vocoder refers only to this particular frequency estimator.
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Fourier transforms or FFT. But further develop-
ments showed that for one sample interval, the sec-
ond FFT, could be avoided for some windows, such
as the rectangular and the Hann windows [17].

Algorithm: One sample vocoder (1SV)

1. Compute the FFTs for a time ¢; and t5 = ¢; +
1/F

2. For each maximum bin k at the time ¢;
3. Compute H,

4. Compute § = %

Long-term phase vocoder

A larger time interval 7" has also been used, in order
to improve the frequency estimation for constant fre-
quency signals [18, 5]. However, this time could not
be increased indefinitely as the constant frequency
model had to be a local model in order to analyze
real signals. Another problem came from the phase
indetermination for larger time intervals. Indeed, for
a given pulsation w, the phase increment between
the two measures is w7 If T is large enough, the in-
crement can be greater than 27. But all the phases
computed via the DFTs are inside the interval [0, 27|
which causes phase indetermination.
~ arg(H,) +2mn
b= T
where n is an integer, which has to be determined,
corresponding to the number of periods the phase
increased. Estimation of n can be done by unwrap-
ping the phase. It consists in choosing a frequency
of reference () such that the difference between the
phase increase for the frequency 2 and the phase in-
crease for the true frequency 3 is not more than one
period:

(4.4)

-6l < 7 (4.5)

A practical estimator for n is given by McAulay
in [1]:

7 = round((— arg(Hy) + .5(w1 +w2)T)/(27)) (4.6)

Here, the frequency reference is Q = (w1 + ws)/2.
For a sinusoid with constant frequency, and from
the definition of H,, the frequency wy can be used
as a reference: wi; = wy = wy.

Algorithm: Long term vocoder (LV)

1. Compute the FFTs for a time ¢; and to = t1+7T
2. For each maximum bin k at the time ¢;
3. Compute H, and 7.

3 _ arg(Ho+2mh)
4. Compute [ = ZE2=T

4.2. Derivative algorithm

The derivative method has been introduced by
Marchand [13]. This method presents a strong sim-
ilarity with the phase vocoder method: the model
used is the linear phase model and they are both
computed in practice for the same frequency bin
with a hop size T. The ratio H for the derivative
method is the following:

X(t2,w;h) = X(t1,w; h)

Ay
e = =Nt h)

(4.7)

Here, we suppose that the frequency is constant,
which is the usual hypothesis of the derivative
method. Remark that H; = H, — 1 and that
|H,| = 1 for a constant frequency:

H, = cos(arg(H,)) + j sin(arg(Hy )
|Hal? = 2(1 — cos(arg(H,)))
arg(Hv))

2

arg(H,) = 2 arcsin('H—;')

= 4sin?(

This last relation combined with equation (4.3) leads
to the derivative method:

5 2 .| Hal
8= Tarcsm( 5 ) (4.8)
This estimator is known to become unstable for high
frequencies, as the argument of the arcsin tends to
1 [19]. A small error on the argument of the arc-
sin for high frequencies will cause a large error of
estimation.

Arccos estimator

The arccos estimator is presented in Lagrange’s the-
sis [19]. Consider the following ratio:

X(tg,wk; h) + X(tl,wk;h)

N
He = X (t1,wi; h)

(4.9)
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In a similar way to the previous demonstration, one
can show that:

5 2 |Hc|
8= T arccos(——) (4.10)

2

This estimator presents a symmetrical problem com-
pared to the arcsin estimator: as the frequency tends
to zero, the argument of the arccos will tend to 1,
leading to an instability of the estimator [19].

Arctan estimator

We now introduce a new estimator similar to the
previous methods but avoiding their instability as
this estimator is based on an arctan function. This
estimator is derived from the ratio:

M, o X(ta,wrs h) — X (t1,wi; h)
t X(t1,wi; h) + X (ta,wi; h)

(4.11)

Supposing the linear phase model, we know that:

[Hal? = 45 T,

|He|? = 4C082(%)
Then,

742 = (2T

Using equations (4.7) and (4.9), |Z—f| = |H4|, and a
tangent estimator can be derived:

3= %arctan(|Ht|) (4.12)

To these three estimators correspond the three pos-
sibilities for computing the same angle. The arctan
estimator seems very similar to the phase vocoder,
and experimentally they give very close results (cf.
section 6). The algorithm for these three methods
is identical to the phase vocoder algorithm and is
given only for the derivative method:

Algorithm: Derivative method (D)

1. Compute the FFTs for a time ¢; and t5 = ¢; +
1/F

2. For each maximum bin k at the time ¢

3. Compute Hy

|7';d\)

4. Compute B = % arcsin(

4.3. Spectrum interpolators

A DFS interpolator, is a frequency estimator using
discrete spectrum points. All the methods presented
here use a linear phase model.

