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ABSTRACT

Signal representations in overcomplete dictionaries ansidered
here as an alternative to the traditional transform rejtasiens
for fine-grain scalable audio coding. Such representatmos
duce sparser decompositions and thus allow better codiitg ef
ciency than transform coding at very low bitrates. Morepties
decomposition algorithms are intrinsically progressived flexi-
ble enough to allow an efficient transient modeling. We ps&pa
this paper a fine-grain scalable audio coder which works angge|
range of bitrates (2kbs to 128kbs). Objective measures Hase
informal subjective evaluation show that this coder outpens a
comparable transform-based coder at very low bitrates.

1. INTRODUCTION

Depending on the target bitrate and/or quality, standaatb«if-
the-art audio coding (e.g. MPEG-4 [1]) is based on eitharsta
form coding (e.g. MPEG-4 AAC, MPEG-4 Twin-VQ) or paramet-
ric coding (e.g. MPEG-4 HILN, MPEG-4 SSC). Transform coding
offers good to transparent quality for average-to-highabés, but
its quality degrades quickly at lower bitrates; on the othand
parametric coders perform well at very low bitrates butrtheil-

ity reaches a ceiling at increasing bitrates. The goal &f plaiper

is to explore new signal representation strategies thabpebet-
ter than the standard transform-based coders at very |oatdst
but that can reach arbitrary precision. Some recent hylgod-a
rithms combine parametric and transform coding [2, 3], beft
are based on two different approaches. Using a single (amd co
ceptually simple) paradigm on the whole range of bitratesois
only appealing from a theoretical point of view, it is alsaefid
for seamless progressive transmission of information, recept
referred to as scalable compression.

The current algorithms for scalable compression are mostly

inspired from the image coding world, for instance SPIHT. [4]

These image coders are commonly used in web browsing: as the

number of received bits increases, the images are progebssi
displayed with more and more details. In audio, a similak ias
to stream the same audio content to several users with efiffer
and/or varying bandwidth possibilities. With standard dixetrate
audio coding, the server has to store a number of bitstreams c
responding to different compression ratios, and for a giveer
select the one corresponding to its bandwidth with a coasies/
approach. In the case of fine-grain scalable coding, a urbgue
stream at maximum resolution is stored; users with lessuoiaitial
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need just truncate every time frame, and still receive tleavfith
the best quality given their bandwidth. Most existing finaigr
scalable audio coders (e.g. BSAC [5], PSPIHT [6], SCALA [7])
are transform-based : the signal is decomposed in an ontlabgo
basis of time-frequency functions (e.g. MDCT) and the résgl
coefficients are quantized and coded. These coders are kimown
give good results at high bitrates but introduce severéaats at
low bitrates.

In this paper, we show that by using overcomplete waveform
dictionaries, i.e. representation spaces with a dimensiach
higher than the signal space, it is possible to extend thgeran
possible bitrates of fine-grain scalable audio coding inltmeer
end. Moreover, the decomposition algorithms associatdudtihese
overcomplete sets are intrinsically progressive, meattiag the
most salient information is extracted first : this schembésefore
naturally scalable. The advantages of an overcompleteoappr
over the transform approach are the following: a much spaese
composition i.e. the energy is concentrated on fewer caeffiis
and thus there are less coefficients to code; a multi-raealdie-
composition which allows the modeling of simultaneous comp
nents which can have different time-frequency optimaleits; a
flexible decomposition algorithm which allows modificatosuch
as an efficient pre-echo control. However, one has to findefiic
encoding strategies so that the gain of concentrating teeggrin
less coefficients is not offset by the cost of coding the esétzof
atom’s parameters. Also, a drawback of using overcompkgte r
resentations is a significant increase in the computaticostl

The remainder of this paper is as follows. In section 2, we
describe the signal decomposition algorithm; in sectiow8de-
scribe the bitplane coding which is used to quantize and togle
coefficients of the decomposition; in section 4, we preseaté-
sults; and finally section 5 is devoted to conclusions.

