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ABSTRACT

Signal representations in overcomplete dictionaries are considered
here as an alternative to the traditional transform representations
for fine-grain scalable audio coding. Such representationspro-
duce sparser decompositions and thus allow better coding effi-
ciency than transform coding at very low bitrates. Moreover, the
decomposition algorithms are intrinsically progressive,and flexi-
ble enough to allow an efficient transient modeling. We propose in
this paper a fine-grain scalable audio coder which works on a large
range of bitrates (2kbs to 128kbs). Objective measures as well as
informal subjective evaluation show that this coder outperforms a
comparable transform-based coder at very low bitrates.

1. INTRODUCTION

Depending on the target bitrate and/or quality, standard state-of-
the-art audio coding (e.g. MPEG-4 [1]) is based on either trans-
form coding (e.g. MPEG-4 AAC, MPEG-4 Twin-VQ) or paramet-
ric coding (e.g. MPEG-4 HILN, MPEG-4 SSC). Transform coding
offers good to transparent quality for average-to-high bitrates, but
its quality degrades quickly at lower bitrates; on the otherhand
parametric coders perform well at very low bitrates but their qual-
ity reaches a ceiling at increasing bitrates. The goal of this paper
is to explore new signal representation strategies that perform bet-
ter than the standard transform-based coders at very low bitrates,
but that can reach arbitrary precision. Some recent hybrid algo-
rithms combine parametric and transform coding [2, 3], but they
are based on two different approaches. Using a single (and con-
ceptually simple) paradigm on the whole range of bitrates isnot
only appealing from a theoretical point of view, it is also useful
for seamless progressive transmission of information, a concept
referred to as scalable compression.

The current algorithms for scalable compression are mostly
inspired from the image coding world, for instance SPIHT [4].
These image coders are commonly used in web browsing: as the
number of received bits increases, the images are progressively
displayed with more and more details. In audio, a similar task is
to stream the same audio content to several users with different
and/or varying bandwidth possibilities. With standard fixed bitrate
audio coding, the server has to store a number of bitstreams cor-
responding to different compression ratios, and for a givenuser
select the one corresponding to its bandwidth with a conservative
approach. In the case of fine-grain scalable coding, a uniquebit-
stream at maximum resolution is stored; users with less bandwidth

need just truncate every time frame, and still receive the file with
the best quality given their bandwidth. Most existing fine grain
scalable audio coders (e.g. BSAC [5], PSPIHT [6], SCALA [7])
are transform-based : the signal is decomposed in an orthogonal
basis of time-frequency functions (e.g. MDCT) and the resulting
coefficients are quantized and coded. These coders are knownto
give good results at high bitrates but introduce severe artifacts at
low bitrates.

In this paper, we show that by using overcomplete waveform
dictionaries, i.e. representation spaces with a dimensionmuch
higher than the signal space, it is possible to extend the range of
possible bitrates of fine-grain scalable audio coding in thelower
end. Moreover, the decomposition algorithms associated with these
overcomplete sets are intrinsically progressive, meaningthat the
most salient information is extracted first : this scheme is therefore
naturally scalable. The advantages of an overcomplete approach
over the transform approach are the following: a much sparser de-
composition i.e. the energy is concentrated on fewer coefficients
and thus there are less coefficients to code; a multi-resolution de-
composition which allows the modeling of simultaneous compo-
nents which can have different time-frequency optimal tradeoffs; a
flexible decomposition algorithm which allows modifications such
as an efficient pre-echo control. However, one has to find efficient
encoding strategies so that the gain of concentrating the energy in
less coefficients is not offset by the cost of coding the extraset of
atom’s parameters. Also, a drawback of using overcomplete rep-
resentations is a significant increase in the computationalcost.

The remainder of this paper is as follows. In section 2, we
describe the signal decomposition algorithm; in section 3,we de-
scribe the bitplane coding which is used to quantize and codethe
coefficients of the decomposition; in section 4, we present the re-
sults; and finally section 5 is devoted to conclusions.

2. SIGNAL DECOMPOSITION

A signalf ∈ ℜN is decomposed as a weighted sum of functions
gγ ∈ ℜN which form the set of functionsD = {gγ , γ ∈ Γ},
called the dictionary.

f =
X

γ∈Γ

αγgγ (1)
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2.1. The transform approach: the time-varying MDCT

In the vast majority of state-of-the-art transform coders,the Mod-
ified Discrete Cosine transform (MDCT) is used [8]. In this case,
D has the same dimension as the signal and the functionsgγ form
an orthogonal basis ofℜN , the decomposition is then unique. The
functionsgγ ∈ ℜN corresponding to the MDCT transform with a
window w of size2L are of the form:

gk,p(n) = w(n−pL) cos
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Usually, a block switching approach is used where two window
sizes (e.g.2048 and256) and four window shapes (long, short,
startlong, stoplong) are adaptively chosen depending on an energy
or perceptual entropy criteria. Using only two windows could be
considered as too rigid and other approaches (e.g. [9]) investigate
the use of more than two window sizes using a time segmentation
algorithm. However, these methods still remain constrained to a
fixed resolution in a given time segment. This is not optimal for
sound signals containing simultaneous components localized both
in time and frequency. For instance, drums on top of long sustained
notes would force a time segmentation algorithm to break up the
long notes into smaller pieces.

