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ABSTRACT

Tempo estimation is fundamental in automatic music
processing and in many multimedia applications. This
paper presents an automatic tempo tracking system that
processes audio recordings and determines the beats per
minute and temporal beat location. The concept of spec-
tral energy flux is defined and leads to an efficient note on-
set detector. The algorithm involves three stages: a front-
end analysis that efficiently extracts onsets, a periodicity
detection block and the temporal estimation of beat loca-
tions. The performance of the proposed method is evalu-
ated using a large database of 489 excerpts from several
musical genres. The global recognition rate is 89.7 %.
Results are discussed and compared to other tempo esti-
mation systems.

Keywords: beat, tempo, onset detection.

1. INTRODUCTION

It is very difficult to understand western music without
perceiving beats, since a beat is a fundamental unit of
the temporal structure of music [4]. For this reason, au-
tomatic beat tracking, or tempo tracking, is an essential
task for many applications such as musical analysis, auto-
matic rhythm alignment of multiple musical instruments,
cut and paste operations in audio editing, beat driven spe-
cial effects. Although it might appear simple at first, tempo
tracking has proved to be a difficult task when dealing
with a broad variety of musical genres as shown by the
large number of publications on this subject appeared dur-
ing the last years [2, 5, 6, 8, 9, 10, 12].

Earlier tempo tracking approaches focused on MIDI
or other symbolic formats, where note onsets are already
available to the estimation algorithm. More recent ap-
proaches directly deal with ordinary CD audio recordings.
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The system that we present in this paper lies into this cat-
egory.

For musical genres with a straightforward rhythm such
as rap, rock, reggae and others where a strong percus-
sive strike drives the rhythm, current beat trackers indi-
cate high performance as pointed out by [5, 9, 12]. How-
ever, the robustness of the beat tracking systems is often
much less guaranteed when dealing with classical music
because of the weakness of the techniques employed in
attack detection and tempo variations inherent to that kind
of music.

In the present article, we describe an algorithm to esti-
mate the tempo of a piece of music (in beats per minute or
bpm) and identify the temporal locations when it occurs.
Like most of the systems available in the literature, this
algorithm relies on a classical scheme: a front-end proces-
sor extracts the onset locations from a time-frequency or
subband analysis of the signal, traditionally using a filter
bank [1, 7, 10, 12] or using the discrete Fourier transform
[3, 5, 6, 8, 9]. Then, a periodicity estimation algorithm
finds the rate at which these events occur. A large variety
of methods has been used for this purpose, for example, a
bank of oscillators which resonate at integer multiples of
their characteristic frequency [6, 9, 12], pitch detection
methods [1, 10], histograms of the inter-onset intervals
[2, 13], probabilistic approaches such as Gaussian mix-
ture model to express the likelihood of the onset locations
[8].

In this paper, following Laroche’s approach [9], we
define the quantity so-called spectral energy flux as the
derivative of the signal frequency content with respect to
time. Although this principle has been previously used
[3, 6, 8, 9], a significant improvement has been obtained
by using an optimal filter to approximate this derivative.

We exploit this approach to obtain a high performance
onset detector and integrate it into a tempo tracking algo-
rithm. We demonstrate the usefulness of this approach by
validating the proposed system using a large manually an-
notated data base that contains excerpts from rock, latin,
pop, soul, classical, rap/hip-hop and others. The paper is
organized as follows: Section 2 provides a detailed de-
scription of the three main stages that compose the sys-
tem. In Section 3, test results are provided and compared
to other methods. The system parameters used during the
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Figure 1. Architecture of the beat tracking algorithm.

validation procedure are provided as well as comments
about the issues of the algorithm. Finally, Section 4 sum-
marizes the achievements of the presented algorithm and
discusses possible directions for further improvements.

