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Institut Télécom,Télécom ParisTech, CNRS LTCI
46, rue Barrault - 75634 Paris Cedex 13 - France

benoit.fuentes@telecom-paristech.fr

ABSTRACT

This paper presents a new algorithm based on shift-invariant proba-

bilistic latent component analysis that analyzes harmonic structures

in an audio signal. Each note in a constant-Q transform is modeled as

a weighted sum of narrowband parametric spectra, and a positive de-

convolution is performed to obtain both pitch and timbre signature.

The algorithm has been tested in a task of monopitch and multipitch

estimation and shows very promising results.

Index Terms— Pitch estimation, probabilistic latent component

analysis, harmonicity.

1. INTRODUCTION

Recently, many methods have been proposed in order to decompose

the time-frequency representation of an audio signal into meaning-

ful non-negative components. In the field of music signal process-

ing, such a decomposition is useful to address various applications,

such as pitch estimation, automatic transcription, or source separa-

tion. To perform this decomposition, the most popular technique is

certainly the non-negative matrix factorization (NMF), initially de-

signed for image processing and data mining applications [1], which

has then been successfully applied to music analysis [2]. Since the

basic NMF does not account for the particular characteristics of au-

dio signals, some variants have been developed in order to model

properties like the spectral harmonicity [3], or the time-variability

of the fundamental frequency [4] and the spectral envelope [5] of

each component. Probabilistic Latent Component Analysis (PLCA)

[6] is a framework similar to NMF, which offers a convenient way

of constraining the decomposition by introducing appropriate priors.

The shift-invariant version of PLCA [7] was later introduced in or-

der to obtain components sharing the same spectral shape but having

different pitches.

The main drawback of the above-mentioned decomposition

techniques is that they cannot handle components having both time-

varying fundamental frequencies and spectral shapes. In this paper,

we introduce a new method inspired from the shift-invariant PLCA,

which overcomes this limitation. The paper is organized as follows.

Section 2 summarizes some useful tools on which our adaptive

harmonic decomposition technique relies. This technique is then

introduced in section 3. It is evaluated in section 4 in the context

of monopitch estimation, and compared to the classical YIN esti-

mator [8]. Finally, the main conclusions of this work are drawn in

section 5.

The research leading to this paper was supported by the Quaero Pro-
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2. SOME USEFUL TOOLS

In this section, we present different tools supporting our work.

2.1. Constant-Q transform

The presented system’s input is a time-frequency representation of

an audio signal based on the constant-Q transform (CQT) [9]. The

CQT is a spectral representation of a temporal signal with a logarith-

mic frequency scale, contrary to the classical discrete Fourier trans-

form. In this paper, the term CQT denotes the time-frequency rep-

resentation obtained by applying this transformation at regular time

points over an audio signal. With a logarithmic frequency scale, the

spacing between two given partials of a harmonic note remains the

same, regardless of the pitch of the note played. This feature can be

verified on the top part of Fig. 2 where the CQT of three notes played

by a harmonica is represented. Due to this characteristic, a change

of pitch can be considered as a vertical shift of a spectral template.

The mathematical model presented in the next section accounts for

this shift-invariance. However, this consideration only stands ap-

proximately, since the different notes played by a single instrument

may have different spectral shapes. The system we present in sec-

tion 3 also takes avantage of the shift-invariant characteristic but can

handle various spectral shapes.

2.2. Shift-invariant probabilistic latent component analysis

Probabilistic Latent Semantic Analysis [10] (PLSA) is a probabilis-

tic tool for non-negative data analysis: it is used to decompose an ob-

servation as the sum of several independent sources. Shift-Invariant

PLCA [7] (SI-PLCA) is an extension of PLSA, able to extract shifted

patterns in multi-dimentional non-negative data. In our case, SI-

PLCA consists in considering the CQT of an audio signal, Vft, as

the histogram of the sampling of N independent and identically dis-

tributed (i.i.d.) random variables (fn, tn), distributed according to

the probability density function (PDF) P (f, t). The way P (f, t)
is modeled induces the decomposition of Vft. In [11], Vft is de-

composed as the weighted sum of several CQTs, representing mono-

pitched sources. Each source is decomposed as a spectrum (called

kernel distribution) convolved by time-frequency activations (called

impulse distribution). P (f, t) is then defined as:

P (f, t) =

Z
∑

z=1

P (z)P (f, t|z)

with P (f, t|z) =
∑

i∈Z

PK(f − i|z)PI(i, t|z)

(1)



where PK(µ|z)µ∈J1;MK and PI(i, t|z)(i,t)∈Z×J1;T K are PDFs respec-

tively representing the basic spectra and the time-frequency activa-

tions of each source, and P (z)z∈J1;ZK is the probability of source z.