2. SIGNAL DECOMPOSITION

Asignal f € R is decomposed as a weighted sum of functions
g € RV which form the set of function® = {g,,v € T'},
called the dictionary.
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2.1. The transform approach: the time-varying MDCT

In the vast majority of state-of-the-art transform codéns, Mod-
ified Discrete Cosine transform (MDCT) is used [8]. In thisea
D has the same dimension as the signal and the funcgipfrsrm

an orthogonal basis @t", the decomposition is then unique. The
functionsg, € RV corresponding to the MDCT transform with a
window w of size2L are of the form:

gep(n) = w(n—pL) cosE <n—pL + #) (k + %)] @)

Usually, a block switching approach is used where two window
sizes (e.g.2048 and 256) and four window shapedang, short
startlong stoplong are adaptively chosen depending on an energy
or perceptual entropy criteria. Using only two windows ebhk
considered as too rigid and other approaches (e.g. [9]sligae
the use of more than two window sizes using a time segmentatio
algorithm. However, these methods still remain constihitoea
fixed resolution in a given time segment. This is not optineal f
sound signals containing simultaneous components l@chbibth
intime and frequency. For instance, drums on top of longesist
notes would force a time segmentation algorithm to breakhep t
long notes into smaller pieces.

2.2. The overcomplete approach: Matching Pursuit with a unon
of MDCT bases

We propose an approach wheFeis a union of MDCT bases
with different window sizes. In this case, the dimensiorlbfs
greater than the dimension of the signal, and the deconiqogst
not unique anymore. Hence, it is possible to choose an optima
or nearly-optimal decomposition with respect to some ined
criteria. Several algorithms with different complexitiezve been
proposed in the literature to find such decompositions [1],We
use in our case the Matching Pursuit algorithm [10], whicla is
fast sub-optimal iterative algorithm. At each iterationatghing
Pursuit chooses the function 1 most correlated with the signal,
subtracts it, and iterates until some stopping conditianés$ (see
Algorithm 1).

Algorithm 1 Standard Matching Pursuit
input: f;D = {gy,7 €T}
output: -
ROf — f
n=20
ay=0,Vyel
repeat
Yopt = argmax .- |< R"f, g4 >|
c=< Rnfv g’Yopt >
Rn+lf = Rnf — C.-Gopt
aWopI = aWopI + c
n=n+1
until a condition is met (on SNR or number of iterations)

Matching Pursuit with a union of MDCT bases invariably in-
troduces pre-echo when decomposing signals containingiénats.
This problem is illustrated in Fig. 1. An extract of a glocken
spiel signal is decomposed with Matching Pursuit and a uafe@h
MDCT bases (window size®)48, 1024, 512, 256 samples). The
second subplot shows the residual at iteration The function
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Figure 1:lllustration of the pre-echo artifact

which is best correlated with this residual is in the thir¢sot.
The correlation of the un-windowed function with the origlisig-
nal on subframes of siz&56 (fourth subplot shows the log of the
absolute value) shows that the beginning of the functiomisar-
related with the signal. This has as a consequence theamegzti
unwanted energy just before the transient, which appeatisein
residual at iterationi 1 in the fifth subplot.

Algorithm 2 Matching Pursuit with pre-echo control
input: f;D ={gy,y €T} ;thresh
output:
Rf=f
n=20
oy =0,Vyel
Mnin is the shortest window size
repeat
loop
Yopt = argmax . [< R", gy >|
M = max (g uWindow size/8, Mmin)
St f = i—th M-length subframe of
5" grom = i—th M-length subframe of un-windoweg,,,,
d; = {< S f, 5" Gropt >]
if max;(d;) >= thresh = min;(d;) then
I'=T\ {vopt}
else
exit loop
end if
end loop
c=< Rn7g’Yopt >
R" "'z = R"x — c.gyo
aWopI = O"‘/opt +c
n=n+1
until a condition is met

Gribonval pointed out this problem in [12] with Matching Pur
suit and a Gabor dictionary. He proposed a modified Matching
Pursuit algorithm which removes the pre-echo artifact. e\,
this algorithm was designed for a complex Gabor dictionany a
is not adapted for a union of real MDCT bases. Moreover, this
modified Matching Pursuit significantly increases the corapu
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tional cost. Alternatively, we propose a simple modificatiof
the Matching Pursuit algorithm which reduces pre-echdeants.
At each iteration, the function if® most correlated with the sig-
nal is chosen. Then the correlation of the un-windowed fonct
with the original signal is computed on subframes of diZgas

in Fig. 1). If the max of the correlations divided by the min of
the correlations is superior to a threshold then the fundsmot
selected and removed from the dictionary, otherwise thetfom

is kept and subtracted from the residual (see Algorithm 2).