2. DESCRIPTION OF THE ALGORITHM

In this paper, it is assumed that the tempo of the audio sig-
nal is constant over the duration of the analysis window
and that it eventually evolves slowly from one to the other.
In addition, we suppose that the tempo lies between 60
and 200 BPM, without loss of generality since any other
value can be mapped into this range. The algorithm pro-
posed is composed of three major steps (see figure 1):

• onset detection: it consists in computing a detection
function based on the spectral energy flux of the in-
put audio signal;

• periodicity estimation : the periodicity of the de-
tection function is estimated using pitch detection
techniques ;

• beat location estimation : the position of the corre-
sponding beats is obtained from the cross-correlation
between the detection function and an artificial pulse-
train.

2.1. Onset detection

The aim of onset detection consists in extracting a detec-
tion function that will indicate the location of the most
salient features of the audio signal such as note changes,
harmonic changes and percussive events. As a matter of
fact, these events are particularly important in the beat per-
ception process.

Note onsets are easily masked in the overall signal en-
ergy by continuous tones of higher amplitude [9], while
they are more likely detected after separating them in fre-
quency channels. We propose to follow a frequency do-
main approach [3, 5, 6, 8, 9] as it proves to outperform
time-domain methods based on direct processing of the
temporal waveform as a whole.

2.1.1. Spectral analysis and spectral energy flux

The input audio signal is analyzed using a decimated ver-
sion of the short-time Fourier transform (STFT), i.e., short
signal segments are extracted at regular time intervals, mul-
tiplied by an analysis window and transformed into the
frequency domain by means of a Fourier transform. This
leads to

X̃( f ,m) =
N−1

∑
n=0

w(n)x(n+mM)e− j2π f n (1)

where x(n) denotes the audio signal, w(n) the finite anal-
ysis window of size N in samples, M the hop size in sam-
ples, m the frame index and f the frequency.

Motivated by the work of Laroche [9], we define the
spectral energy flux E( f ,k) as an approximation to the
derivative of the signal frequency content with respect to
time

E( f ,k) = ∑
m

h(m− k)G( f ,m) (2)

where h(m) approximates a differentiator filter with:

H(e j2π f ) ' j2π f (3)

and the transformation

G( f ,m) = F {|X̃( f ,m)|} (4)

is obtained via a two step process: a low-pass filtering of
|X̃( f ,m)| to perform energy integration in a way similar to
that in the auditory system, emphasizing the most recent
inputs, but masking rapid modulations [14] and a non-
linear compression. For example, in [9] Laroche proposes
h(m) as a first order differentiator filter (h = [1; −1]), no
low-pass filtering is applied and the non-linear compres-
sion function is G( f ,n) = arcsinh(|X̃( f ,m)|). In [6] Kla-
puri uses the same first order differentiator filter, but for
the transformation, he performs the low-pass filtering af-
ter applying a logarithmic compression function.

In the present work we propose h(m) to be a FIR filter
differentiator. Such a filter is designed by a Remez optimi-
sation procedure which leads to the best approximation to
Eq. (3) in the minimax sense [11]. This new approach,
compared to the first order difference used in [6, 8, 9]
highly improves the extraction of musical meaningful fea-
tures such as percussive attacks and chord changes. In
addition, G( f ,k) is obtained via low-pass filtering with
a second half of a Hanning window followed by a loga-
rithmic compression function as suggested by Klapuri [7],
since the logarithmic difference function gives the amount
of change in a signal in relation to its absolute level. This
is a psycho-acoustic relevant measure since the perceived
signal amplitude is in relation to its level, the same amount
of increase being more prominent in a quite signal [7].

During the system development, several orders for the
differentiator filter h(m) were tested. We found that using
an order 8 filter was the best tradeoff between complex-
ity and efficiency. In practice, the algorithm uses an N



point FFT to evaluate the STFT, thus the frequency chan-
nels 1 to N

2 of the signal’s time–frequency representation
are filtered using h(m) to obtain the spectral energy flux.
Then, all the positive contributions of these channels are
summed to produce a temporal waveform v(k) that ex-
hibits sharp maxima at transients and note onsets, i.e.,
those instants where the energy flux is large.

