Solutions for low latency and massive connectivity in future wireless networks

Frédéric Lehmann

Télécom SudParis, Institut Mines-Télécom, IP Paris

Département CITI (Communications, Images et Traitement de l'Information)

Laboratoire SAMOVAR, UMR-CNRS 5157

July, 2020

Prospects in wireless research Challenges for massive access Multi-antenna grant-free access Perspectives

Outline

- 1 Prospects in wireless research
- 2 Challenges for massive access
- 3 Multi-antenna grant-free access
- 4 Perspectives

Prospects in wireless research Challenges for massive access Multi-antenna grant-free access Perspectives

1 Prospects in wireless research

The rise of the era of IoT and big data...

M2M communications

Beyond 5G requirements

B5G, 5G+, 6G

- **Throughput**: peak data rate up to 1 Tbits/s ($\times 100$ vs. 5G)
- **Latency**: down to $10 100 \mu s$ (/ 10-100 vs. 5G)
- **Density**: up to 10^7 devices/km² (×10 vs. 5G)
- **Reliability**: packet failure rate down to 10^{-7} (/ 100 vs. 5G)

Use Cases: Smart Cities

Optimize traffic light schedule, energy consumption, security, etc

Use Cases: Autonomous Construction

Build roads or buildings according to plan, while respecting safety rules.

Prospects in wireless research
Challenges for massive access
Multi-antenna grant-free access
Perspectives

2 Challenges for massive access

Cellular IoT traffic

Assumptions in the uplink direction

- Massive access: high density of devices per km²
- Sporadic traffic: each device is active with low probability
- Small packets: active devices send only a few bytes
- Energy constraints: each device has scarce energy supply

4-step Random access procedure

Handshake protocol example: #10 ms in 4G, #1 ms in 5G

- Msg 1: Device sends a randomly chosen preamble
- Msg 2: BS sends timing advance and resources for Msg3
- Msg 3: Devices sends access request with device identifier
- Msg 4: BS sends contention resolution message

4-step Random access procedure

Limitations with high arrival rate

- Low probability of access success
- High preamble collision rate
- High access delay
- High energy consumption

Enhanced random access procedures

Coded random access

- lacksquare Example: each packet is repeated $ar{d}$ times on average
- IC/backtracking cancellation to recover collided packets

Limitations

- Keep track of UE ID of each packet (overhead)
- What if synch. and CSI are imperfect?

Grant-free access

2-step procedure

- Active UE sends data over grant-free resources
- BS responds with ACK

Grant-free access

More complicated communication problem

- Active UEs: perform uncoordinated transmission
- Channel: collisions are allowed by design
- BS: resolve collisions
 - User Activity Detection (UAD)
 - 2 Multi-User Detection (MUD)

UE uplink transmission using NOMA

Multi-access system model

```
n \in \{1, 2, \dots, N\}: user index - \mathcal{A}: set of active users, |\mathcal{A}| = K m \in \{1, 2, \dots, M\}: resource element (RE) index: frequency (CD-NOMA) / Rx antenna element (PD-NOMA)
```

 x_n : complex symbol sent by user n s_{mn} : m-th component of the spreading sequence (CD-NOMA) or square-root of power (PD-NOMA) for user n q_{mn} : user n flat-fading channel gain over RE m

Received signal over the m-th RE:

$$y_m = \sum_{n \in A} g_{mn} s_{mn} x_n + v_m, \ v_m \sim \mathcal{N}(0, \sigma^2)$$
 (1)

Serial user activity and data detection¹

¹B. K. Jeong, B. Shim and K. B. Lee, "MAP-Based Active User and Data Detection for Massive Machine-Type Communications," IEEE Trans. on Veh. Technol., vol. 67, no. 9, pp. 8481-8494, Sept. 2018.

Compressed-sensing user activity and data detection²

We can rewrite (1) in matrix-vector form y = Ax + v,

where
$$[\mathbf{A}]_{mn}=g_{mn}s_{mn}$$
, $\mathbf{x}=[x_1,\ldots,x_N]^T$, $\mathbf{v}=[v_1,\ldots,v_M]^T$.

²L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic and E. de Carvalho, "Sparse Signal Processing for Grant-Free Massive Connectivity: A Future Paradigm for Random Access Protocols in the Internet of Things," in IEEE Sig. Proc. Mag., vol. 35, no. 5, pp. 88-99, Sept. 2018.