This model allows defining a simple framework for the NMF prob-

lem and adding some interesting priors.

By means of the Expectation-Maximization (EM) algorithm, the

parameters P (z), PK(µ|z) and PI(i, t|z) can be randomly initial-

ized and iteratively updated until convergence to a local maximum

of the likelihood. Update rules are expressed in [11], and the method

which permits to calculate them in [6].

3. ADAPTIVE HARMONIC DECOMPOSITION

In [11], each source represents a specific instrument with its own ba-

sic spectrum and activations. It is a powerful method since no prior

about the shape of instrument spectra is needed. Indeed, they can

be strictly harmonic, or strongly inharmonic such as bell sounds or

distorted guitars. But this model does not account for the possible

amplitude variations of the partials of one instrument as a function

of pitch and time. Instead, the model we propose supposes a perfect

harmonicity of the notes but allows representing potential variations

of the spectral envelopes. For the sake of clarity, this model is pre-

sented in the framework of monophonic signals analysis, but as it

will be shown, it can easily be extended to polyphonic signals.

3.1. SI-PLCA model adaptation

As in [3], in order to account for variations of the spectral envelope,

a note spectrum is decomposed as a weighted sum of narrowband

basic spectra sharing the same pitch but with their energy concen-

trated at different frequency bands. In the SI-PLCA model, it means

that for each source, the kernel distribution PK is fixed and corre-

sponds to one of those basic spectra, and the corresponding impulse

distribution can be decomposed as PI(i, t|z) = PI(i|t, z)P (t|z) =
PIh(i|t)P (t|z), i.e. the random variable i does no longer depend

on z. Besides, in order to consider the possible presence of col-

ored noise in the audio signal, the last source is reserved for noise:

its kernel distribution corresponds to a narrowband window and its

impulse distribution PIn(i|t, Z) is different from PIh(i|t). Finally,

model (1) becomes:

P (f, t) =

Z
∑

z=1

P (z)
∑

i∈Z

PK(f − i|z)PI(i, t|z)

=

Z
∑

z=1

P (z)P (t|z)
∑

i∈Z

PK(f − i|z)PI(i|t, z)

=

Z
∑

z=1

P (z, t)
∑

i∈Z

PK(f − i|z)PI(i|t, z) (2)

with:

• PI(i|t, z) = PIh(i|t) if z < Z

• PI(i|t, Z) = PIn(i|t, Z).
(3)

Fig. 1 shows an example of a CQT synthesized according to this

model, with Z = 3 sources.

3.2. EM algorithm and updates rules

Given a CQT and a fixed set of kernel distributions PK(µ, z), our

purpose is to find the best set of discrete distributions Λ = {PIh(i|t),
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Fig. 1. A synthesized CQT and its decomposition. The designed

model allows describing continuous variations of the fundamental

frequency and of the spectral envelope of harmonic structures with

a few number of kernels. The last kernel distribution is used for the

description of smooth non-harmonic structures.

PIn(i|t, Z), P (z, t)} from which useful information can be extracted.

For instance, the pitch can be deduced for every t by selecting the

value of i which maximizes PIh(i|t). In our model, variables f and

t are the observations, z and i are latent variables and the parameters

are contained in the set Λ. The expectation step of the EM algorithm

consists of calculating the log-likelihood function (we denote x̄ the

set of i.i.d. variables {xn}n=1...N ):

L
(

f̄ , t̄, z̄, ī
)

= log
(

P
(

f̄ , t̄, z̄, ī
))

= log

(

∏

n

P (fn, tn, zn, in)

)

and then calculating its conditional expectation given the observa-

tions and the parameters:

QΛ = E
[

L(f̄ , t̄, z̄, ī)|f̄ ; t̄; Λ
]

=
∑

z,i

∑

n

P (i, z|fn, tn) log (P (fn, tn, z, i))

As Vft is modeled as the histogram of the observations, it is pos-

sible to change the summation over n by a summation over f and

t, since the number of times the couple (f, t) is observed is known.