Without phase

The estimator presented in this section proposes to
interpolate the magnitude spectrum (or the log mag-
nitude spectrum) using a curve model. The fre-
quency response of the window used must be co-
herent with the function chosen. Numerous DFS
interpolators exist. We have chosen to retain only
the parabolic interpolation, which is used most fre-
quently.

Parabolic interpolation [11, 7] tries to interpolate the
magnitude spectrum using a parabola. Several win-
dows can be used with this method, like the Hann
window or the truncated Gaussian window, which
are approximately parabolic near the peak maxi-
mum, in db scale. Zero-padding is often used with
this method. Noting Ry(m) = | X (¢, wg4+m; h)|, this
estimator is:

Ri(=1) — Ri(1)
Rl(—l) - 2R1(0) + Rl(l)
B =wy, + 7Hpsi F/P

A
Hpsi =

(4.13)
(4.14)

Here, the size P of the Fourier transform should be
advantageously superior to the size N of the win-
dow (zero-padding). The performance of the method
strongly depends on the window used and other
more adapted windows can be designed. A com-
plete study of the influence of the parameters (i.e.
window type, window length, zero-padding factor)
on the performance can be found in [7].

Algorithm: Parabolic spectrum interpolation (PSI)

1. Compute the FFT for a time ¢
2. For each maximum bin k at the time ¢

3. Compute Hps;

. Compute § = wy, + 7Hpsi F/P

S
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With phase

Recent works have proposed to use the complex
spectrum instead of modulus spectrum as in usual
interpolation methods. The idea is to introduce the
phase information in the interpolation. But this
method differs notably from the other interpolation
methods, as it does not try to estimate the parame-
ters of an interpolating function. The resulting es-
timators have more in common with the preceding
methods, like the phase vocoder. The DFS interpo-
lators using the complex spectrum have been intro-
duced by Barry Quinn in [14], and a generalization
of this method can be found in [8]. A comparison
with other classical estimators can be found in [12].

The estimators presented in [14, 8] make the hy-
pothesis of a rectangular window hg..(t) = 1, be-
cause the discrete Fourier transform of a cisoid
z1(t) = Ae/@th) with a rectangular window has
a simple analytical expression. Using the framework
proposed by Quinn [14] and Macleod [8], many es-
timators can be proposed. Macleod’s 3-sample es-
timator has been retained, because of the interest-

ing performances given in [8]. Noting * Ry(m) =
%(X(t, Whk+4+m; hrec)X(ta Wi hrec)*)
Ry(—1) — Ro(1)
Honz = 4.15
* % SR00) + Ral 1) + Rl (415)

N 2 —
6= wp+ 20k p VI 8y = 1)

- AH s

Algorithm: Macleod 3-sample estimator (M3)

1. Compute the FFT for a time ¢
2. For each maximum bin k at the time ¢

3. Compute H,,3

A 2 -
4. Compute 8 = wi + 27TF/P(\/T+TU

In a previous work [20], a similar estimator has been
presented, which allows the use of non rectangu-
lar windows. The formulation of the estimator is

31n this article, () denotes the real part and () the imag-
inary part of a complex number.

slightly different from [20] because the definition of
the STFT in [20] is the zero-phased STFT.

a AX(t,wr;h) = N X(t,wy;h)
T X o h) T VX, w],: ) (4.17)
B = wy +sign(k — k )R(Hr) - (S‘h)) (4.18)

where \ £ eI (N=1)/(2P) i5 a parameter used to
zero-phase the Fourier transforms, 7y = (N —
1)/(2F) is the time corresponding to the middle of
the window, wp = (wk+w,)/2 is the mean frequency
of the bins used, and h, and h, are new analysis win-
dows derived from h:

At last, I'(h) is the sum function of the elements of

the window:
N-1

L(h) £ Y~ h(m)

n=0

(4.19)

I'(h.) and T'(7.hs) are two parameters which can be
computed in advance.