Al-based user activity and data detection³

³W. Kim, Y. Ahn and B. Shim, "Deep Neural Network-Based Active User Detection for Grant-Free NOMA Systems," in IEEE Trans. on Comm., vol. 68, no. 4, pp. 2143-2155, April 2020.

Prospects in wireless research Challenges for massive access Multi-antenna grant-free access Perspectives

3 Multi-antenna grant-free access

Compressed-sensing grant-free access

Limitations:

- Channel/spreading sensing matrix **A**: known constant at the BS
- Needs uplink channel sounding even for inactive UE
- Not robust to fast channel variations

Multi-antenna OFDM grant-free access

Characteristics:

- Time/frequency synchronization through downlink signal
- Pilot subcarriers embedded in each uplink OFDM blocks
- UEs are distinguished by their random data interleavers

Multi-antenna OFDM grant-free access: sparse traffic flows

Multi-antenna OFDM grant-free access

Tx parameters:

- $1 \le u \le U$: user index
- **b** u : uniformly distributed information bits for user u
- CC^u: convolutional encoder for user u
- \blacksquare π^u : user-specific interleaver for user u
- $\mathbf{d}^u = \mathcal{C}^u(\mathbf{b}^u)$: length-N complex symbol vector for user u
- \bullet $\theta^u \in \{0,1\}$: activity variable for user u
- $lackbox{\blacksquare} E^u_s$: energy per complex symbol for user u

Channel parameters: N_R Rx antennas

 $\mathbf{c}^{(u,m)}$: channel impulse response from user u to Rx antenna m $\{C_n^{u,m}\}_{n=0}^{N-1} = \mathcal{F}_N(\mathbf{c}^{(u,m)})$: corr. channel frequency response (CFR)

Multi-antenna OFDM grant-free access: System model

Multi-antenna OFDM grant-free access: Modeling

User-
$$u$$
 CFR over subcarrier- n : $\mathbf{x}_n^u = \left[C_n^{u,1}, C_n^{u,2} \dots, C_n^{u,N_R}\right]^T$

Gauss-Markov state-space model: $\mathbf{x}_n^u = \mathbf{x}_{n-1}^u + \mathbf{\Delta}_n^u$ i.i.d. Gaussian driving noise $\mathbf{\Delta}_n^u \sim \mathcal{N}_C(\mathbf{\Delta}_n^u: \mathbf{0}_{N_R \times 1}, \mathbf{Q}^u)$

Observation at Rx antenna m over <u>subcarrier-n</u>:

$$y_n^m = \sum_{u=1}^U \theta^u \sqrt{E_s^u} d_n^u C_n^{u,m} + w_n^m$$
, $w_n^m \sim \mathcal{N}_C(w_n^m:0,N_0)$ i.i.d.

In vector-matrix form:
$$\mathbf{y}_n = \sum_{u=1}^C \theta^u \mathbf{H}_n^u(d_n^u) \mathbf{x}_n^u + \mathbf{w}_n$$
, where

$$\mathbf{y}_n = [y_n^1, \dots, y_n^{N_R}]^T, \mathbf{H}_n^u(d_n^u) = \operatorname{diag}\left\{\left[\sqrt{E_s^u}d_n^u, \dots, \sqrt{E_s^u}d_n^u\right]\right\},$$

$$\mathbf{w}_n = [w_n^1, \dots, w_n^{N_R}]^T$$

Joint posterior distribution and its marginals

Notations

- Collection of hidden variables: $\{x, y_1, y_2, \dots\}$ (circles)
- Consider a factorization of the joint posterior distribution:

$$p(x, y_1, y_2, \dots | \mathbf{o}) = f(x, y_1, y_2, \dots) \prod_j h_j(x, \dots),$$

Local function: depends on subset of hidden variables (square)

Compute the marginal posterior distribution of x

$$p(x|\mathbf{o}) = \sum_{y_1, y_2, \dots} p(x, y_1, y_2, \dots |\mathbf{o})$$

General factor graph representation

Propagate messages along each edge in both directions

Distributed inference on the factor graph

Sum-product algorithm (SPA)

Variable node to local function node messages:

$$\mu_{x \to f}(x) \propto \prod_{h \in n(x) \setminus \{f\}} \mu_{h \to x}(x)$$

■ Local function node to variable node messages:

$$\mu_{f \to x}(x) \propto \sum_{n(f) \setminus \{x\}} \left(f(n(f)) \prod_{y \in n(f) \setminus \{x\}} \mu_{y \to f}(y) \right)$$

