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A few examples of Audio Generative AI
Speech synthesis

• Several systems: Vall-E, VoiceBox (Meta),  OpenAI, …

• Vall-E(                  )

• Zero-shot TTS

• … or keeping the speaker emotion

3 VALL-E: https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/

VOICEBox:  https://voicebox.metademolab.com/

Text Speaker prompt Ground Truth VALL-E

They moved thereafter cautiously about the hut groping before and about 

them to find something to show that Warrenton had fulfilled his mission

Text Emotion Speaker prompt VALL-E

We have to reduce the number of plastic bags.

Anger

Sleepy

Amused
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A few examples of Audio Generative AI
Speech synthesis

• « Deepfake » voices by many actors : Resemble.ai, Speechify,  
Respeecher,…

• An example on my voice with Speechify (OpenAI’s API)

4 https://speechify.com/

Text Training prompt

(in French)

Generated

voice

Hi, Gaël Richard! It's time to listen to your voice clone in action. Your 

voice clone opens up a world of possibilities. 



G. Richard

A few examples of Audio Generative AI
Audio/Music synthesis

• Several impressive models: 

• OpenAI (Jukebox,Musenet,) (unseen lyrics rendition, completion, ..)

• MusicGen/AudioGen (AudioCraft, Meta): text-to-music or text-to audio 
generation

An example with MusicLM

5
https://openai.com/research/jukebox

https://audiocraft.metademolab.com/musicgen.html

https://google-research.github.io/seanet/musiclm/examples/

Text Generated music

Slow tempo, bass-and-drums-led reggae song. Sustained electric guitar. High-pitched 

bongos with ringing tones. Vocals are relaxed with a laid-back feel, very expressive.

https://openai.com/research/jukebox
https://audiocraft.metademolab.com/musicgen.html
https://google-research.github.io/seanet/musiclm/examples/
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A few examples of Audio Generative AI
Cross modal audio synthesis

• Examples with MusicLM (text+ melody conditioning)  generation, 

• Painting Caption Conditioning: An example with MusicLM

• Other examples

• Other examples: visually guided audio spatialization + the sound of pixel 
(2018)

6
https://google-research.github.io/seanet/musiclm/examples/

Rishabh Garg, Ruohan Gao, Kristen Grauman, Visually-Guided Audio Spatialization in Video with Geometry-Aware Multi-task Learning. International 

Journal of Computer Vision (IJCV). Vol 131. 2023. Special Issue for Best Papers of BMVC 

https://google-research.github.io/seanet/musiclm/examples/
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… but what is an audio signal ?
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What is an audio signal ……  

• The audio signal x(t) is an continuous acoustic signal  

• Let x(nT) be the discrete signal sampled at time t=nT

x(t)

t

x(n)=x(nT)

t

T
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Time-Frequency representation

• Fourier Transform

xn |Xk|

9
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Spectral analysis of an audio signal (1)
(drawing from J. Laroche)
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Spectral analysis of an audio signal (2)

• Spectrogram of a sum of 10 stable sinusoids

xn |Xk|

Spectrogram
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Audio signal representations

• Example on a music signal: note C (262 Hz) produced by a piano and a violin.

Temporal Signal

Spectrogram

From M. Mueller & al. « Signal Processing for Music Analysis, IEEE Trans. On Selected topics of Signal Processing, oct. 201112
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Towards a more specific representation
Mel-spectrogram

• Exploiting principles of sound perception

• E.g. Tonal heights perception: Mel scale

• From 0 à 500 Hz où 1 Mel = 1 Hz (linear)

• Above 500 Hz, height perception (or « tonie ») 
growths logarithmically with frequency

• Example of analytical formula:

13
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About Generative audio …
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Generative audio … an old domain

• …generating speech with an instrument or a machine 

Van Kempelen machine (1791)

Voder Dudley (1939)

Pattern playback Cooper (1951)

Dennis H. Klatt (1987), “Review of text-to-speech conversion for English” J. Acous. Soc. 

Amer. 82, 737-793
15
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Generative audio … an old domain

• …generating speech with a simplified « speech production » model 

• ..Or using Hidden Markov Models (HMMs)

K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi and K. Oura, "Speech Synthesis Based on Hidden Markov Models," in Proceedings of the IEEE, vol. 