2.2. The overcomplete approach: Matching Pursuit with a union
of MDCT bases

We propose an approach whereD is a union of MDCT bases
with different window sizes. In this case, the dimension ofD is
greater than the dimension of the signal, and the decomposition is
not unique anymore. Hence, it is possible to choose an optimal
or nearly-optimal decomposition with respect to some pre-defined
criteria. Several algorithms with different complexitieshave been
proposed in the literature to find such decompositions [10, 11]; we
use in our case the Matching Pursuit algorithm [10], which isa
fast sub-optimal iterative algorithm. At each iteration, Matching
Pursuit chooses the function inD most correlated with the signal,
subtracts it, and iterates until some stopping condition ismet (see
Algorithm 1).

Algorithm 1 Standard Matching Pursuit

input: f ; D = {gγ , γ ∈ Γ}
output: αγ

R0f = f
n = 0
αγ = 0, ∀γ ∈ Γ
repeat

γopt = argmaxγ∈Γ
|< Rnf, gγ >|

c =< Rnf, gγopt >

Rn+1f = Rnf − c.gγopt

αγopt = αγopt + c
n = n + 1

until a condition is met (on SNR or number of iterations)

Matching Pursuit with a union of MDCT bases invariably in-
troduces pre-echo when decomposing signals containing transients.
This problem is illustrated in Fig. 1. An extract of a glocken-
spiel signal is decomposed with Matching Pursuit and a unionof 4
MDCT bases (window sizes2048, 1024, 512, 256 samples). The
second subplot shows the residual at iteration10. The function
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Figure 1:Illustration of the pre-echo artifact

which is best correlated with this residual is in the third subplot.
The correlation of the un-windowed function with the original sig-
nal on subframes of size256 (fourth subplot shows the log of the
absolute value) shows that the beginning of the function is not cor-
related with the signal. This has as a consequence the creation of
unwanted energy just before the transient, which appears inthe
residual at iteration11 in the fifth subplot.

Algorithm 2 Matching Pursuit with pre-echo control

input: f ; D = {gγ , γ ∈ Γ} ; thresh
output: αγ

R0f = f
n = 0
αγ = 0,∀γ ∈ Γ
Mmin is the shortest window size
repeat

loop
γopt = argmaxγ∈Γ |< Rn, gγ >|

M = max
`

gγoptwindow size/8, Mmin

´

Sif = i−th M-length subframe off
Sigγopt = i−th M-length subframe of un-windowedgγopt

di =
˛

˛< Sif, Sigγopt >
˛

˛

if maxi(di) >= thresh ∗ mini(di) then
Γ = Γ \ {γopt}

else
exit loop

end if
end loop
c =< Rn, gγopt >

Rn+1x = Rnx − c.gγopt

αγopt = αγopt + c
n = n + 1

until a condition is met

Gribonval pointed out this problem in [12] with Matching Pur-
suit and a Gabor dictionary. He proposed a modified Matching
Pursuit algorithm which removes the pre-echo artifact. However,
this algorithm was designed for a complex Gabor dictionary and
is not adapted for a union of real MDCT bases. Moreover, this
modified Matching Pursuit significantly increases the computa-
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tional cost. Alternatively, we propose a simple modification of
the Matching Pursuit algorithm which reduces pre-echo artifacts.
At each iteration, the function inD most correlated with the sig-
nal is chosen. Then the correlation of the un-windowed function
with the original signal is computed on subframes of sizeM (as
in Fig. 1). If the max of the correlations divided by the min of
the correlations is superior to a threshold then the function is not
selected and removed from the dictionary, otherwise the function
is kept and subtracted from the residual (see Algorithm 2).

3. CODING

3.1. Coefficients grouping and interleaving

As the signalf is decomposed as a whole and the coding stage is
performed frame-by-frame, the coefficientsαγ must be grouped
and interleaved. First, the coefficients are grouped in frames (i.e.
time segments) of lengthMmax/2 whereMmax is the maximum
window size. Then, in each frame, the coefficients are grouped and
interleaved such that the coefficients which are close in frequency
and scale are put together. For each frame, we obtain a vectorof
coefficients whose length is equal to the frame length multiplied
by the dimension ofD. Finally, these vectors of coefficients are
encoded independently.