Compute the marginal posterior of x:

$$p(x|\mathbf{o}) \propto \prod_{h \in n(x)} \mu_{h \to x}(x)$$

Multi-antenna OFDM grant-free access: Posterior

Posterior distribution of all hidden variables:

$$\begin{split} & p\left(\theta^{1},\ldots,\theta^{U},\{\mathbf{x}_{n}^{1}\}_{n=0}^{N-1},\ldots,\{\mathbf{x}_{n}^{U}\}_{n=0}^{N-1},\mathbf{d}^{1},\ldots,\mathbf{d}^{U},\mathbf{b}^{1},\ldots,\mathbf{b}^{U}|\{\mathbf{y}_{n}\}_{n=0}^{N-1}\right) \\ & \propto p\left(\{\mathbf{y}_{n}\}_{n=0}^{N-1}|\theta^{1},\ldots,\theta^{U},\{\mathbf{x}_{n}^{1}\}_{n=0}^{N-1},\ldots,\{\mathbf{x}_{n}^{U}\}_{n=0}^{N-1},\mathbf{d}^{1},\ldots,\mathbf{d}^{U}\right) \\ & \times \prod_{u=1}^{U}\left\{P(\theta^{u})p\left(\{\mathbf{x}_{u}^{u}\}_{n=0}^{N-1}\right)P(\mathbf{d}^{u}|\mathbf{b}^{u})P(\mathbf{b}^{u})\right\} \\ & \propto \prod_{n=0}^{N-1}p(\mathbf{y}_{n}|\theta^{1},\ldots,\theta^{U},\mathbf{x}_{n}^{1},\ldots,\mathbf{x}_{n}^{U},d_{n}^{1},\ldots,d_{n}^{U}) \\ & \times \prod_{u=1}^{U}\left\{P(\theta^{u}) \quad p(\mathbf{x}_{0}^{u})\prod_{n=1}^{N-1}p(\mathbf{x}_{n}^{u}|\mathbf{x}_{n-1}^{u}) \quad I(\mathbf{d}^{u}=\mathcal{C}^{u}(\mathbf{b}^{u}))\right\} \end{split}$$

Complete factor graph

CFR estimation subgraph for user \boldsymbol{u}

Demodulation subgraph for user u

Decoding subgraph for user u

User activity detection subgraph for user u

u-th user activity detection subgraph

Complexity issues

Ordinary message passing:

Complexity order per-subcarrier: exponential in U

Complexity reduction:

Collapse all Gaussian mixture messages to a single Gaussian. Complexity order becomes

- \blacksquare Linear in U,
- Linear in size of the modulation alphabet
- Linear in the number of receiver iterations
- \blacksquare Cubic in N_R

Simulation example

Setup:

- \blacksquare (1,5/7) convolutional code, QPSK
- OFDM modulation: N = 1024 subcarriers, length-N/8 CP
- $U(U, N_R) = (16, 4)$
- 4 out of 16 active users
- Channel: block Rayleigh fading with delay spread = 3 samples
- Receiver with 4 message passing iterations

Simulation example:

Missed-detection probability: below 10^{-3} at $\frac{E_s}{N_0} > -3$ dB

False alarm probability: below 10^{-3} at $\frac{E_s}{N_0}>2~\mathrm{dB}$

Prospects in wireless research Challenges for massive access Multi-antenna grant-free access Perspectives

4 Perspectives

Perspectives

Improvements:

- Robustness to higher order modulations?
- Other NOMA schemes: SCMA, IDMA, etc?
- Other detection algorithms: EPA, variational message passing?
- Other applications needing UAD: as cognitive radio, decode-and-forward relaying, etc

Future work...

- Reduced-order modeling/filtering
- Mixed discrete-continuous filtering

Prospects in wireless research Challenges for massive access Multi-antenna grant-free access Perspectives

End

Thank you for your attention!

CFR estimation subgraph for user u: Forward pass (1)

CFR estimation subgraph for user u: Forward pass (2)

CFR estimation subgraph for user u: Forward pass (3)

CFR estimation subgraph for user u: Backward pass (1)

CFR estimation subgraph for user u: Backward pass (2)

CFR estimation subgraph for user u: Backward pass (3)

CFR estimation subgraph for user u: Smoothing pass

Demodulation subgraph for user u: Soft Demodulation

Decoding subgraph for user u: Soft Decoding

User activity detection subgraph for user u: Soft UAD

