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Florence dAlch-Buc2 and James Eagan2 and Winston Maxwell1 and

Pavlo Mozharovskyi2 and Jayneel Parekh2 1

Abstract. We present a framework for defining the “right” level of

explainability based on technical, legal and economic considerations.

Our approach involves three logical steps: First, define the main con-

textual factors, such as who is the audience of the explanation, the

operational context, the level of harm that the system could cause,

and the legal/regulatory framework. This step will help characterize

the operational and legal needs for explanation, and the correspond-

ing social benefits. Second, examine the technical tools available,

including post-hoc approaches (input perturbation, saliency maps...)

and hybrid AI approaches. Third, as function of the first two steps,

choose the right levels of global and local explanation outputs, taking

into the account the costs involved. We identify seven kinds of costs

and emphasize that explanations are socially useful only when total

social benefits exceed costs.

1 INTRODUCTION

This paper summarizes the conclusions of a longer paper [1] on

context-specific explanations using a multidisciplinary approach. Ex-

plainability is both an operational and ethical requirement. The op-

erational needs for explainability are driven by the need to increase

robustness, particularly for safety-critical applications, as well as en-

hance acceptance by system users. The ethical needs for explainabil-

ity address harms to fundamental rights and other societal interests

which may be insufficiently addressed by the purely operational re-

quirements. Existing works on explainable AI focus on the computer

science angle [18], or on the legal and policy angle [20]. The origi-

nality of this paper is to integrate technical, legal and economic ap-

proaches into a single methodology for reaching the optimal level of

explainability. The technical dimension helps us understand what ex-

planations are possible and what the trade-offs are between explain-

ability and algorithmic performance. However explanations are nec-

essarily context-dependent, and context depends on the regulatory

environment and a cost-benefit analysis, which we discuss below.

Our approach involves three logical steps: First, define the main

contextual factors, such as who is the audience of the explanation,

the operational context, the level of harm that the system could cause,

and the legal/regulatory framework. This step will help characterize

the operational and legal needs for explanation, and the correspond-

ing social benefits. Second, examine the technical tools available,

including post-hoc approaches (input perturbation, saliency maps...)

and hybrid AI approaches. Third, as function of the first two steps,
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choose the right levels of global and local explanation outputs, taking

into the account the costs involved.

The use of hybrid solutions, combining machine learning and sym-

bolic AI, is a promising field of research for safety-critical applica-

tions, and applications such as medicine where important bodies of

domain knowledge must be associated with algorithmic decisions.

As technical solutions to explainability converge toward hybrid AI

approaches, we can expect that the trade-off between explainability

and performance will become less acute. Explainability will become

part of performance. Also, as explainability becomes a requirement

for safety certification, we can expect an alignment between opera-

tional/safety needs for explainability and ethical/human rights needs

for explainability. Some of the solutions for operational explainabil-

ity may serve both purposes.

2 DEFINITIONS

Although several different definitions exist in the literature [1], we

have treated explainability and interpretability as synonyms [16], fo-

cusing instead on the key difference between “global” and “local”

explainability/interpretability. Global explainability means the abil-

ity to explain the functioning of the algorithm in its entirety, whereas

local explainability means the ability to explain a particular algo-

rithmic decision [7]. Local explainability is also known as “post hoc

explainability.

Transparency is a broader concept than explainability [6], because

transparency includes the idea of providing access to raw informa-

tion whether or not the information is understandable. By contrast,

explainability implies a transformation of raw information in order

to make it understandable by humans. Thus explainability is a value-

added component of transparency. Transparency and explainability

do not exist for their own sake. Instead, they are enablers of other

functions such as traceability and auditability, which are critical in-

puts to accountability. In a sense, accountability is the nirvana of al-

gorithmic governance [15] into which other concepts, including ex-

plainability, feed.

3 THREE FACTORS DETERMINING THE
“RIGHT” LEVEL OF EXPLANATION

Our approach identifies three considerations that will help lead to

the right level of explainability: the contextual factors (an input),

the available technical solutions (an input), and the explainability

choices regarding the form and detail of explanations (the outputs).