Beat tends to occur at note onsets, so we must first dis-
tinguish the ”true beat” peaks from the spurious ones in
v(k) to obtain a proper detection function p(k). In addi-
tion, we work under the supposition that these unwanted
peaks are much smaller in amplitude compared to the note
attack peaks. Thus, a peak-picking algorithm that selects
peaks above a dynamic threshold calculated with the help
of a median filter is a simple and efficient solution to this
problem. The median filter is a nonlinear technique that
computes the pointwise median inside a window of length
2i+1 formed by a subset of v(k), thus the median thresh-
old curve is given by the expression:

θ(k) = C · median(gk) (5)

where gk = {vk− i, . . . ,vk, . . . ,vk + i} and C is a prede-
fined scaling factor to artificially rise the threshold curve
slightly above the steady state level of the signal. To en-
sure accurate detection, the length of the median filter
must be longer than the average width of the peaks of
the detection function. In practice, we set the median fil-
ter length to 200 ms. Then, we obtain the signal p̂(k) =
v(k)− θ(k), which is half-wave rectified to produce the
detection function p(k):

p(k) =

{

p̂(k) if p̂(k) > 0
0 otherwise

(6)

In our tests, the onset detector described above has pro-
ved to be a robust scheme that provides good results for a
wide range of musical instruments and attacks at a rela-
tively low computational cost. For example, Figure 2-a
shows the time waveform of a piano recording containing
seven attacks. These attacks can be easily observed in the
signal’s spectrogram in Figure 2-b. The physical interpre-
tation of Figure 2-c can be seen as the rate at which the
frequency-content energy of the audio signal varies at a
given time instant, i.e., the spectral energy flux. In this ex-
ample, seven vertical stripes represent the reinforcement
of the energy variation, clearly indicating the location of
the attacks (the position of the spectrogram edges). When
all the positive energy variations are summed in the fre-
quency domain and thresholded, we obtain the detection
function p(k) shown in Figure 2-d. An example of an in-
strument with smooth attacks, a violin, is shown in Figure
3. Large energy variations in the frequency content of the
audio signal can still be observed as vertical stripes in Fig-
ure 3-c. After summing the positive contributions, six of
the seven attacks are properly detected as shown by the
corresponding largest peaks in Figure 3-d.
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Figure 2. From top to bottom: time waveform of a piano
signal, its spectrogram, its spectral energy flux and the de-
tection function p(k).

2.2. Periodicity estimation

The detection function p(k) at the output of the onset de-
tection stage can be seen as a quasi-periodic and noisy
pulse-train that exhibits large peaks at note attacks. The
next step is to estimate the tempo of the audio signal, i.e.,
the periodicity of the note onset pulses. Two methods
from traditional pitch determination techniques are em-
ployed: the spectral product and the autocorrelation func-
tion. These techniques have already been used for this
purpose in [1].

2.2.1. Spectral product

The spectral product principle assumes that the power spec-
trum of the signal is formed from strong harmonics lo-
cated at integer multiples of the signal’s fundamental fre-
quency. To find this frequency, the power spectrum is
compressed by a factor m, then the obtained spectra are
multiplied, leading to a reinforced fundamental frequency.
For a normalized frequency, this is given by:

S(e j2π f ) =
M

∏
m=1

|P(e j2πm f )| for f <
1

2M
(7)

where P(e j2π f ) is the discrete Fourier transform of p(k).
Then, the estimated tempo T is easily obtained by picking
out the frequency index corresponding to the largest peak
of S(e j2π f ). The tempo is constrained to fall in the range
60 < T < 200 BPM.
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Figure 3. From top to bottom: time waveform of a vio-
lin signal, its spectrogram, its spectral energy flux and the
detection function p(k).

2.2.2. Autocorrelation function

This is a classical method in periodicity estimation. The
non-normalized deterministic autocorrelation function of
p(k) is calculated as follows:

r(τ) = ∑
k

p(k + τ)p(k) (8)

Again, we suppose that 60 < T < 200 BPM. Hence, dur-
ing the calculation of the autocorrelation, only the values
of r(τ) corresponding to the range of 300 ms to 1 s are
calculated. To find the estimated tempo T, the lag of the
three largest peaks of r(τ) are analyzed and a multiplicity
relationship between them is searched. In the case that no
relation is found, the lag of the largest peak is taken as the
beat period.