101, no. 5, pp. 1234-1252, May 2013

Observation vector

16
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Generative audio … an old domain

• …generating speech with Hidden Markov Models (HMMs) 

K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi and K. Oura, "Speech Synthesis Based on Hidden Markov Models," in Proceedings of the IEEE, vol. 

101, no. 5, pp. 1234-1252, May 2013
17



G. Richard

Generative audio … an old domain

• …generating and transforming sound using an analysis/synthesis model 

Sinusoidal
Analysis

Parameters Synthesis

Example on a piano signal
Original signal:              
Transposed by a third: 
Signal S (« Sum of sinusoïds with vibrato effect»):
Signal N (Noise):

18
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An « image of audio » (e.g spectrogram) is not the same

as a natural image 

 Natural images 
• the axes x and y represent the same concept (spatial position) 
• the elements of an image have the same meaning independently of their 

positions over x and y.  
• neighboring pixels:  

- usually highly correlated,  
- often belong to the same object 

 Time-frequency audio representations (for example a spectrogram)
• the axes x and y represent profoundly different concepts (time and 

frequency). 
• the elements of spectrogram (such as the T/F area of a source) have the 

same meaning independently of their position over time but not over 
frequency  

• no invariance over y, even in the case of log-frequencies 
• neighboring pixels: 

- are not necessarily correlated  
- a given sound source (such has an harmonic sound) can be distributed 

over the whole frequency in a sparse way (the harmonics of a given 
sound can be spread over the whole frequency range)

G. Peeters, G. Richard, « Deep learning for audio» , Multi-faceted Deep Learning: Models and Data, Edited by Jenny Benois-Pineau, Akka Zemmari, 

Springer-Verlag, 2021 (to appear)
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Deep neural audio synthesis

• Machine-learning based models "uses large amount of data and machine learning 
to generate sounds” 

• A rapid growth and adoption of deep neural networks for audio synthesis 

From wavenet (2016) …..                       MusicLM (2023)      

(autoregressive model)                                               (Generating Music from Text)

20
Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. (2016). WaveNet: A 

Generative Model for Raw Audio (cite arxiv:1609.03499)

A. Agostinelli & al. MusicLM: Generating Music From Text, https://arxiv.org/abs/2301.11325, 2023.

https://arxiv.org/abs/2301.11325
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A large variety of generative models …

L. Weng, What are diffusion models ?, 2021. https://lilianweng.github.io/posts/2021-07-11-diffusion-models/21
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Deep neural audio synthesis 

J. Nistal, “Exploring Generative Adversarial 

Networks for Controllable Musical Audio Synthesis, 

PhD Thesis, IP Paris, 202222
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Wavnet
a generative model, directly from the audio waveform

• The joint probability of a waveform 

is factorised as a product of conditional probabilities :

• the conditional probability distribution is modelled by a stack of convolutional 
layers;

• Output of the model: has the same time dimensionality as the input (no pooling)

• Output: a categorical distribution over the next value with a softmax layer  -

optimized to maximize the log-likelihood of the data w.r.t. the parameters.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. (2016). WaveNet: A 

Generative Model for Raw Audio (cite arxiv:1609.03499) 23
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Wavnet
a generative model, directly from the audio waveform

• Dilated causal convolutions (the main ingredient!).

• Classic causal convolutions needs many layers to increase the 
receptive fields (RF)

• Dilated causal convolutions greatly increase RF

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. (2016). WaveNet: A 

Generative Model for Raw Audio (cite arxiv:1609.03499) 24
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Wavnet
a generative model, directly from the audio waveform

• Condition distributions                                  modelled using softmax distributions

• Use of  mu-law to limit the number of “categories” (amplitude values): 

• Use of Gated recurrent units

• .. and residual and skip connections 

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. (2016). WaveNet: A 

Generative Model for Raw Audio (cite arxiv:1609.03499) 25



G. Richard

Wavnet : sound examples
(from https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio)

• Speech … but also music (no conditioning)

• But it is also possible to use conditions :

• Speech (with condition on the text)

26
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Wavnet and other neural autoregressive models

• Wavnet remains complex (sample is generated one at a time)

• Other neural autoregressive models

27
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Variational AutoEncoders

Schematic principle of Variational Autoencoders (VAEs)

The encoder              approximates the true posterior distribution

The decoder generates an approximation    from the encoding

Main idea of variational inference: :

- The complete model                                 , but the data follows complex

distributions

- Exploit an approximate of the true posterior:   

- Variational inference: minimizing the difference between the approximation and 

the true density:

28
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Variational AutoEncoders

• This can be further expressed as :

• It describes the quantity to model                minus the error we 

make by using an approximate q instead of the true p.