Moreover, P (f, t, z, i) = P (z, t)PK(f− i|z)PI(i|t, z). That leads

to:

QΛ =
∑

f,t,i,z

VftP (i, z|f, t)
[

ln (P (z, t)) +

ln (PK(f − i|z)) + ln (PI(i|t, z))
]

(4)

with, due to the Bayes’ theorem (the notation x̂ is used for bound

variables):

P (i, z|f, t) =
P (z, t)PK(f − i|z)PI(i|t, z)

∑

ẑ P (ẑ, t)
∑

î PK(f − î|ẑ)PI (̂i|t, ẑ)
(5)

where PI(i|t, z) was defined in equation (3).

In the maximization step, QΛ is maximized with respect to (w.r.t.)

the model parameters, under the constraint

∑

i

PI(i|t, z) =
∑

z,t

P (z, t) =
∑

µ

PK(µ|z) = 1.



It leads to the following update rules:

P (z, t) =

∑

f,i VftP (i, z|f, t)
∑

ẑ,t̂,f,i Vft̂P (i, ẑ|f, t̂)
(6)

PIh(i|t) =

∑

f,z<Z VftP (i, z|f, t)
∑

î,f,z<Z VftP (̂i, z|f, t)
(7)

PIn(i|t, Z) =

∑

f VftP (i, Z|f, t)
∑

î,f VftP (̂i, Z|f, t)
. (8)

After initializing the model parameters, we iterate the above

equations until convergence. Ideally, for a given t0, the impulse dis-

tribution PIh(i|t0) would be an unimodal probability distribution,

the pitch would be given by the value of its mode and the spectral en-

velope would be parametrized by the coefficients {P (z, t0)}z=1...Z .

However, in absence of any constraint, the parameters do not neces-

sarily converge to the desired solution. In practice, we notice that

we can find maxima on PIh(i|t0) for i corresponding to the accu-

rate pitch and all its higher harmonics. Since we would like to keep

only the maximum of lowest frequency, we employ an asymmetric

minimum variance prior as described in the next section.

3.3. Asymmetric minimum variance prior

Let θ
t be the vector of coefficients θt

i = PIh(i|t) for a given t. In

order to constrain θ
t to be unimodal and to avoid upper-harmonic

errors, we use an asymmetric minimum variance prior, forcing θ
t to

have both low variance and low mean. We first introduce an adequate

measure, depending on a parameter α > 0 which defines the strength

of the asymmetry:

avarα(θt) =
∑

i

(

eαi − eα
∑

î
îθt

î

)

θt
i

=

(

∑

i

eαiθt
i

)

− eα
∑

i
iθt

i since
∑

i

θt
i = 1. (9)

It can be proven, due to the strict convexity of the exponential func-

tion, that avarα(θt) ≥ 0 and avarα(θt) = 0 ⇔ ∃ i0 | ∀i, θi = 1 if

i = i0 and 0 otherwise. To bias avarα(θt) during training, a prior

distribution is introduced for the set of parameters Λ as P (Λ) =

(1/σ)
∏

t e−β avarα(θt), where β > 0 is a parameter indicating the

strength of the prior and σ a normalizing coefficient. The maxi-

mization step is now replaced by a maximum a posteriori (MAP)

step, i.e. instead of maximizing QΛ we maximize QΛ + log (P (Λ))
w.r.t. the model parameters and under the same constraints as be-

fore. Updates rules for P (z, t) and PIn(i|t, Z) do not change, but

maximizing w.r.t. PIh(i|t) leads to the equation:

θt
i =

ωt
i

β
(

eαi − αie
α

∑
î

îθt

î

)

+ ρt
(10)

where ωt
i =

∑

f,z<Z VftP (i, z|f, t), θt
i = PIh(i|t), and ρt is an

additional coefficient which insures that
∑

i θt
i = 1. There is no

closed-form solution for θt
i , but numerical simulations showed that

the fixed point Algorithm 1 always converges to a solution. Fig. 2

illustrates the effect of using the prior.