3.1 Contextual factors

We have identified four kinds of contextual factors that will help

identify the various reasons why need explanations and choose the

most appropriate form of explanation (output) as a function of the

technical possibilities and costs. The four contextual factors are:

• Audience factors: Who is receiving the explanation? What is their

level of expertise? What are their time constraints? These will

profoundly impact the level of detail and timing of the explana-

tion [5, 7].

• Impact factors: What harms could the algorithm cause and how

might explanations help? These will determine the level of social

benefits associated with the explanation. Generally speaking, the

higher the impact of the algorithm, the higher the benefits flowing

from explanation [8].

• Regulatory factors: What is the regulatory environment for the ap-

plication? What fundamental rights are affected? These factors are

examined in Section 5 and will help characterize the social bene-

fits associated with an explanation in a given context.

• Operational factors: To what extent is explanation an operational

imperative? For safety certification? For user trust? These factors

may help identify solutions that serve both operational and ethi-

cal/legal purposes.

3.2 Technical solutions

Another input factor relates to the technical solutions available

for explanations. Post-hoc approaches such as LIME [18], Kernal-

SHAP [14] and saliency maps [21] generally strive to approximate

the functioning of a black-box model by using a separate explanation

model. Hybrid approaches tend to incorporate the need for explana-

tion into the model itself. These approaches include:

• Modifying objective or predictor function;

• Producing fuzzy rules, close to natural language;

• Output approaches [22];

• Input approaches, which pre-process the inputs to the machine

learning model, making the inputs more meaningful and/or bet-

ter structured [1];

• Genetic fuzzy logic.

The range of potential hybrid approaches, i.e. approaches that com-

bine machine learning and symbolic or logic-based approaches, is

almost unlimited. The examples above represent only a small selec-

tion. Most of the approaches, whether focused on inputs, outputs, or

constraints within the model, can contribute to explainability, albeit

in different ways. Explainability by design mostly aims at incorpo-

rating explainability in the predictor model.

3.3 Explanation output choices

The output of explanation will be what is actually shown to the rel-

evant explanation audience, whether through global explanation of

the algorithm’s operation, or through local explanation of a particu-

lar decision.

The output choices for global explanations will include the fol-

lowing:

• Adoption of a “user’s manual” approach to present the functioning

of the algorithm as a whole [10];

• The level of detail to include in the user’s manual;

• Whether to provide access to source code, taking into account

trade secret protection and the sometimes limited utility of source

code to the relevant explanation audience [10, 20];

• Information on training data, including potentially providing a

copy of the training data [10, 13, 17];

• Information on the learning algorithm, including its objective

function;

• Information on known biases and other inherent weaknesses of the

algorithm; identifying use restrictions and warnings.

The output choices for local explanations will include the follow-

ing:

• Counterfactual dashboards, with “what if” experimentation avail-

able for end-users [20, 24];

• Saliency maps to show the main factors contributing to decision;

• Defining the level of detail, including how many factors and rele-

vant weights to present to end-users;

• Layered explanation tools, permitting a user to access increasing

levels of complexity;

• Access to individual decision logs [11, 26];

• What information should be stored in logs, and for how long?

4 EXPLAINABILITY AS AN OPERATIONAL
REQUIREMENT

Much of the work on explainability in the 1990s, as well as the

new industrial interest in explainability today, focus on explanations

needed to satisfy users operational requirements. For example, the

customer may require explanations as part of the safety validation

and certification process for an AI system, or may ask that the sys-

tem provide additional information to help the end user (for example,

a radiologist) put the systems decision into a clinical context.

These operational requirements for explainability may be required

to obtain certifications for safety-critical applications, since the sys-

tem could not go to market without those certifications. Customers

may also insist on explanations in order to make the system more

user-friendly and trusted by users. Knowing which factors cause cer-

tain outcomes increases the system’s utility because the decisions

are accompanied by actionable insights, which can be much more

valuable than simply having highly-accurate but unexplained pre-

dictions [25]. Understanding causality can also enhance quality by

making models more robust to shifting input domains. Customers

increasingly consider explainability as a quality feature for the AI

system. These operational requirements are distinct from regulatory

demands for explainability, which we examine in Section 5, but may

nevertheless lead to a convergence in the tools used to meet the vari-

ous requirements.