• We can maximize the Evidenced Lower Bound (ELBO)

Kingma et Welling, « An Introduction to Variational Autoencoders », Foundations and Trends in Machine Learning, vol. 12, no 4, 2019, p. 307–392 

K. Sachdeva: “Evidence Lower Bound (ELBO) - CLEARLY EXPLAINED!

https://www.youtube.com/watch?v=IXsA5Rpp25w

29
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Variational AutoEncoders in Audio/music

Many examples

J. Nistal, “Exploring Generative Adversarial Networks for Controllable Musical Audio Synthesis, PhD Thesis, IP Paris, 202230
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Variational AutoEncoders in Audio/music

Regularizing the latent space with timbre spaces (perception)

P. Esling, A. Chemla-Romeu-Santos, A. Bitton, Bridging Audio Analysis, Perception and Synthesis with Perceptually-regularized Variational Timbre Spaces, in Proc. of 

ISMIR » 2018 »

Multi-dimensional scaling 
(MDS)

31
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Variational AutoEncoders in Audio/music
Extensions

RAVE: Realtime Audio Variational autoEncoder

• Based on a two stage training:

1. representation learning with VAEs (stage 1)

2. adversarial fine tuning (stage 2)

A. Caillon, Antoine; P. Esling. “RAVE: A variational autoencoder for fast and high-quality neural audio synthesis.” ArXiv abs/2111.05011 (2021)32
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Variational AutoEncoders in Audio/music
RAVE : some details

• The multispectral loss (from Engel2019 (DDSP))

• Latent representation compactness

• To avoid posterior collapse (e.g situation where the learned latent space is ignored)

• Based on variance normalisation, rank estimation (using SVD on the latent space)

A. Caillon, Antoine; P. Esling. “RAVE: A variational autoencoder for fast and high-quality neural audio synthesis.” ArXiv abs/2111.05011 (2021)

J. Engel & al., “DDSP: Differentiable Digital Signal Processing,” in Int. Conf. on Learning Representations (ICLR), 2020. 
33
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Variational AutoEncoders in Audio/music
RAVE : some results

• Evaluation (in 2021)

• Synthesis examples: 

• Timbre transfer (model trained on speech, input :violin)

• Darbouka synthesis:

• Reconstruction

• Unconditional generation

Violin input

Output (speech)

Original

Reconstructed

unconditioned

A. Caillon, Antoine; P. Esling. “RAVE: A variational autoencoder for fast and high-quality neural audio synthesis.” ArXiv abs/2111.05011 (2021)34
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Vector-Quantized Variational AutoEncoders (VQ-VAEs)

• Combines VAEs with Vector quantization

• Helps to avoid posterior collapse of VAEs

• Offers the flexibility of a discrete neural representation

• Main principle

A.van den Oord, O. Vinyals, K. Kavukcuoglu.. Neural discrete representation learning. In Proceedings of the 31st International Conference on Neural Information 

Processing Systems (NIPS'17). 2017
35
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Vector-Quantized Variational AutoEncoders (VQ-VAEs)

• Discrete latent representation

• The discrete latent variables are obtained by nearest 
neighbour look-up 

A.van den Oord, O. Vinyals, K. Kavukcuoglu.. Neural discrete representation learning. In Proceedings of the 31st International Conference on Neural Information 

Processing Systems (NIPS'17). 2017
36
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Vector-Quantized Variational AutoEncoders (VQ-VAEs)

• Learning

• A loss function with three components

1. A reconstruction loss (or data term)

2. A dictionary learning term (VQ): 

3. A commitment loss (to force a joint learning of encoder and 
dictionary)

A.van den Oord, O. Vinyals, K. Kavukcuoglu.. Neural discrete representation learning. In Proceedings of the 31st International Conference on Neural Information 

Processing Systems (NIPS'17). 2017
37
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VQ-VAEs in Audio and Music
An example with Jukebox

• Based on hierarchical VQ-VAE (VQ-VAE2), trained with an 
additional spectral loss

• Combined with sparse transformers for learning the latent 
prior for generation

Razavi, A., van den Oord, A., and Vinyals, O. Generating diverse high-fidelity images with vq-vae-2. In Advances in Neural Information Processing Systems, 2019.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 , 2019.

