

Blockchains and large-scale distributed systems

Petr Kuznetsov Télécom Paris IP Paris

Journées Partenaires Entreprises Télécom Paris – 20-21 juin 2019

Chronology

1982 Byzantine Generals **1990** Paxos 1992 "ProofOfWork" 1999 PBFT 1995 Hashcash 2002 Sybil attack 2009 Bitcoin

[Narayanan, CACM, Dec 2017]

. . .

Linked Public Byzantine Timestamping. Fault Keys as Proof Digital Smart Verifiable Logs Identities Tolerance Cash of work Contracts 1980 Merkle Chaum Ecash¹⁰ Tree³³ Byzantine Anonymous Generals²⁵ Communication Chaum Security w/o 1985 Identification¹¹ Offline Paxos²⁸ Haber & Ecash³² stornetta22 1990 Digicash Benaloh & de mare⁶ Anti-spam¹⁵ Bayer, haber, Szabo stornetta⁵ Essav⁴¹ 1995 Micro-Mint⁴⁰ Haber & B-money¹³ Hashcash² stornetta23 Client Pbft⁸ Goldberg Puzzles25 2000 Dissertation Paxos made Simple²⁹ Sybil attack¹⁴ Bit Gold⁴² -2005 Computational Bitcoin³⁴ Impostors1 • Private 2010 Blockchains . Ethereum v 2015 Nakamoto Consensus

Distributed ledger

Shared data structure: linear record of (blocks of) transactions

- Append-only
- Backtrack verifiable
- Consistent: total order

Open environment:

- No static membership
- No identities (public keys)

Sybil-resistant consistency?

- Sybil attack: the adversary can own an arbitrarily large fraction of participants
 ✓ Why don't good guys do the same? ☺
- Classical (BFT) protocols don't work
 ✓ Bounds on faulty fraction (e.g., <1/3)
- Bitcoin:
 - ✓ Assume a synchronous system
 - $\checkmark\,$ Message delays are bounded by $\delta\,$
 - ✓ Need to "slow down" updates (wrt δ)
 - ✓ Solve a puzzle before updating (PoW)

(Bitcoin) blockchain

- Clients broadcast an update
- Dedicated clients (miners) collect updates solve puzzles, update and broadcast their local ledgers
- Clients always choose the longest (verifiable) ledger
- Old enough blocks are considered consistent

When it works

- Expected time to solve the puzzle >> δ
- The adversary does not possess most of computing power

The probability of a fork drops exponentially with the staleness of blocks

When it does not work

- Asynchronous/eventually synchronous communication
- An adversary controls half of computing resources
- Even a small probability of error cannot be tolerated
- Energy consumption and throughput is an issue

Bitcoin Consumes More Electricity Than Iceland

The work of bitcoin miners all over the world are contributing to a massive rise in electricity consumption. Recent data reveals that current levels of consumption surpass those of the country of iceland.<

When it is not needed

- No Sybil attacks
 - ✓ Participation under control
- No need for total order
 - ✓ Some form of causality is enough?

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network.

...

The only way to confirm the absence of a transaction is to be aware of all transactions. In the mint based model, the mint was aware of all transactions and decided which arrived first. To accomplish this without a trusted party, transactions must be publicly announced [1], and we need a system for participants to agree on a single history of the order in which they were received.

Cryptocurrency without consensus

[Guerraoui et al., PODC'19]

Consensus number of the asset transfer data type:

 \checkmark k-owned (smart contracts with k parties) – k

- Asynchronous asset transfer algorithm
 ✓1-owned: secure broadcast
 ✓k-owned: k-consensus + secure broadcast
- No need of total order on transactions

Commutativity and causality

- T0: \$100 from Alice to Carole
- T1: \$100 from Bob to Alice
- T2: \$100 from Drake to Alice

T0 causally depends on T1 (not enough funds otherwise) T1 and T2 commute (T0 succeeds regardless of the order)

What about double-pending?

- T0: \$100 from Bob to Alice
- T1: \$100 from Alice to Carole
- T2: \$100 from Alice to Drake

Alice's initial balance is 0, but it claims to both beneficiaries to have received money from Bob

Asset transfer implementation

Message-passing, Byzantine failures

- Each transfer is equipped with its causal past (a set of incoming transactions)
- Make sure that a faulty account holder cannot lie about its causal past
- Secure broadcast [Bracha, 1987, Malkhi-Reiter, 1997]
 ✓ Source-order: messages by the same source are delivered in the same order

Modular approach: private and public

Cryptocurrency without consensus

- Asset transfers do not always require total order
 ✓ Source order is sufficient for consistency
 ✓ (Asynchronous) secure broadcast
- Can be generalized to (limited-scope) "smart contracts"
 - ✓ only account owners need consensus, but still no global total order
- Coming: probabilistic and Sybil-tolerant secure broadcast can be implemented (coming)

✓ Permissionless asset transfer

Other algorithmic challenges

- Maintaining the system evolution

 Decentralized updates [Tezos]
 Local views, federated quorums [Stellar]
 Asynchronous reconfigurations [Dynastore]
- Concurrency in smart contracts
 - Sequential programs run in a concurrent environment
- Blockchain ecosystems
 - ✓Cross-chain transactions

✓ Fair exchange/atomic commitment

Take-aways

- Blockchains do solve a new problem
 - ✓ Maintaining a total order in an open system
 - ✓ With a brute-force approach
 - \checkmark Scalability is a challenge
- The primary application of blockchains do not need blockchains
 - ✓A weaker abstraction may suffice
- Do not go for a technology
 ✓Go for a problem

Thank you!