3. CODING

3.1. Coefficients grouping and interleaving
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encoding based [7]. We use the approach of [7], based on @A ada
tive runlength encoding algorithm which appears to perforeti
on sparse significance maps.

4. EVALUATION

Our coder is evaluated in comparison with a reference toamsf
based coder. The goal of this paper is to compare differgngsi
decomposition strategies; consequently, the quantizatoling
part is kept simple and no psychoacoustic model is usedwiHis
be investigated in future works.

In our coder,D is a union of8 MDCT bases whose windows

As the signalf is decomposed as a whole and the coding stage isare cosine-based with the following size¥6384, 8192, 4096,

performed frame-by-frame, the coefficients must be grouped
and interleaved. First, the coefficients are grouped in ézfne.
time segments) of length ;. /2 where Mq. is the maximum
window size. Then, in each frame, the coefficients are grdapel
interleaved such that the coefficients which are close iqueacy
and scale are put together. For each frame, we obtain a vafctor
coefficients whose length is equal to the frame length nlidtip
by the dimension of>. Finally, these vectors of coefficients are
encoded independently.

3.2. Bitplane encoding

To achieve fine-grain scalability, the coefficients havedaban-
tized and coded in an embedded manner. Bitplane encoding is a
efficient technique which produces an embedded bitstreane. T
coefficients are represented in sign-magnitude form asgn Ej
each column corresponds to the sign and the binary repeggant
of the magnitude of a coefficient, and each row corresponds to
bitplane. The most significant bits of all magnitude coedfits
are transmitted first, then the next most significant bitsyrdeo
the least significant bits. In this approach, the most sicgnifi co-
efficients are transmitted first and then successively rfitieis
the opposite of the non-embedded approach where all bitseof t
first coefficient are transmitted first, then all bits of theteoeffi-
cients, until the last coefficient.

Co C1 C2 Cc3 Cq Cs

-1 5 14 -3 -12 -1
Sign | O 1 1 0 0 0
B.P.3| 0O 0 1 0 1 0
B.P.2| O 1 1 0 1 0
B.P.1| O 0 1 1 0 0
B.P.O| 1 1 0 1 0 1

Figure 2:Bitplanes

The encoding of a bitplane is performed in two stepps Signifi-
cance map and sign encoding:the index and sign of the newly
significant coefficients (i.e. whose most significant bitdogj to

the bitplane) are encoded) Refinement passthe already signif-
icant coefficients are refined, the bits in the bitplane cpoading

to these coefficients are encoded. While the refinement gass i
straightforward and is generally the same in all algoriththe
significance map encoding can be achieved in several differe

2048, 1024, 512, 256, 128; the parameter of the pre-echo con-
trol thresh is set to100. The reference coder is very close to the
one in [7], it is based on a time-varying MDCT with two window
sizes 048 and256), a block-switching module based on an en-
ergy criteria and the same bitplane encoding algorithm.

We use the PEMO-Q [13] software as an objective measure
to evaluate and compare the coders. First, the transfoseeba
coder and our coder are compared on signals containing orgstr
transients. Then the algorithm with pre-echo control prgestin
2.2 is evaluated on a signal containing transients.