P. Dhariwal & al. “Jukebox: A Generative Model for Music”, arXiv:2005.00341

38
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VQ-VAEs in Audio and Music
An example with Jukebox

• Learning the latent prior once the separate VQ-VAEs are trained

P. Dhariwal & al. “Jukebox: A Generative Model for Music”, arXiv:2005.00341

Sparse transformers

39
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VQ-VAEs in Audio and Music
An example with Jukebox

• Conditioning for controlling

the synthesis

• Artist, Genre, and Timing Conditioning (to allow to learn 

patterns that depend on the structure… such as applause at the 

end)

• Lyrics Conditioning (with necessity to learn lyrics/audio 

alignment)

P. Dhariwal & al. “Jukebox: A Generative Model for Music”, arXiv:2005.0034140
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VQ-VAEs in Audio and Music
An example with Jukebox

• Sampling methods for generating music  

Windowed sampling for modelling
sequences longer than initial context

Primed sampling: generate continuations by converting input into the 
VQ-VAE codes and sampling the subsequent codes in each level.

P. Dhariwal & al. “Jukebox: A Generative Model for Music”, arXiv:2005.0034141
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VQ-VAEs in Audio and Music
An example with Jukebox

• Sound examples

• Completion (with context of 12s of existing songs in the training)

• Re-renditions (using pairs of lyrics-artist existing in the training)

• Generation with novel lyrics (generated by GPT-2)

• Generation with novel voices (by interpolating existing voice embeddings)

• Many raw examples at https://jukebox.openai.com/

• Some curated examples at https://openai.com/blog/jukebox/

• One example of continuation with unknown lyrics: 

https://jukebox.openai.com/?song=795460096

• Original model is rather slow at sampling (9 hours to render 1’ of music) 

P. Dhariwal & al. “Jukebox: A Generative Model for Music”, arXiv:2005.0034142

https://jukebox.openai.com/
https://openai.com/blog/jukebox/
https://jukebox.openai.com/?song=795460096
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VQ-VAEs in Audio and Music
Another example for one-shot music style transfer

• Content is encoded using a VQ-VAE 

• Style is encoded using a self-supervised strategy (y is an audio-
augmented version of a different segment than x, taken from the 
same recording) 

Ondřej Cífka, Alexey Ozerov, Umut Şimşekli and Gaël Richard. "Self-Supervised VQ-VAE for One-Shot Music Style Transfer." IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), 2021. 
43



G. Richard

VQ-VAEs in Audio and Music
Another example for one-shot music style transfer

• Many sound examples at: https://adasp.telecom-

paris.fr/rc/demos_companion-pages/cifka-ss-vq-vae/#examples

• Two examples

1. Synthetic example

2. Real example

Content input Style input Target Output (VQ-VAE)

Content input Style input Output (VQ-VAE)

Ondřej Cífka, Alexey Ozerov, Umut Şimşekli and Gaël Richard. "Self-Supervised VQ-VAE for One-Shot Music Style Transfer." IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), 2021. 
44
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Discrete neural representation:
Soundstream: another powerfull generative model

• Designed for audio compression

• Exploits Residual Vector Quantification (RVQ) 

• trained end-to-end together with a discriminator using the mix of adversarial 
and reconstruction losses 

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M. Soundstream: An end-to-end neural audio codec. IEEE ACM Trans. Audio Speech Lang.

Process., 30, 2022
45
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Discrete neural representation:
Soundstream: an other powerfull generative model

• Interest of RVQ

• RVQ = multi-stage Vector quantizer

A concrete example with regular VQ :
- a codec with a target bitrate R = 6000 bps.
- For an audio at Fs = 24000 Hz (striding factor of M = 32), each 

second of audio is represented by S = 75 frames 
- This leads to r = 6000/75 = 80 bits allocated to each frame.
- Using a plain vector quantizer, this requires storing a 

codebook with N= 2^80 vectors  (this is Huge !!)

- Cascade Nq layers of VQ 
- Total rate budget is uniformly allocated to each VQ, 
- Ri = r/ Nq = log2 (N).
- Example:  with Nq = 8, each quantizer uses a
codebook of size N = 2(r/ Nq) = 2(80/8) = 1024. 

