
Blockchains and large-scale
distributed systems
Petr Kuznetsov
Télécom Paris
IP Paris

Journées Partenaires Entreprises Télécom
Paris – 20-21 juin 2019

Chronology
1982 Byzantine
Generals
1990 Paxos
1992 “ProofOfWork”
1999 PBFT
1995 Hashcash
2002 Sybil attack
2009 Bitcoin
…
[Narayanan, CACM, Dec 2017]

Distributed ledger
Shared data structure: linear record of
(blocks of) transactions
§ Append-only
§ Backtrack verifiable
§ Consistent: total order

Open environment:
§ No static membership
§ No identities (public

keys)

Sybil-resistant consistency?

§ Sybil attack: the adversary can own an
arbitrarily large fraction of participants
ü Why don’t good guys do the same? J

§ Classical (BFT) protocols don’t work
üBounds on faulty fraction (e.g., <1/3)

§ Bitcoin:
ü Assume a synchronous system
ü Message delays are bounded by ±
ü Need to “slow down” updates (wrt ±)
ü Solve a puzzle before updating (PoW)

(Bitcoin) blockchain
§ Clients broadcast an

update
§ Dedicated clients

(miners) collect
updates solve puzzles,
update and broadcast
their local ledgers

§ Clients always choose
the longest (verifiable)
ledger

§ Old enough blocks are
considered consistent

?

Committed prefix

When it works

§ Expected time to solve the puzzle >> ±
§ The adversary does not possess most

of computing power

The probability of a fork drops
exponentially with the staleness of blocks

When it does not work
§ Asynchronous/eventually

synchronous
communication

§ An adversary controls half
of computing resources

§ Even a small probability of
error cannot be tolerated

§ Energy consumption and
throughput is an issue

When it is not needed

26/06/2019

§ No Sybil attacks
ü Participation under control

§ No need for total order
ü Some form of causality is enough?

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online

payments to be sent directly from one party to another without going through a

financial institution. Digital signatures provide part of the solution, but the main

benefits are lost if a trusted third party is still required to prevent double-spending.

We propose a solution to the double-spending problem using a peer-to-peer network.

The network timestamps transactions by hashing them into an ongoing chain of

hash-based proof-of-work, forming a record that cannot be changed without redoing

the proof-of-work. The longest chain not only serves as proof of the sequence of

events witnessed, but proof that it came from the largest pool of CPU power. As

long as a majority of CPU power is controlled by nodes that are not cooperating to

attack the network, they'll generate the longest chain and outpace attackers. The

network itself requires minimal structure. Messages are broadcast on a best effort

basis, and nodes can leave and rejoin the network at will, accepting the longest

proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as

trusted third parties to process electronic payments. While the system works well enough for

most transactions, it still suffers from the inherent weaknesses of the trust based model.

Completely non-reversible transactions are not really possible, since financial institutions cannot

avoid mediating disputes. The cost of mediation increases transaction costs, limiting the

minimum practical transaction size and cutting off the possibility for small casual transactions,

and there is a broader cost in the loss of ability to make non-reversible payments for non-

reversible services. With the possibility of reversal, the need for trust spreads. Merchants must

be wary of their customers, hassling them for more information than they would otherwise need.

A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties

can be avoided in person by using physical currency, but no mechanism exists to make payments

over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,

allowing any two willing parties to transact directly with each other without the need for a trusted

third party. Transactions that are computationally impractical to reverse would protect sellers

from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In

this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed

timestamp server to generate computational proof of the chronological order of transactions. The

system is secure as long as honest nodes collectively control more CPU power than any

cooperating group of attacker nodes.

1

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online

payments to be sent directly from one party to another without going through a

financial institution. Digital signatures provide part of the solution, but the main

benefits are lost if a trusted third party is still required to prevent double-spending.

We propose a solution to the double-spending problem using a peer-to-peer network.

