

Séminaire Information Communication et Electronique

Self-injected mode-locked lasers for frequency comb generation and application to multi-Tbit/s data transmission

Kamel Merghem SAMOVAR, IP Paris, Telecom SudParis

😒 IP PARIS

<u>Outline</u>

- 1. Optical Frequency Comb
- 2. Mode-Locked Laser
 - i. Quantum-dash mode-locked laser (MLL)
 - ii. MLL characteristics
- 3. Stabilization schemes
 - i. Short-term & long-term frequency stability
 - ii. Resonant optical feedback
- 4. Coherent multi-terabit/s transmission
- 5. Summary

Optical Frequency Comb (OFC)

What is an Optical Frequency Comb ?

😥 IP PARIS

https://www.nist.gov/topics/physics/optical-frequency-combs

K. Merghem – Séminaire ICE – Institut Polytechnique de Paris

The Nobel Prize in Physics 2005

Roy J. Glauber Prize share: 1/2

John L. Hall Prize share: 1/4

Theodor W. Hänsch Prize share: 1/4

The Nobel Prize in Physics 2005 was divided, one half awarded to Roy J. Glauber "for his contribution to the quantum theory of optical coherence", the other half jointly to John L. Hall and Theodor W. Hänsch "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique".

😒 IP PARIS

Applications

Fiber optic communications

- OFDM superchannels
- Ultra-high capacity WDM

Adapted from HS Margolis, Chemical Society Reviews, 15, 2012

TELECOM SudParis

IP Traffic Handling Source: Cisco Global Cloud Index, 2013–2020

🛞 IP PARIS

K. Merghem – Séminaire ICE – Institut Polytechnique de Paris

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Data center optical interconnects

Requirements 'BIG DATA':

- Tb/s data Rates
- Reduced Power Consumption
- High Front Panel Density
- Better Cost Efficiency

Solution:

Integrated frequency comb sources

• energy- efficient and scalable

• Capacity increase w/o compromising footprint and power

Using comb source vs. individual lasers:

- Lower power consumption and lower footprint for a higher number of channels
- No need for guard-bands between data channels

Frequency comb generation

Intensity and Phase Modulation

Cascaded Four-Wave Mixing in High-Q Microresonators

Wu, et al. Opt. Letters(2010)

Injection-Locking and Gain-Switching

Zhou, et al. Opt. Express (2011)

Kippenberg. T, et al. Science (2011)

Laser Mode-Locking

Delfyett, P. J. et al., Elec. Letters (2001)

Mode locking

D IP PARIS

Monolithic mode locked semiconductor lasers

- •The gain section is forward biased
- The saturable absorber is reverse biased
- Loss and Gain dynamics

Charge carrier density of states

Predicted properties / QD device

- Low threshold current density (J_{th})
- High temperature stability (T₀)

Increased differential gain (dg/dn)

• Small linewidth enhancement factor (α_H)

🚫 IP PARIS

 $D(E_{c})$

 $D(E_{v})$

 E_{c}

F E

 E_{v}

Excité

Fondamental

QD-based Mode locked lasers: Interest?

► Fast carrier dynamics

- ► Small ASE $(n_{sp} \rightarrow 1)$
- ► Low *Γ*, low loss waveguide

innolume.com/

K. Merghem – Séminaire ICE – Institut Polytechnique de Paris

1.55 µm InAs/InP QDash lasers

MBE growth on InP (100) leads to 1D « quantum dash » formation (Univ. of Würzburg, CHTM Albuquerque, …)

53390.001

MOVPE growth on (100) (Fujitsu, TU Eindhoven, HHI Berlin, LPN) leads to QDs, CBE growth (NRC Ottawa)

😒 IP PARIS

High modal gain InAs/InP (100) Q-Dash lasers

😥 IP PARIS

G Moreau et al., Applied Physics Letters (2006) F. Lelarge et al., J. Select. Top. Quant. Electronics (2007)

QDash laser fabrication

- Buried Ridge Stripe (BRS)
- Regrowth step
- Industry fabrication approach
- Ridge waveguide (RWG)
- Standard processing
- Higher injection currents