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M. Soundstream: An end-to-end neural audio codec. IEEE ACM Trans. Audio Speech Lang.

Process., 30, 2022
46
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Discrete neural representation:
EncoDec: a slight extension of Soundstream

• E.g. Use of a small transformer model for better multi-stage VQ 

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio compression. arXiv preprint arXiv:2210.13438, 2022.47
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GANS, Diffusion models for audio generation

48
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Generative Adversarial Networks (GANs)  

• Principle of GANs

Goodfellow, I. et al., 2014. Generative adversarial nets. In Advances in neural information processing systems.

Figure from J. Nistal, “Exploring generative Adversarial networks for controllable musical audio synthesis, PhD thesis, IP Paris, 2022 
49
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Generative Adversarial Networks (GANs)  

• More formally

• a generative network           that outputs                from a random input    

After training, the output should follow the targeted probability 

distribution

• a discriminative network             trained to predict if the input comes

from the real      or from the generated distribution

• Optimization problem: a competitive objective

Goodfellow, I. et al., 2014. Generative adversarial nets. In Advances in neural information processing systems.50
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Generative Adversarial Networks (GANs)  

• Principle of conditional GANs for audio synthesis

Figure from J. Nistal, “Exploring generative Adversarial networks for controllable musical audio synthesis, PhD thesis, IP Paris, 2022 51
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Generative Adversarial Networks (GANs)  

• DrumGAN: Synthesis of Drum sounds with timbral feature Conditioning
using GANs synthesis

Nistal, J., Lattner, S., and, Richard, G. , “DrumGAN: Synthesis of Drum Sounds with Perceptual Feature Conditioning using GANs,” in Proceedings of the 28th 

International Society for Music Information Retrieval, ISMIR , 2020.
52
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Generative Adversarial Networks (GANs)  

• DrumGAN: Demo

• https://sites.google.com/view/drumgan?pli=1

• DrumGAN VST: A Plugin for Drum Sound 

Analysis/Synthesis with Autoencoding GANs

• https://cslmusicteam.sony.fr/drumgan-vst/

• Short demo on Converting beatbox to drums

Nistal, J., Lattner DrumGAN
Proceedings of the 28th International Society for Music Information Retrieval, ISMIR , 2020.

Original Original+decoded

53
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A classic pipeline for sound generation

• For example, a classic pipeline in recent Text-to-speech

54

Text

Log-mel specrogram Wav

Wavglow Hifi-Gan, Wavgrad
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Hifi-Gan

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi -gan: Generative adversarial networks for efficient and high fi delity speech synthesis. Advances in Neural 

Information Processing Systems, 33:17022–17033, 2020

Demo at https://jik876.github.io/hifi-gan-demo/

• High computational efficiency and high sample quality

• 1 Generator (CNN) and 2 Discriminators

55
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Hifi-Gan
2 Discriminators: MSD and MPD

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and Aaron C Courville. Melgan: 

Generative adversarial networks for conditional waveform synthesis. In Advances in Neural Information Processing Systems 32, pages 14910–14921, 2019.

Mikołaj Binkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman Casagrande, Luis C Cobo, and Karen Simonyan. High fidelity speech synthesis with 

adversarial networks. arXiv preprint arXiv:1909.11646, 2019.

• MPD = mixture of sub-discriminators

• Sub-discriminators are designed to capture different implicit structures from 

each other by looking at different parts of an input audio

• each sub-discriminator only accepts equally spaced samples of an input audio

• the space (period) p is equal to [2, 3, 5, 7, 11] 

• MSD to evaluate audio sequence at 

multiple scale

• MSD is a mixture of three sub-discriminators 

operating on different input scales: raw 

audio, ×2 average-pooled audio, and ×4 

average-pooled audio

56
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Diffusion models for audio synthesis …

• Based on two processes: the diffusion process, and the reverse process

• The diffusion process is defined by a fixed Markov chain from data  to the latent variable 

where each of                     is fixed to               for a small positive constant

• The reverse process gradually converts the white noise signal into audio waveform through a Markov 

chain: .