The network timestamps transactions by hashing them into an ongoing chain of

hash-based proof-of-work, forming a record that cannot be changed without redoing

the proof-of-work. The longest chain not only serves as proof of the sequence of

events witnessed, but proof that it came from the largest pool of CPU power. As

long as a majority of CPU power is controlled by nodes that are not cooperating to

attack the network, they'll generate the longest chain and outpace attackers. The

network itself requires minimal structure. Messages are broadcast on a best effort

basis, and nodes can leave and rejoin the network at will, accepting the longest

proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as

trusted third parties to process electronic payments. While the system works well enough for

most transactions, it still suffers from the inherent weaknesses of the trust based model.

Completely non-reversible transactions are not really possible, since financial institutions cannot

avoid mediating disputes. The cost of mediation increases transaction costs, limiting the

minimum practical transaction size and cutting off the possibility for small casual transactions,

and there is a broader cost in the loss of ability to make non-reversible payments for non-

reversible services. With the possibility of reversal, the need for trust spreads. Merchants must

be wary of their customers, hassling them for more information than they would otherwise need.

A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties

can be avoided in person by using physical currency, but no mechanism exists to make payments

over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,

allowing any two willing parties to transact directly with each other without the need for a trusted

third party. Transactions that are computationally impractical to reverse would protect sellers

from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In

this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed

timestamp server to generate computational proof of the chronological order of transactions. The

system is secure as long as honest nodes collectively control more CPU power than any

cooperating group of attacker nodes.

1

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the

next by digitally signing a hash of the previous transaction and the public key of the next owner

and adding these to the end of the coin. A payee can verify the signatures to verify the chain of

ownership.

The problem of course is the payee can't verify that one of the owners did not double-spend

the coin. A common solution is to introduce a trusted central authority, or mint, that checks every

transaction for double spending. After each transaction, the coin must be returned to the mint to

issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent.

The problem with this solution is that the fate of the entire money system depends on the

company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so we don't care

about later attempts to double-spend. The only way to confirm the absence of a transaction is to

be aware of all transactions. In the mint based model, the mint was aware of all transactions and

decided which arrived first. To accomplish this without a trusted party, transactions must be

publicly announced [1], and we need a system for participants to agree on a single history of the

order in which they were received. The payee needs proof that at the time of each transaction, the

majority of nodes agreed it was the first received.

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a

hash of a block of items to be timestamped and widely publishing the hash, such as in a

newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the

time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in

its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

2

Block

Item Item ...

Hash

Block

Item Item ...

Hash

Transaction

Owner 1's
Public Key

Owner 0's
Signature

Hash

Transaction

Owner 2's
Public Key

Owner 1's
Signature

Hash

 Verify

Transaction

Owner 3's
Public Key

Owner 2's
Signature

Hash

 Verify

Owner 2's
Private Key

Owner 1's
Private Key

Sign

Sign

Owner 3's
Private Key

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the

next by digitally signing a hash of the previous transaction and the public key of the next owner

and adding these to the end of the coin. A payee can verify the signatures to verify the chain of

ownership.

The problem of course is the payee can't verify that one of the owners did not double-spend

the coin. A common solution is to introduce a trusted central authority, or mint, that checks every

transaction for double spending. After each transaction, the coin must be returned to the mint to

issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent.

The problem with this solution is that the fate of the entire money system depends on the

company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so we don't care

about later attempts to double-spend. The only way to confirm the absence of a transaction is to

be aware of all transactions. In the mint based model, the mint was aware of all transactions and

decided which arrived first. To accomplish this without a trusted party, transactions must be

publicly announced [1], and we need a system for participants to agree on a single history of the

order in which they were received. The payee needs proof that at the time of each transaction, the

majority of nodes agreed it was the first received.

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a

hash of a block of items to be timestamped and widely publishing the hash, such as in a

newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the

time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in

its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

2

Block

Item Item ...

Hash

Block

Item Item ...

Hash

Transaction

Owner 1's
Public Key

Owner 0's
Signature

Hash

Transaction

Owner 2's
Public Key

Owner 1's
Signature

Hash

 Verify

Transaction

Owner 3's
Public Key

Owner 2's
Signature

Hash

 Verify

Owner 2's
Private Key

Owner 1's
Private Key

Sig
n

Sign

Owner 3's
Private Key

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the

next by digitally signing a hash of the previous transaction and the public key of the next owner

and adding these to the end of the coin. A payee can verify the signatures to verify the chain of

ownership.