Sub-picosecond pulse generation: <u>1-section</u> devices

Single section Qdash laser C Gosset et al., Appl.Phys. Lett. 2006 L=340µm ≈ 70 ps ntensity autocorrelation (u.a.) Autocorrelation intensity (a.u.) 14 12 ower (a.u.) 10 -2 1562 1564 1566 1568 1570 1572 1574 1560 0.150 0.155 0.160 Time (ps) Wavelength (nm) Time (a.u.) $\Delta \tau_{AC} = 1.1 \text{ ps}$ $\Delta v = 0.54$ THz ER = 13 dB $\Delta \tau_{\text{pulse}} = 800 \text{ fs}$ $\Delta \tau_{\text{pulse}} \Delta \nu = 0.46$ 134 GHz Hyp: Gaussian shape

😥 IP PARIS

⇒ Enhanced non-linear effects! (FWM) Nomura et al., Phys Rev A,65,043807,2002

Pulse generation @ 346 GHz 120-µm-long laser (I=217mA) Pulsewidth 560fs @ 346 GHz

K. Merghem et al, Appl. Phys. Lett 2009

😥 IP PARIS

Ultra-high bit rate all-optical signal processing

Optical spectra of QDash based lasers

😥 IP PARIS

•Optical bandwidth does not depend on cavity length

Photocurrent analysis in RF domain

Repetition frequency and RF linewidth evolution with injection current: supermode analysis

K Merghem et al., IEEE J. Quant. Electron. 2014

Frequency stability?

- Long term RF drift? (environmental noise!)
 - Temperature variations
 - Bias fluctuations
 - Non-controlled optical feedback...

• Key point:

Specific control depending on application (e.g. Metrology)

Effect of temperature

Use low noise battery current source !

2 mK \Rightarrow 7 kHz variation

Allan deviation (fractional frequency instability)

Allan variance : two-sample variance

Measure of frequency stability using M samples, time T between measures and observation time τ

First report for passive mode locked laser

Effect of PID stabilization loop

Effect of stabilization loop (2-section device)

► gain-gain device at 10 GHz

K Merghem et al., IEEE J. Select. Top. Quant. Electron 2015

Typical optical linewidths for passive MLL

Optical linewidth for Qdash MLL ~ 10's MHz

⇒ Need for small optical linewidth (<100 kHz) for high order (>32 QAM) constellations and Gbaud rates in <u>coherent transmission</u>

D IP PARIS

Optical and RF spectra of 3-Qdash device

25GHz Qdash MLL

External optical feedback Free space optical set-up

Optical spectrum under feedback

Optical spectrum for the three regimes

- No feedback
- Non-resonant & resonant optical feedback

RF spectrum under feedback

- Effect of resonant feedback is observed on the RF spectrum
- RF Linewidth narrowing from 50 to <1 kHz, no external cavity modes

😥 IP PARIS

T. Verolet et al, IEEE J. Lightwave Technol. 2020 under review

Optical linewidth narrowing by resonant optical feedback

Optical linewidth < 100 kHz ! K. Merghem et al, CLEO 2017

32QAM WDM Transmission Using a Quantum-Dash Passively Mode-Locked Laser with Resonant Feedback

J. N. Kemal¹, P. Marin-Palomo¹, K. Merghem², G. Aubin², C. Calo³, R. Brenot³, F. Lelarge³, A. Ramdane², S. Randel¹, W. Freude^{1,4}, C. Koos^{1,4}

¹Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), Germany, ²Center for Nanosciences and Nanotechnologies (CNRS), Univ. Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, Marcoussis, France ³III-V Lab, a joint laboratory between Nokia Bell Labs, Thales Research and Technology, and CEA Leti, Marcoussis, France ⁴Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Germany, *Corresponding authors: Juned.Kemal@kit.edu, Christian.Koos@kit.edu

Abstract: We demonstrate coherent WDM transmission using a quantum-dash mode-locked laser diode with resonant feedback. We report a line rate of 12 Tbit/s (32QAM 60×20 GBd PDM) over 75 km SMF. The spectral efficiency is 7.5 bit/s/Hz. OCIS codes: (060.1660) Coherent communications, (060.2330) Fiber optics communications, (140.4050) Mode-locked lasers

🚫 IP PARIS

Postdeadline OFC'2017 BIG PIPES EC project (2013-2016)

Experimental setup

Optical setup for optical feedback

Setup for WDM transmission

32QAM WDM transmission

Conclusion

- Quantum-dash MLL for frequency comb generation
- Investigation of long term stability for applications in range finding, dual comb spectroscopy
- Potential for coherent WDM transmission

😥 IP PARIS

K. Merghem – Séminaire ICE – Institut Polytechnique de Paris

Thank you for your attention !

OL

K. Merghem – Séminaire ICE – Institut Polytechnique de Paris