The demonstration of the method is in two steps.
First, the ratio Hp is shown to be equal to:

X (t,wp; hs)

HF = X(t,CUb; hc)

(4.20)

Then using the definition of z; (3.2), a first or-
der Taylor expansion around the frequency [ of
X (t,wp; hs) X (t,wp; he) is done, leading to the for-
mula (4.18).

Algorithm: Two-sample estimator with window (F)

1. Initialization: compute I'(h.) and I'(7.hs).
2. Compute the FFT for a time ¢
3. For each maximum bin k at the time ¢

4. Select the second maximum k' =
argmaxe {r+1,k—1} | X (¢, wi; h)|

5. Compute Hg

6. Compute [ = wy, + sign(k — k/)%(Hp)%

AES 120" Convention, Paris, France, 2006 May 20-23
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4.4. Frequency reassignment

With a frequency formulation, the justification of
the reassignment method for the quadratic phase is
very short. Let f be f(7) £ x3(7).h(7). Using (3.3),
we have:

af
dr

dxs dh
=2 (0h(r) + G (Taa(r)

=jor + Daa(rh(r) + T raa(r) (421)

(1)

The continuous Fourier transform (FT) is defined
by:

—+oo

FT(z;w) £ / z(t) e 9T dr (4.22)

— 00

Applying the FT on the relation (4.21) leads to:
JWFT(f;w) = jyFT (7 f;w) + jBFT(f;w)

+ FT(@.’EQ;U))
or

FT(1fw) FT(Gtasw)
S BV E ) _“HW
FT(1f;w)\ o~ FT(a—’;mQ;w)
éﬂﬂ_v%( FT(f;w) ) _w_d(w)
(4.23)

The usual formulation of the reassignment uses
Dh(r) £ %&(7) and Th(7) £ 7.h(7). The first mem-
ber of equation (4.23) is the frequency of the partial

for the time = t + %(%), which is the
time reassignment operator. The second part of the
equation corresponds to the frequency reassignment
operator § = w—%(%) This clearly shows
that the frequency reassignment and the time reas-
signment are simultaneous and therefore cannot be

dissociated.

The discrete version of the reassignment method can
be defined as:

H, & S EET gy e DO T
X(t,wk;h) X(t,wk;h)
B =wr—S(H,) t=t+R(H)

The discrete formulation of the reassignment seems
to introduce a small bias in the estimation [21]. In
fact, the demonstration presented previously for the

continuous FT is not valid anymore for the dis-
crete DFT. This is due to the derivative property
of the F'T which is only valid for the continuous FT.
Fast computation of X (¢,wy;Dh) and X (t,wy;Th)
can be derived for particular windows, such as the
Hann window, using methods similar to the one used
in [17]. For the continuous reassignment, fast ap-
proximations can also be derived [21]. In both cases,
the complexity can be reduced to one FFT compu-
tation.

Algorithm: Frequency reassignment (FR)

1. Compute the FFT for a time ¢ and for the win-
dow h, the window Dh and the window 7 h.

2. For each maximum bin k at the time ¢

3. Compute H,, H;

4. Compute 8 = wr — S(H,.). The time of estima-
tion is = ¢ + R(H,).

5. DISCUSSION ON THE COMMON PRINCI-
PLES OF THE STFT-BASED FREQUENCY ES-
TIMATORS

The purpose of this section is to highlight the com-
mon principles of the frequency estimators using
only STFT time-frequency points.

In order to achieve a direct frequency estimation, we
need to eliminate all the other unknown parameters:
the amplitude, the initial phase and the slope in the
case of the quadratic phase. Let’s define § £ ¢/77:/2
and I its DFT:

N—1 )
I(w,v;h) 2 Z h(T,) eV 3 e7 9™
n=0

(5.1)

The STFT of x2 (3.3) can be put under the form:

X(tm,wrsh) = A “T(wi = B,7:h)  (5.2)
As the definition of the quadratic phase model (3.3)
is local (i.e. in the neighborhood of the time ¢,,), «
and 3 depend on t,,. For our problem, we need to
express all the STFT points using the parameters «
and J for a unique time. The first step is therefore
to choose a time-frequency reference (to,wp). The

AES 120" Convention, Paris, France, 2006 May 20-23
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STFT of x5 can be written using the parameters of
the time reference. Let’s note Aw £ wj, — wy and
At £ t, — to.