The problem of course is the payee can't verify that one of the owners did not double-spend

the coin. A common solution is to introduce a trusted central authority, or mint, that checks every

transaction for double spending. After each transaction, the coin must be returned to the mint to

issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent.

The problem with this solution is that the fate of the entire money system depends on the

company running the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so we don't care

about later attempts to double-spend. The only way to confirm the absence of a transaction is to

be aware of all transactions. In the mint based model, the mint was aware of all transactions and

decided which arrived first. To accomplish this without a trusted party, transactions must be

publicly announced [1], and we need a system for participants to agree on a single history of the

order in which they were received. The payee needs proof that at the time of each transaction, the

majority of nodes agreed it was the first received.

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a

hash of a block of items to be timestamped and widely publishing the hash, such as in a

newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the

time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in

its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

2

Block

Item Item ...

Hash

Block

Item Item ...

Hash

Transaction

Owner 1's
Public Key

Owner 0's
Signature

Hash

Transaction

Owner 2's
Public Key

Owner 1's
Signature

Hash

 Verify

Transaction

Owner 3's
Public Key

Owner 2's
Signature

Hash

 Verify

Owner 2's
Private Key

Owner 1's
Private Key

Sign

Sign

Owner 3's
Private Key

…

Cryptocurrency without consensus
[Guerraoui et al., PODC’19]

§ Consensus number of the asset transfer data
type:
ük-owned (smart contracts with k parties) – k

§ Asynchronous asset transfer algorithm
ü1-owned: secure broadcast
ük-owned: k-consensus + secure broadcast

§ No need of total order on transactions

Commutativity and causality
§ T0: $100 from Alice to Carole
§ T1: $100 from Bob to Alice
§ T2: $100 from Drake to Alice

T0 causally depends on T1 (not enough funds otherwise)
T1 and T2 commute (T0 succeeds regardless of the order)

Alice

Bob Drake

Carole
T0

T1 T2

T0

T1 T2

Partial order

What about double-pending?
§ T0: $100 from Bob to Alice
§ T1: $100 from Alice to Carole
§ T2: $100 from Alice to Drake

Alice’s initial balance is 0, but it claims to both
beneficiaries to have received money from Bob

Alice

Bob Drake

Carole
T1

T0 T2

T1

T0
T2

Asset transfer implementation
Message-passing, Byzantine failures

§ Each transfer is equipped with its causal past (a
set of incoming transactions)

§ Make sure that a faulty account holder cannot lie
about its causal past

§ Secure broadcast [Bracha, 1987, Malkhi-Reiter, 1997]
üSource-order: messages by the same source are

delivered in the same order

Modular approach: private and public

Asset transfer
Causal past tracking

Secure broadcast
broadcast deliver

Deterministic
(private)

[Malkhi-Reiter’97]

Probabilistic
(public)

[TBP]

Intuition: deliver only if
accepted by a Byzantine
quorum (of 2f+1)

Intuition: deliver only if
enough sample
members are “ready”

Cryptocurrency without consensus
§ Asset transfers do not always require total order

üSource order is sufficient for consistency
ü(Asynchronous) secure broadcast

§ Can be generalized to (limited-scope) ”smart
contracts”
üonly account owners need consensus, but still no

global total order
§ Coming: probabilistic and Sybil-tolerant secure

broadcast can be implemented (coming)
üPermissionless asset transfer

Other algorithmic challenges
§ Maintaining the system evolution

üDecentralized updates [Tezos]

üLocal views, federated quorums [Stellar]

üAsynchronous reconfigurations [Dynastore]

§ Concurrency in smart contracts
üSequential programs run in a concurrent

environment
§ Blockchain ecosystems

üCross-chain transactions
üFair exchange/atomic commitment

Take-aways
§ Blockchains do solve a new problem

üMaintaining a total order in an open system
üWith a brute-force approach
üScalability is a challenge

§ The primary application of blockchains do not
need blockchains
üA weaker abstraction may suffice

§ Do not go for a technology
üGo for a problem

Thank you!