Explainability has an important role in algorithmic quality con-

trol, both before the system goes to market and afterwards, because

it helps bring to light weaknesses in the algorithm such as bias that

would otherwise go unnoticed [9]. Explainability contributes to “to-

tal product lifecycle” [23] or “safety lifecycle” [12] approaches to

algorithmic quality and safety.

The quality of machine learning models is often judged by the

average accuracy rate when analyzing test data. This simple mea-

sure of quality fails to reflect weaknesses affecting the algorithms

quality, particularly bias and failure to generalize. Explainability so-

lutions presented can assist in identifying areas of input data where

the performance of the algorithm is poor, and identify defects in the

learning data that lead to bad predictions. Traditional approaches to



software verification and validation (V&V) are ill-adapted to neu-

ral networks [3, 17, 23]. The challenges relate to neural networks

non-determinism, which makes it hard to demonstrate the absence

of unintended functionality, and to the adaptive nature of machine-

learning algorithms [3, 23]. Specifying a set of requirements that

comprehensively describe the behavior of a neural network is con-

sidered the most difficult challenge with regard to traditional V&V

and certification approaches [2, 3]. The absence of complete require-

ments poses a problem because one of the objectives of V&V is to

compare the behavior of the software to a document that describes

precisely and comprehensively the systems intended behavior [17].

For neural networks, there may remain a degree of uncertainty about

just what will be output for a given input.

5 EXPLAINABILITY AS A LEGAL
REQUIREMENT

The legal approaches to explanation are different for government de-

cisions and for private sector decisions. The obligation for govern-

ments to give explanations has constitutional underpinnings, for ex-

ample the right to due process under the United States Constitution,

and the right to challenge administrative decisions under European

human rights instruments. These rights require that individuals and

courts be able to understand the reasons for algorithmic decisions,

replicate the decisions to test for errors, and evaluate the proportion-

ality of systems in light of other affected human rights such as the

right to privacy. In the United States, the Houston Teachers case2

illustrates how explainability is linked to the constitutional guaran-

tee of due process. In Europe, the Hague District Court decision on

the SyLI algorithm3 shows how explainability is closely linked to

the European constitutional principle of proportionality. France has

enacted a law on government-operated algorithms4, which includes

particularly stringent explainability requirements: disclosure of the

degree and manner in which the algorithmic processing contributed

to the decision; the data used for the processing and their source; the

parameters used and their weights in the individual processing; and

the operations effected by the processing.

For private entities, a duty of explanation generally arises when

the entity becomes subject to a heightened duty of fairness or loy-

alty, which can happen when the entity occupies a dominant position

under antitrust law, or when it occupies functions that create a sit-

uation of trust or dependency vis vis users. A number of specific

laws impose algorithmic explanations in the private sector. One of

the most recent is Europe’s Platform to Business Regulation (EU)