Kong, Z., Ping, W., Huang, J., Zhao, K., & Catanzaro, B. (2020). DiffWave: A Versatile Diffusion Model for Audio Synthesis. ArXiv, abs/2009.09761.58
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Diffusion models for audio synthesis …

• The models are often strongly conditioned

• Example: wavgrad, specgrad conditioned on mel-spectrogram
Illustration of the diffusion process (50 iterations)

Sound examples

reference wavgrad

N. Chen & al.“WaveGrad: Estimating gradients for waveform generation,” in Proc. ICLR, 2021.

Koizumi, Yuma et al. “SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with Adaptive Noise Spectral Shaping.” Interspeech (2022).
59
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Diffusion models for audio synthesis …
extensions of wavgrad

• The example of priorgrad, specgrad, …  

Koizumi, Yuma et al. “SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with Adaptive Noise Spectral Shaping.” Interspeech (2022).60
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Diffusion models for audio synthesis …
Combining diffusion models with GANs

The Generative learning trilemma

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021

• Example of Denoising Diffusion Gan:

• Assumption: the slow sampling of diffusion models is due to the Gaussian 
assumption in the denoising distribution

• Propose to employ complex, multimodal denoising distributions. 

• Propose denoising diffusion GANs, a diffusion model whose reverse 
process is parametrized by conditional GANs.

• Denoising diffusion GANs achieve several orders of magnitude speed-up 
compared to classic diffusion models for (image) generation

61
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Diffusion models for audio synthesis …
Combining diffusion models with GANs

Diffusion-Gan: Training GANS with Diffusion

• The discriminator learns to distinguish a diffused real image from a diffused fake image at all 
diffusion steps.

• Stabilizes the training of GANS ; Leads to improved performances (quality of images, 
complexity)

Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou, “Diffusion-GAN: Training GANs with diffusion,” in Proc. ICLR, 202362
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Diffusion models for audio synthesis …
Combining diffusion models with GANs

SpecDiff-Gan

Combines principles of

- Diffusion-gans, 

- Hifi-Gan 

- and specgrad

- …for speech and music

T. Baoueb, H. Liu, M. Fontaine, J. Le Roux, G. Richard , SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and Music Synthesis, ICASSP 2024 

Demo at: https://specdiff-gan.github.io/

Ground truth SpecDiff-Gan

speech

piano

drums
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Cross Model audio generation : some examples

64
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Towards « text-prompt » to audio
The exemple of AudioGen

• AudioGen
• 2 main steps:

• (i) an audio encoder-decoder to learn a discrete audio 
representation (RVQ)

• (ii) training a Transformer language model over the 
learnt codes obtained from the audio encoder, 
conditioned on textual features.

• Some specifities:

• Text representation obtained using a pretrained T5 
text encoder  

• For text adherence: cross-attention between audio 
and text to each attention block of the transformer.

• Augmentation method that fuses pairs of audio 
samples and their respective text captions, thus 
creating new concept compositions during training

• Uses Classifier Free Guidance (CFG) to improve
generation for Low resolution (e.g. randomly
unconditional training)

audio encoder-decoder 

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, DeviParikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided 

audio generation. arXivpreprint arXiv:2209.15352, 2022a.
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Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, DeviParikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided 

audio generation. arXivpreprint arXiv:2209.15352, 2022a.

Demo at : https://felixkreuk.github.io/audiogen/

Text prompt

a man speaks as birds chirp and dogs bark

male speech with horns honking in the 

background

drums and music playing with a man 

speaking

Towards « text-prompt » to audio
The exemple of AudioGen
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Vall-E: « text-to-speech (TTS) or speech synthesis
another possible model of discrete neural model

• A classic pipeline in recent Text-to-speech

• Vall-E:  A different pipeline with discrete codes as intermediate representation

67 Chengyi Wang & al. Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers January 2023 

Text

Log-mel specrogram Wav

Wavglow Hifi-Gan, Wavgrad
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Vall-E: « text-to-speech (TTS) or speech synthesis
another possible model of discrete neural model

• TTS as Conditional Codec Language Modeling

• Use of an Tokenizer: a pre-trained neural audio 
codec (Encodec)

• Train a neural LM to generate acoustic codes with

an optimisation objective:

68 Chengyi Wang & al. Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers January 2023 
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Vall-E: « text-to-speech (TTS) or speech synthesis
another possible model of discrete neural model

• The conditional codec language modelling

• Association of 2 transformer models

• An autoregressive model (AR) for the first 
codebook (e.g. good quality)

• An non-autoregressive (NAR) for the remaining
ones (e.g. less complex)

69 Chengyi Wang & al. Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers January 2023 
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Vall-E: « text-to-speech (TTS) or speech synthesis
another possible model of discrete neural model

• Inference: In-Context Learning via Prompting

• Converts the text into a phoneme sequence and encodes the enrolled recording into an 

acoustic matrix, forming the phoneme prompt and acoustic prompt. 