3.2. Bitplane encoding

To achieve fine-grain scalability, the coefficients have to be quan-
tized and coded in an embedded manner. Bitplane encoding is an
efficient technique which produces an embedded bitstream. The
coefficients are represented in sign-magnitude form as in Fig. 2;
each column corresponds to the sign and the binary representation
of the magnitude of a coefficient, and each row corresponds toa
bitplane. The most significant bits of all magnitude coefficients
are transmitted first, then the next most significant bits, down to
the least significant bits. In this approach, the most significant co-
efficients are transmitted first and then successively refined. It is
the opposite of the non-embedded approach where all bits of the
first coefficient are transmitted first, then all bits of the next coeffi-
cients, until the last coefficient.

c0 c1 c2 c3 c4 c5

-1 5 14 -3 -12 -1

Sign 0 1 1 0 0 0
B.P. 3 0 0 1 0 1 0
B.P. 2 0 1 1 0 1 0
B.P. 1 0 0 1 1 0 0
B.P. 0 1 1 0 1 0 1

Figure 2:Bitplanes

The encoding of a bitplane is performed in two steps.1) Signifi-
cance map and sign encoding:the index and sign of the newly
significant coefficients (i.e. whose most significant bit belong to
the bitplane) are encoded.2) Refinement pass:the already signif-
icant coefficients are refined, the bits in the bitplane corresponding
to these coefficients are encoded. While the refinement pass is
straightforward and is generally the same in all algorithms, the
significance map encoding can be achieved in several different
manners. In audio coding, several approaches have been exper-
imented : arithmetic coding based [5], tree based [6], runlength

encoding based [7]. We use the approach of [7], based on an adap-
tive runlength encoding algorithm which appears to performwell
on sparse significance maps.

4. EVALUATION

Our coder is evaluated in comparison with a reference transform-
based coder. The goal of this paper is to compare different signal
decomposition strategies; consequently, the quantization/coding
part is kept simple and no psychoacoustic model is used, thiswill
be investigated in future works.

In our coder,D is a union of8 MDCT bases whose windows
are cosine-based with the following sizes:16384, 8192, 4096,
2048, 1024, 512, 256, 128; the parameter of the pre-echo con-
trol thresh is set to100. The reference coder is very close to the
one in [7], it is based on a time-varying MDCT with two window
sizes (2048 and256), a block-switching module based on an en-
ergy criteria and the same bitplane encoding algorithm.

We use the PEMO-Q [13] software as an objective measure
to evaluate and compare the coders. First, the transform-based
coder and our coder are compared on signals containing no strong
transients. Then the algorithm with pre-echo control presented in
2.2 is evaluated on a signal containing transients.
Signals containing no strong transients.For such signals, the
reference coder uses only long windows; and Matching Pursuit
with or without pre-echo control gives similar results. We compare
the transform-based reference coder and our coder on 4s extract
of 5 signals from the SQAM database : bagpipe, horn, orchestra,
trumpet, violin, all sampled at 44.1 kHz. The mean of the Per-
ceptual Similarity Measure (PSM) and the mean of the Objective
Difference Grade (ODG) obtained with PEMO-Q are given in Fig.
3. At low bitrates, our coder produces less non-zero coefficients
than the transform-based coder and thus it is cheaper to obtain the
same quality; while at high bitrates, a lot of non-zeros coefficients
have to be encoded and it is more costly to code the indexes in
our coder. Consequently the reference coder gives a slightly better
PSM / ODG at high bitrates, but is outperformed significantlyby
our coder at low bitrates.
Glockenspiel signal and pre-echo control.A 4s extract of the
glockenspiel signal from the SQAM database is coded using 3
coders: the reference transform-based coder, the matching-pursuit
based coder without pre-echo control, the matching-pursuit based
coder with pre-echo control. The reference coder uses shortwin-
dows for the transients, i.e. the onsets of the glockenspielsignal.
This reduces pre-echo but also introduces other artifacts:at low
bitrates, the bit budget is spent to model the attack but the station-
ary part of the last note is lost as it needs a lot of bits to model
a sin-like component with short windows. This is not the case
for our coder, since two types of functions are superimposedin
time: long windows to model the stationary part of the last note
and short windows to model the attack of the current note. The
Perceptual Similarity measure and the Objective Difference Grade
obtained with PEMO-Q are given in Fig. 4. This results shows
that our coder outperforms the reference coder on the whole range
of considered bitrates; moreover, the results are improvedwith the
pre-echo control modification of the Matching Pursuit algorithm.

Informal listening tests confirm the results obtained with the
objective measure. Some audio files are available at the following
address: http://www.lam.jussieu.fr/src/Membres/Ravelli/waspaa07/.
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Figure 3:Mean of Perceptual Similarity Measure and mean of Ob-
jective Difference Grade for 4 seconds extract of 5 SQAM signals

5. CONCLUSION

This paper deals with signal representations in overcomplete sets
and their application to audio coding. We have showed that these
kinds of signal representations outperform the standard transform
approach for fine-grain scalable audio coding at very low bitrates.
It was shown that artifacts often encountered at low bitrates by
transform-based coders such as birdies and transient deterioration
are significantly reduced when using the overcomplete approach.
The main limitation of our technique is its computational cost, as
most efficient Matching Pursuit implementations require typically
one hour for a 30 s musical piece on a current desktop computer,
decomposing up to transparency. Note that the bitplane coding
part is in comparison extremely fast (much faster than real time),
as are decoding and the inverse transform.

Since the goal of this paper is to experiment with different
transform strategies, we have adhered to simple (although effi-
cient) quantization and coding schemes. As such, the coder pre-
sented in this paper is not yet competitive to state-of-the art para-
metric / transform coders as it does not incorporate any psychoa-
coustic masking model. This will be the goal of further research.
However, it shows the potential of signal representations in over-
complete sets and its potential for scalable audio coding.
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