Algorithm 1 Fixed-point method

for all t do

θ
t ← ω

t

∑
i

ωt

i

loop

· mt ←
∑

i iθt
i

· ∀i, ci ← β
(

eαi − αieαmt
)

· find ρt such that
∑

i

ωt

i

ci+ρt = 1 and ∀i,
ωt

i

ci+ρt ≥ 0 (there

is a unique solution, that can be calculated with any numeri-

cal root finder algorithm)

· ∀i, θt
i ←

ωt

i

ci+ρt

end loop

end for
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Fig. 2. Illustration of the use of the asymmetric minimum variance

prior. If the reconstructed CQT remains almost unchanged, the im-

pulse distribution becomes unimodal at each frame. The input signal

corresponds to the recording of three notes played by a harmonica.

3.4. Polyphonic signals extension

So far, only the monophonic case has been considered, but the pro-

posed model can easily be extended to polyphonic signals. To do so,

we need to consider a polyphonic signal as a sum of monophonic

signals, called channels. In the SI-PLCA model, it means that a new

hidden variable c, corresponding to a channel, is introduced in the

calculation of P (f, t). All channels share the same kernel distri-

butions and the same noise impulse distribution. Equation (2) then

becomes:

P (f, t) =

C
∑

c=1

P (c)

Z
∑

z=1

P (z, t|c)
∑

i∈Z

PK(f − i|z, c)PI(i|t, z, c)

(11)

with

• PK(f − i|z, c) = PK(f − i|z)

• PI(i|t, z, c) = PIh(i|t, c) if z < Z

• PI(i|t, Z, c) = PIn(i|t, Z).

From this equation, similar update rules can be derived. Fig. 3

represents the CQT of J.S. Bach’s first prelude played by a synthe-

sizer (the notes are played with a slight vibrato) and the correspond-

ing time-frequency activations found by our algorithm.
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Fig. 3. Illustration of the algorithm for polyphonic signals with

C = 3 channels. The time-frequency activations are defined as

Pih(i, t) =
∑C

c=1

∑Z−1
z=1 PIh(i|t, c)P (z, t|c)P (c).

4. EVALUATION

To check the relevance of the model, the algorithm 1 has been evalu-

ated on a task of monopitch estimation, on 3307 isolated notes from

the Iowa database [12]. This database includes recordings of sev-

eral instruments, playing over their full range of notes, and with

various play modes and nuances. For each signal, the CQT with

3 bins/semitones from f = 27.5Hz to f = 6000Hz and with a step

size of 20ms is calculated. Then the CQT is analyzed by the algo-

rithm using Z = 15 kernel distributions and the pitch is estimated

for each time frame. To illustrate the shape of the kernels, Fig. 4

shows two of them. The method is compared with the YIN algo-

rithm [8] using 100ms time frames (we used the code available on

the authors’ websites). Results are shown in Fig. 5.
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Fig. 4. Two of the parametric kernel distributions used in the algo-

rithm. Partials are located at multiples of a fundamental frequency

f0. The maximum of the zth kernel corresponds to the zth harmonic

of the modeled spectrum. Each kernel has a maximum of 9 partials.

5. CONCLUSION

We have presented an adaptive harmonic model for musical signal

analysis that could be used in various applications, such as mono-

pitch or multipitch estimation. A new prior to constrain impulse

distributions to be unimodal has been introduced. This method is

promising and in future work, we plan to include some temporal

constraints and take the reverberation into account in order to im-

prove the generality of the model. An other outlook is to implement

a learning process for the kernel distributions, which should make

this algorithm more robust to real musical signals.

1The Matlab code is available at http://perso.telecom-paristech.fr/
∼fuentes/shared code/ICASSP 2011 fuentes.zip.
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Fig. 5. Simulation results: averaged error rates for each instrument

of the database in a task of monopitch estimation.
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