Signals containing no strong transients. For such signals, the
reference coder uses only long windows; and Matching Pursui
with or without pre-echo control gives similar results. Vdepare
the transform-based reference coder and our coder on 4scextr
of 5 signals from the SQAM database : bagpipe, horn, orcaestr
trumpet, violin, all sampled at 44.1 kHz. The mean of the Per-
ceptual Similarity Measure (PSM) and the mean of the Ohjecti
Difference Grade (ODG) obtained with PEMO-Q are given in Fig
3. At low bitrates, our coder produces less non-zero coefftsi
than the transform-based coder and thus it is cheaper tondh&a
same quality; while at high bitrates, a lot of non-zeros ficehts
have to be encoded and it is more costly to code the indexes in
our coder. Consequently the reference coder gives a sligatter
PSM / ODG at high bitrates, but is outperformed significabtly
our coder at low bitrates.

Glockenspiel signal and pre-echo control.A 4s extract of the
glockenspiel signal from the SQAM database is coded using 3
coders: the reference transform-based coder, the matphirsylit
based coder without pre-echo control, the matching-ptibasged
coder with pre-echo control. The reference coder uses shioft
dows for the transients, i.e. the onsets of the glockensjgelal.
This reduces pre-echo but also introduces other artifattéow
bitrates, the bit budget is spent to model the attack buttttes-

ary part of the last note is lost as it needs a lot of bits to rhode
a sin-like component with short windows. This is not the case
for our coder, since two types of functions are superimpased
time: long windows to model the stationary part of the lageno
and short windows to model the attack of the current note. The
Perceptual Similarity measure and the Objective Diffeee@Gcade
obtained with PEMO-Q are given in Fig. 4. This results shows
that our coder outperforms the reference coder on the whalger

of considered bitrates; moreover, the results are improxttdthe
pre-echo control modification of the Matching Pursuit aiton.

Informal listening tests confirm the results obtained with t

manners. In audio coding, several approaches have been expe objective measure. Some audio files are available at thenfiy

imented : arithmetic coding based [5], tree based [6], mgile

address: http://www.lam.jussieu.fr/src/Membres/Ridvedspaa07/.
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Figure 3:Mean of Perceptual Similarity Measure and mean of Ob-
jective Difference Grade for 4 seconds extract of 5 SQAMad&ggn

5. CONCLUSION

This paper deals with signal representations in overcoaglets
and their application to audio coding. We have showed thexteth
kinds of signal representations outperform the standartsform
approach for fine-grain scalable audio coding at very lonates.
It was shown that artifacts often encountered at low bigrdte
transform-based coders such as birdies and transientataten
are significantly reduced when using the overcomplete ambr.o
The main limitation of our technique is its computationasttas
most efficient Matching Pursuit implementations requingdslly
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Figure 4:Perceptual Similarity Measure and Objective Difference
Grade for a 4 seconds extract of the glockenspiel signal

[4] A. Said and W. A. Pearlman, “A new fast and efficientimage
codec based on set partitioning in hierarchical treHsEZE
Trans. Circuits Systems Video Tedwol. 6, no. 3, pp. 243—
250, Jun. 1996.

[5] S.-H. Park, Y.-B. Kim, and Y.-S. Seo, “Multi-layer bitised
bit rate scalable audio coding,” Proc. of the 103rd Conven-
tion of the Audio Engineering Society997, preprint 4520.

M. Raad, A. Mertins, and I. Burnett, “Scalable to lossles-
dio compression based on perceptual set partitioning in hie
archical trees (PSPIHT),”iRroc. IEEE Int. Conf. Acoustics,
Speech, Signal Procvol. 5, May 2003, pp. 624—627.

(6]

one hour for a 30 s musical piece on a current desktop computer [7] C. Dunn, “Scalable bitplane runlength coding,” Rroc.

decomposing up to transparency. Note that the bitplanengodi
part is in comparison extremely fast (much faster than igs);
as are decoding and the inverse transform.

Since the goal of this paper is to experiment with different
transform strategies, we have adhered to simple (althotfgh e
cient) quantization and coding schemes. As such, the cader p
sented in this paper is not yet competitive to state-of-thpara-
metric / transform coders as it does not incorporate anyhas/c
coustic masking model. This will be the goal of further resha
However, it shows the potential of signal representationsvier-
complete sets and its potential for scalable audio coding.
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