X (ty, wi; h) =A, el (o+OAHTEE)

(5.3)
T(wg — 8+ Aw — Aty,v; h)

Each STFT point has its own Aw and At values.
Elimination of « and A

This previous equation clearly shows that the ampli-
tude and the initial phase form a complex factor for
all the STFT points. From equation (5.3), e/ can be
factorized and the STFT point X; can be expressed
as X; = e’ fi(A, 3,7), where f; is a function inde-
pendent of «. The initial phase can be eliminated in
two ways: by division of two STFT points (5.4), or
by multiplying one STFT point by the conjugate of
a second one (5.5).

Xo/X) =
Xo.X}

f2(A7ﬁ7’7)/fl(Aaﬁa/y)
f2(A7ﬁ7’7)‘f1(A7ﬁ77)*

(5.4)
(5.5)

In a similar manner, A can be factorized and
the STFT point X; can be expressed as X; =
A.gi(a, 8,7), where g; is a function independent of
A. The amplitude can also be eliminated in two
ways: by division of two STFT points (5.6) or by
taking the argument of an STFT (5.7).

92(e, 8,7)/ 91 (v, B, )
arg(g1(a, B,7))

X2/ X4
arg(X1) =

(5.6)
(5.7)

All the STFT-based frequency estimation methods
should combine these possibilities in order to elimi-
nate both the amplitude and the initial phase.

A linear combination of STFT points preserves this
complex factor and can also be used to eliminate
the initial phase and the amplitude. This is what
is done for a wide number of methods including the
phase-vocoder-based methods, the reassignment, the
derivative method, some of the DFS methods using
phase such as the F-method. All these methods use
a ratio of the form:

_ Do i X
2o viXi

where p; and v; are complex factors which weight the
STFT points. The amplitude and the phase are both

H (5.8)

eliminated through the ratio in this case. When con-
sidering the linear phase model, the only unknown
parameter left is 3. So the previous ratio can be
expressed as a function ! depending on [ only. If
this function can be found, and if it is invertible, an
estimation of 3 can be done using [~!: 3 =[7}(H).

Macleod’s estimator and the parabolic estimator
eliminate A and « differently: first the phase is
eliminated using the conjugate method. It is ob-
vious in Macleod’s estimator, where the function
Ry = R(X1.X5) is used. For the parabolic estima-
tor the modulus is used, but the modulus can be
understood as a conjugate product: |X| = v X.X*.
A linear combination of these elements R, and R-
preserves the factorization of A, which is therefore
eliminated by a ratio of these elements. When con-
sidering the linear phase model, the same remark as
in the previous paragraph holds.

Elimination of ~

In the case of the quadratic phase model, the prob-
lem is more complex because slope and frequency
are intimately linked. Indeed a slope multiplied by a
time is a particular frequency, so the problem is more
to express our equation as a function of a unique fre-
quency 3, estimated for a particular time £.

Conclusion

Two problems arise: which combination of parame-
ters in H can lead to this kind of relation, and how
to derive the function [(3) from a particular H. The
first question is difficult to answer. All the possi-
ble ratios H will not lead to an invertible [ function.
The second question looks easier. If H leads to an
invertible function of 3, an analytical expression of
1~! is not absolutely necessary, as it can be modeled
by an appropriate function.

6. EVALUATION

Many studies comparing the classical frequency es-
timation methods in the linear phase case have been
done [11], but not for the quadratic phase case,
which is another motivation for a broad performance
comparison.

In order to achieve a frequency estimation, peak de-
tection is needed, but as our purpose is to com-
pare the frequency estimators, it will be assumed

AES 120" Convention, Paris, France, 2006 May 20-23
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Fig. 2: Comparison of the arcsin, arccos and arctan estimators

in all experiments that the correct maximum bins
are known. The second maximum bin, if needed, is
still supposed unknown.

The Cramer-Rao Bound [8] (CRB) for the linear
phase model is represented by a dashed line for
N = 512. It is given here just as an indication
for two reasons. First, all the methods presented
here do not have the same CRB: the vocoder has a
lower CRB because it uses more signal samples for
its estimation (two consecutive DFTs separated by
H samples correspond to a total of N + H samples).
Secondly, for the chirp analysis, the CRB will be
different because the parameter v is added.