2.3. Beat location

To find the beat location, we use a method based on the
comb filter idea that resembles previous work carried out
by [6, 9, 12]. We create an artificial pulse-train q(t) of
tempo T previously calculated as explained in Section 2.2
and cross-correlate it with p(k). This operation has a low
computational cost, since the correlation is evaluated only
at the indices corresponding to the maxima of p(k). Then,
we call t0 the time index where this cross-correlation is
maximal and we consider it as the starting location of the
beat. For the second and succesive beats in the analysis
window, a beat period T is added to the previous beat

Genre Pieces Percentage

classical 137 28.0 %
jazz 79 16.2 %
latin 37 7.6 %
pop 40 8.2 %
rock 44 9.0 %

reggae 30 6.1 %
soul 24 4.9 %

rap, hip-hop 20 4.1 %
techno 23 4.7 %
other 55 11.2 %
total 489 100 %

Table 1. Genre distribution of the test database.

location, i.e., ti = bti−1 +T c and a corresponding peak in
p(k) is searched within the area ti±∆. If no peak is found,
the beat is placed in its expected position ti. When the last
beat of the window occurs, its location is stored in order
to assure the continuity with the first beat of the new anal-
ysis window. Where the tempo of the new analysis win-
dow differs by more than 10 % from the previous tempo, a
new beat phase is estimated. The peaks are searched using
the new beat period without referencing the previous beat
phase.

3. PERFORMANCE ANALYSIS

3.1. Database, annotation and evaluation protocole

The proposed algorithm was evaluated using a corpus of
489 musical excerpts taken from commercial CD record-
ings. These pieces were selected to cover as many char-
acteristics as possible: various tempi in the 50 to 200
BPM range, a wide variety of instruments, dynamic range,
studio/live recordings, old/recent recordings, with/without
vocals, male/female vocals and with/without percussions.
They were also selected to represent a wide diversity of
musical genres as shown in Table 1.

From each of the selected recordings, an excerpt of 20
seconds having a relatively constant tempo, was extracted
and converted to a monophonic signal sampled at 16 kHz.
The procedure for manually estimating the tempo of each
musical piece is the following:

• the musician listens to a musical excerpt using head-
phones (if required, several times in a row to be ac-
customed to the tempo),

• while listening, he/she taps the tempo,

• the tapping signal is recorded and the tempo is ex-
tracted from it.

As pointed out by Goto in [4], the beat is a perceptual
concept that people feel in music, so it is generally diffi-
cult to define the ”correct beat” in an objective way. Peo-
ple have a tendency to tap at different metric levels. For



Method Recognition
rate

Paulus [10] 56.3 %
Scheirer [12] 67.4 %
SP . 63.2 %
AC . 73.6 %
SP using SEF. 84.0 %
AC using SEF 89.7 %

Table 2. Tempo estimation performances. SEF stands for
spectral energy flux, SP for spectral product and AC for
autocorrelation.

example, in a piece that has a 4/4 time signature, it is cor-
rect to tap every quarter-note or every half-note. In gen-
eral, a ”ground truth” tempo cannot be established unless
the musical score of the piece is available. This is a very
common problem when humans tap along with the mu-
sic, i.e., to tap twice as fast or twice as slow the ”true”
tempo. Whenever this case ocurred during the database
annotation, the slower tempo was taken as reference TR.
In a similar way to humans, automatic tempo estimation
methods also make this doubling or halving of the ”true”
tempo. Thus, for evaluation purposes the tempo estima-
tion T provided by the algorithm is labeled as correct if
there is a less than 5% disagreement from the manually
annotated tempo used as reference TR under the principle
0.95αT < TR < 1.05αT with α ∈ { 1

2 ,1,2}.