• Both prompts are used in the AR and NAR models. 

• For the AR model, sampling-based decoding conditioned on the prompts is used 

• For the NAR model, greedy decoding is used to choose the token with the highest 

probability. 

• Finally, the neural codec decoder is used to generate the waveform conditioned on the 

eight code sequences. 

70 Chengyi Wang & al. Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers January 2023 
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Vall-E demo
(replay)  

• Vall-E(                  )

• Zero-shot TTS

• … or keeping the speaker emotion

VALL-E: https://www.microsoft.com/en-us/research/project/vall-e-x/vall-e/

Text Speaker prompt Ground Truth VALL-E

They moved thereafter cautiously about the hut groping before and about 

them to find something to show that Warrenton had fulfilled his mission

Text Emotion Speaker prompt VALL-E

We have to reduce the number of plastic bags.

Anger

Sleepy

Amused
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AudioLM: using language models for audio generation

Zalan Borsos et al. Audiolm:a language modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023a.

Y. Chung et al., “W2v-BERT: Combining contrastive learning and masked language modeling for self-supervised speech pre-training,” in Proc. IEEE Autom. Speech 

Recognit. Understanding Workshop, 2021, pp. 244–250.

• 3 main components:

• (i) A tokenizer model, which maps the input audio 
into a sequence of discrete tokens from a finite 
vocabulary

• (ii) A decoder-only Transformer language model 
that operates on the discrete tokens. At inference 
time, the model predicts the token sequence 
autoregressively.

• (iii) A detokenizer model, which maps the 
sequence of predicted tokens back to audio

• Motivation for the dual-token model (for speech 
signal):

• Acoustic tokens: speaker identity and recording 
conditions (mostly)

• Semantic tokens: capture the linguistic content 
(mostly)  
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AudioLM: using language models for audio generation

• Hierarchical Modeling of Semantic and Acoustic Tokens
• In all stages: a separate (decoder) Transformer is trained for predicting next tokens given previous tokens

• At inteference
• Unconditional generation: semantic tokens are sampled unconditionally and used as conditioning for acoustic modeling.

• Acoustic generation: ground-truth semantic tokens are extracted from a test sequence as conditioning to generate the 
acoustic tokens. 

• Generating continuations (from a short prompt):

1) generation of the continuation of semantic tokens autoregressively; 

2) concatenation of the entire semantic token sequence with the coarse acoustic tokens of the prompt and then feed as 
conditioning to the coarse acoustic model, which then samples the continuations of the corresponding acoustic tokens

3) the coarse acoustic tokens are processed with the fine acoustic model. 

4) both the prompt and the sampled acoustic tokens are fed to the SoundStream decoder to reconstruct audio

Zalan Borsos et al. Audiolm:a language modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023a.73
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AudioLM: using language models for audio generation
Demo

• Speech (continuation)

• Acoustic generation « we sample the acoustic tokens given the semantic tokens extracted from the original samples from 
LibriSpeech test-clean» 

• Generation without semantic tokens : « Continuations with a language model trained on the acoustic tokens only (without 
semantic tokens)”

• An interesting example : piano continuation

A prompt of a known piano sonata example (Beethoven N° 18) is continued in … another known piano sonata (Beethoven –
Moonlight sonata) ! 

More examples at https://google-research.github.io/seanet/audiolm/examples/

Original  Prompt 
Continuation by acoustic-

only model
Continuation by AudioLM

Original (speech)  Prompt Continuation by AudioLM

Original (speech)  Generated (1) Generated (2)

Example 1  Example 2 
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Towards image-to-audio: the model IM2WAV

• 3 main components:

• (i) an audio encoder-decoder with a discrete 
internal representation (VQ-VAE)

• (ii) a pre-trained image encoder (CLIP)

• (iii) an audio language model which operates 
over the discrete audio tokens (autoregressive 
sparse transformer)

• Some specifities:

• CLIP embeddings trained in a multimodal 
context

• Use Classifier Free Guidance (CFG) to 
improve generation for Low resolution (e.g. 
randomly unconditional training)

Roy Sheffer and Yossi Adi. I hear your true colors: Image guided audio generation. In ICASSP 2023- 2023 IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP). IEEE, 2023.