2018/1150, which imposes a duty of explanation on online interme-

diaries and search engines with regard to ranking algorithms. The

language in the regulation shows the difficult balance between com-

peting principles: providing complete information, protecting trade

secrets, avoiding giving information that would permit bad faith ma-

nipulation of ranking algorithms by third parties, and making ex-

planations easily understandable and useful for users. Among other

things, online intermediaries and search engines must provide a “rea-

soned description of the “main parameters affecting ranking on the

platform, including the “general criteria, processes, specific signals

incorporated into algorithms or other adjustment or demotion mech-

2 Local 2415 v. Houston Independent School District, 251 F. Supp. 3d 1168
(S.D. Tex. 2017).

3 NJCM v. the Netherlands, District Court of The Hague, Case n. C-09-
550982-HA ZA 18-388, February 5, 2020.

4 French Code of Relations between the Public and the Administration, arti-
cles L. 311-3-1 et seq.

anisms used in connection with the ranking.5 These requirements are

more detailed than those in Europes General Data Protection Regula-

tion EU 2016/679 (GDPR), which requires only “meaningful infor-

mation about the logic involved.”6 In the United States, banks already

have an obligation to provide the principal reasons for any denial of a

loan.7 A proposed bill in the United States called the Algorithmic Ac-

countability Act would impose explainability obligations on certain

high-impact algorithms, including an obligation to provide “detailed

description of the automated decision system, its design, its training,

data, and its purpose.”8

6 THE BENEFITS AND COSTS OF
EXPLANATIONS

Laws and regulations generally impose explanations when doing so

is socially beneficial, that is, when the collective benefits associated

with providing explanations exceed the costs. When considering al-

gorithmic explainability, where the law has not yet determined ex-

actly what form of explainability is required and in which context,

the costs and benefits of explanations will help fill the gaps and define

the right level of explanation. The cost-benefit analysis will help de-

termine when and how explanations should be provided, permitting

various trade-offs to be highlighted and managed. For explanations to

be socially useful, benefits should always exceed the costs. The ben-

efits of explanations are closely linked to the level of impact of the

algorithm on individual and collective rights [5, 8]. For algorithms

with low impact, such as a music recommendation algorithms, the

benefits of explanation will be low. For a high-impact algorithm such

as the image recognition algorithm of an autonomous vehicle, the

benefits of explanation, for example in finding the cause of a crash,

will be high.

Explanations generate many kinds of costs, some of which are not

obvious. We have identified seven categories of costs:

• Design and integration costs, which may be high because explana-

tion requirements will vary among different applications, contexts

and geographies, meaning that a one-size-fits-all explanation so-

lution will rarely be sufficient [9];

• Sacrificing prediction accuracy for the sake of explainability

can result in lower performance, thereby generating opportunity

costs [5];

• The creation and storage of decision logs create operational costs

but also tensions with data privacy principles which generally re-

quire destruction of logs as soon as possible [11, 26];

• Forced disclosure of source code or other algorithmic details may

interfere with constitutionally-protected trade secrets [4];

• Detailed explanations on the functioning of an algorithm can fa-

cilitate gaming of the system and result in decreased security;

• Explanations create implicit rules and precedents, which the de-

cision maker will have to take into account in the future, thereby

limiting her decisional flexibility in the future [19];

• Mandating explainability can increase time to market, thereby

slowing innovation [9].

For high-impact algorithmic decisions, these costs will often be

outweighed by the benefits of explanations. But the costs should nev-

ertheless be considered in each case to ensure that the form and level

5 Regulation 2018/1150, recital 24.
6 Regulation 2016/679, article 13(2)(f).
7 12 CFR Part 1002.9.
8 Proposed Algorithmic Accountability Act, H.R. 2231, introduced April 10,

2019.



of detail of mandated explanations is adapted to the situation. The net

social benefit (total benefits less total costs) should remain positive.

7 CONCLUSION: CONTEXT-SPECIFIC AI
EXPLANATIONS BY DESIGN

Regulation of AI explainability remains largely unexplored territory,

the most ambitious efforts to date being the French law on the ex-

plainability of government algorithms and the EU regulation on Plat-

form to Business relations. However, even in those instances, the

law leaves many aspects of explainability open to interpretation. The

form of explanation and the level of detail will be driven by the four

categories of contextual factors described in this paper: audience fac-

tors, impact factors, regulatory factors, and operational factors. The

level of detail of explanations – global or local – would follow a

sliding scale depending on the context, and the costs and benefits at

stake. One of the biggest costs of local explanations will relate to

storage of individual decision logs. The kind of information stored in

the logs, and the duration of storage, will be key questions to address

when determining the right level of explainability. Hybrid solutions

attempt to create explainability by design, mostly by incorporating

explainability in the predictor model. While generally addressing op-

erational needs, these hybrid approaches may also serve ethical and

legal explainability needs. Our three-step method involving contex-

tual factors, technical solutions, and explainability outputs will help

lead to the “right” level of explanation in a given situation.
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