The experiments are presented for F' = 16000 and
N = 512. All the estimators studied are indepen-
dent of the initial phase and of the amplitude. The
error between the true and estimated values is based
on an average of 1000 experiences, using random fre-
quencies inside [0, 8000], and a slope inside [0, 8000]
for figure 3(b). For the arcsin, arccos, arctan and
1SV estimator, the hop size is one sample. For the
long vocoder (LV), the hop size chosen is 256. For
all the methods except M3, the window used is the
Hann window.

Figure 2 shows a comparison of the estimators
arcsin, arccos and arctan presented in section 4.2.
It shows the Mean Absolute Error (MAE) of each
estimator as a function of the frequency. On fig-
ure 2(a), no noise has been added. All the estima-
tors are unbiased but, for high frequencies (resp. the

low frequencies), the variance increases for the arcsin
method (resp. the arccos method). These variances
values are small on figure 2(a), but when noise is
added, the variance grows quickly, as it is shown
on figure 2(b) for SNR=40db. The arctan estima-
tor does not have the instability of the other two,
and its variance stays low for all the frequencies. In
the next experiments, only the arctan estimator is
retained.

Figure 3(a) represents the classical performances of
the algorithms when the frequency is constant (lin-
ear phase). For very low SNRs (<-15db), the perfor-
mances degrade even if the detection is assumed. For
high SNRs, the bias of the algorithms is revealed as
the influence of noise becomes negligible. The per-
formance curves of the reassignment, the 1SV and
the arctan method are very close. The best per-
formances are obtained with the long vocoder (LV)
method, because of the important hop size chosen.
In section 4, it has been said that the discrete version
of the Reassignment method (FR) presents a bias.
This bias begins to appear at 80db and is not visible
on this figure. The vocoder, and the arctan method
are the only unbiased methods. When the bias influ-
ence becomes negligible compared to the noise influ-
ence, the performances curves become parallel to the
CRB. The shift from the CRB is influenced by the
windowing. Intuitively windowing has a tendency
of ‘decreasing’ the number of samples used [12], and
the corresponding CRB will increase. This fact ap-
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Fig. 3: Comparison of estimators as a function of the SNR

pears in the experiment 3(a): Macleod’s estimator,
which uses a rectangular function, has better per-
formances than all the other estimators which use
the Hann window. The main drawback of using the
rectangular window appears when multiple sinusoid
components are present [12]. The poor performances
of the parabolic interpolation are due to the fact that
no zero-padding is done, because it has been chosen
to compare algorithms with a same order of com-
plexity. Zero-padding consists in using a DFT with
a greater length than the signal length (the signal is
completed with zeros). It allows to interpolate the
amplitude spectrum and is widely used with DFS
interpolation methods. For a zero-padding factor of
4, the performances of the parabolic interpolation
become comparable to the other methods [7].

A second experiment based on the quadratic phase
model has been done. It has been said in the sec-
tion 3 that for methods based on the linear phase
model there is no particular time of estimation.
For this experiment it has been assumed that these
methods estimate the frequency for the middle of
the window. For high slope values (figure 3(b)), the
linear phase model is not valid anymore, even ap-
proximately, and all the estimators based on this
model present unsurprisingly an important bias.
The small bias of the discrete version of the reas-
signment method is unchanged but the variance of
the reassignment has increased notably. As the slope
grows, the ratio used in Macleod’s estimator tends to

zero. Therefore, when the slope is high, the estima-
tion tends to the maximum bin estimation. But the
maximum bin is supposed to be known for these ex-
periments, which explains why the estimation curve
is constant for this estimator. In this experiment,
the vocoder and the arctan methods have once again
very close performances.

7. CONCLUSION

This work has presented a clear review and descrip-
tion for a wide number of STFT-based frequency es-
timators. An original demonstration of the reassign-
ment method for the quadratic phase model has been
presented, as well as a new and clear justification of
the derivative and arccos method for a linear phase
model. A new estimator has been presented, the
arctan estimator, which belongs to the same family
of estimators as the phase vocoder and the deriva-
tive method. This estimator avoids the instability of
the derivative and the arccos method, and presents
very similar results compared to the phase vocoder
estimator. An experimental comparison of the es-
timator described has been performed, with a clear
advantage for the phase vocoder method with a long
hop size, when no frequency slope is present. The
frequency reassignment is the only method which
continues to give good results for high frequency
slope values. At last, the common principles of all
these estimators have been discussed, showing the
great potential of exploring new estimators combin-
ing differently the STFT points.
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