• IM2WAV: a Transformer-based audio Language Model (LM) conditioned on 
image representation

• Parameters:

• 16 kHz Sampling frequency (4 s of sound)

• 5 Conv. Layers for VQ-VAE (stride 2) Enc/dec.

• 1st codebook after 3 layers (downsampling of 8)

• 2nd codebook after 5 layers (downsampling of 32)

• 2 k (resp. 5k) tokens in the UP (resp. LOW) model

• Codebook: 2048 codes, embedding size of 128

• Transformer: 48 layers, sparse attention
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The IM2WAV model

Roy Sheffer and Yossi Adi. I hear your true colors: Image guided audio generation. In ICASSP 2023- 2023 IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP). IEEE, 2023.

Demo at :https://pages.cs.huji.ac.il/adiyoss-lab/im2wav/

• Demo

DALL-E Image Guided 
Audio Generation Example
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Towards hybrid deep learning … 
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Towards Hybrid deep learning approaches

• Coupling model-based and deep learning:

G. Richard, V. Lostanlen, Y.-H. Yang, M. Müller, “Hybrid Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special Issue 

on Model-based and Data-Driven Audio Signal Processing, 2024 (under review)

Hi-Audio, Hybrid and Interpretable Deep neural audio machines, European AdG) project - https://hi-audio.imt.fr/

Example with Hybrid deep model for Music signals
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Towards Hybrid deep learning approaches

• Coupling model-based and deep learning

• For example, using deep learning for learning the parameters of a 
signal processing model

J. Engel & al., “DDSP: Differentiable Digital Signal Processing,” in Int. Conf. on Learning Representations (ICLR), 2020. 79
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Towards Hybrid deep learning approaches

• The example of DDSP

• A multi-scale spectral loss

With

and with c = [2048, 1024, 512, 256, 128, 64] indicates the FFT 

size used to compute the STFT. 

J. Engel & al., “DDSP: Differentiable Digital Signal Processing,” in Int. Conf. on Learning Representations (ICLR), 2020. 80



G. Richard

Towards Hybrid deep learning approaches:
DDSP extensions and others…

• An example for unsupervised singing voice separation

K Schulze-Forster, G. Richard, L. Kelley, C. Doire, R Badeau Unsupervised Music Source Separation Using Differentiable Parametric Source Models, IEEE Trans. On AASP, 2023

G. Richard, V. Lostanlen, Y.-H. Yang, M. Müller, “Hybrid Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special Issue on Model-based and 

Data-Driven Audio Signal Processing, 2024 (under review)
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Towards Hybrid deep learning
… by integrating our prior knowledge about the nature of the processed data.

Knowledge about « how the sound is produced « (e.g. sound production models)  

Singing voice as a source / filter model  :

• source = vibration of vocal folds

• Filter = resonances of vocal/nasal cavities

A new paradigm 

• Model is at the « core » of neural architecture

• Source separation by synthesis (no 
interference from other sources)

• Learning only from the polyphonic recording 
(no need of the true individual tracks)

Novel sound transformation capabilities:

• Timbre/melody of the voice, 

• Lyrics, translation

• Re-harmonization
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Conclusion

• Generative AI goes beyond text generation…

• Generative Audio is gaining a strong interest and a variety of models and approaches are 
already proposed

• Note that I have not discussed the models for symbolic music (e.g. music scores as in MIDI)

• … which includes transformer models for symbolic music, « theme » transformer, 
Groove2Groove (style transfer), long context modelling (with specific positional
encoding….)

Y.-J. Shih, S.-L. Wu, F. Zalkow, M. Müller, and Y.-H. Yang, “Theme Transformer: Symbolic music generation with theme-conditioned Transformer,” IEEE Transactions on 

Multimedia, vol. 25, pp. 3495–3508, 2023.

O. Cıfka, U. Simsekli, and G. Richard, “Groove2groove: One-shot music style transfer with supervision from synthetic data,” IEEE/ACM Transactions on Audio, Speech, 

and Language Processing, vol. 28, pp. 2638–2650, 2020.

Manvi Agarwal, Changhong Wang, Gaël Richard, Structure-Informed Positional Encoding For Music Generation, Accepted for publication at ICASSP 2024.

Music score MIDI representation (or piano roll)

Representation as sequence of tokens
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