3.2. Results

During the evaluation, the algorithm parameters were set
as follows. The length of the analysis window for tempo
estimation was set to four seconds, with an overlapping
factor of 50%. Smaller window size values reduce the
algorithm performance. For the spectral energy flux cal-
culation, the length of the analysis window used in the
computation of the STFT was 64 samples (4 ms) with an
overlapping factor of 50% and a 128 point FFT, thus the
detection function v(k) could be seen as signal sampled at
500 Hz. As mentioned, the order of the differentiator FIR
filter was set to L = 8. In the beat location stage, the me-
dian filter i was set to 25 samples, C was set to 2, and for
the peak location ∆ was set to 10 % of the beat period.

To have a better idea of the performance of our al-
gorithm, we decided to compare it with our own imple-
mententation of the algorithms proposed by Paulus [10]
and Scheirer [12]. We also compared it with our previous
work in tempo estimation [1]. In this case, the main differ-
ence between the previous and the current system lies on
the onset extraction stage. Table 2 summarizes the overall
recognition rate for the evaluated systems. In this table,
SP stands for spectral product, AC for autocorrelation and
SEF for spectral energy flux.

In more details, the performance of these methods by
musical genre are presented in Table 3. In this table, PLS
stands for Paulus, SCR for Scheirer. As expected, results

Method PLS SCR SP AC SP-SEF AC-SEF
Genre % % % % % %

classical 46.0 46.2 48.2 70.8 71.5 82.4
jazz 57.0 70.9 62.0 69.8 78.4 86.0
latin 70.3 81.1 62.1 70.3 91.8 94.5
pop 57.5 70.0 75.0 85.7 92.5 92.5
rock 40.9 84.1 61.3 84.4 81.8 88.6
reggae 76.7 86.7 86.6 76.9 96.6 100
soul 50.0 87.5 70.8 76.7 100 100
rap 75.0 85.0 75.0 56.5 100 100
techno 69.6 56.3 65.2 95.0 95.6 100
other 61.8 69.1 74.5 66.7 89.0 90.9

Table 3. Tempo estimation performances by musical
genre. PLS stands for Paulus [10], SCR for Scheirer [12].

indicate that classical music is the most difficult genre.
Nevertheless, the proposed algorithm displayed promising
results. For the other genres, it shows good performance,
particularly for music with a straightforward rhythm.

Several authors have pointed out the difficulty in eval-
uating beat tracking systems [4, 6, 9] due to the subjective
interpretation of the beat and the inexistence of a consen-
sual data base of beat-labeled audio tracks. In our case,
the beat location evaluation was done at a subjective level,
that is, artificial ”sound clicks” were superimposed on the
tested signal at the calculated beat locations and tempo.

During the validation procedure, we note that the pro-
posed algorithm produces erroneous results under the fol-
lowing circumstances:

• when dealing with signals having a stealthily or long
fading-in attacks, the hypothesis that supurious peaks
are smaller than attack peaks does not hold any more,
leading to false onset detections;

• the spectral energy flux follows the principle that
stable spectra regions are followed by transition re-
gions. When many instruments play simultaneously,
as in an orchestra, their ’spectral mixture’ lacks sta-
ble regions, leading to false onset detections;

• when the tempo varies too quickly in short time seg-
ments or if there are large beat gaps in the signal, the
periocity estimation stage cannot keep up with the
changes.

The reader is welcome to listen to the sound examples
available at www.tsi.enst.fr/∼malonso/ismir04.

4. CONCLUSIONS

In this paper we have presented an efficient beat track-
ing algorithm that processes audio recordings. We have
also defined the concept of spectral energy flux and used
it to derive a new and effective onset detector based on the
STFT, an efficient differentiator filter and dynamic thresh-
olding using a median filter. This onset detector displays
high performance for a large range of audio signals. In
addition, the proposed tempo tracking system is straight-
forward to implement and has a relatively low computa-
tional cost. The performance of the algorithm presented



was evaluated on a large database containing 489 musi-
cal excerpts from several musical genres. The results are
encouraging since the global success rate for tempo es-
timation was 89.7%. The method presented works off-
line. A real-time implementation is considered, but cur-
rently there are various issues to be resolved such as the
block-wise processing that requires access to future sig-
nal samples and the non-causality of the thesholding fil-
ter. Future work should explore other periodicity estima-
tion techniques and an analysis of the residual part after a
harmonic/noise decomposition.
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