Mm-wave Antenna-System Designs dedicated
to high-data rate communications
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Context of our research work

The future needs of the global mobile data traffic induces the
massive arrival of new connected devices
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Consequences

- The global mobile data traffic
~ will rise to 600 exabyte/month
in 2025
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Context of our research work

To address this data challenge a progressive 5G roll out is being planned by telecom
industries since the beginning of 2020
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Data rate up to 10 Gbit/s peak for the users

Data rate up to 40 Gbit/s for the BST
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Context of our research work

In order to the and , our research work,
since 2010, has been applications:

= Communications between small devices over few meters for kiosk downloading
or docking stations wireless links

— WiGig (60 GHz), D-band (220 GHz) and Sub-THz (200-300 GHz)
- Backhaul and fronthaul communications

— Mm-wave and THz targeting
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Context of our research work

= Since data consumption is going higher and higher, short distance (< 3m)
high speed wireless solution is a key differentiator (cable replacement):

Short distance ad hoc link: Cloud based Sync. & delivery services:

.
O vuscunimited @

PLAYSTATION.
Notwork

hitp:iwww.theverge.comi2013/1/14/3875308/wigig-gets-omcial-
standards-for-shon-range-high-speed-wirsless

’ POLYTECH’
NICE-SOPHIA

POLYTECH LAB



Context of our research work

§ 3

Peer-to-Peer Kiosk Sync & Data Exchange

Instant Wireless Sync
- IP-based P2P applications

- -
- Using 1I/O PAL - ié,
3 —— .‘J

Wireless Display

Wireless Display -
- HD streams over HDMI u
or DP using A/V PAL

—
T R
- CE, PE and HH usages ﬁ ‘ g .J

Distributed Peripherals

Cordless Computing

- Combination of Wireless _
display using A/V PAL, sync % ‘\ *
7 o ’

and I/0 using I/O PAL - =

Wi-Fi

Internet Access
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Line-of-Sight communications (1m to 2m)

=)

Context of our research work

5-dBi gain antenna

Low-gain Tx antenna
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Line-of-Sight communications (2 to 5m)

10-dBi gain antenna

Directional Tx antenna array

Captured energy
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Context of our research work

Challenge of Wireless backhaul / fronthaul networks

Tsunami® QB-8200-LNK

Densification of the network (Smalls cells x 10) implies a strong pressure on backhaul links.

2 solutions:
» Optics fibers installation is too expensive and cannot be set everywhere.
* Point-to-point mmW wireless link is the most attractive solution.

R&D at D Band (110 - 140 GHz): wide bandwidth ( > 20 GHz) — 20 Gbit/s

Sub-THz frequencies could enable wider bandwidth & higher data rates — 40 Gbit/s

Cyril Luxey



Context of our research work

* 60/120GHz High Gain Antenna Specifications

* Since the output power level is limited, the transmission range of the system mainly depends
on the

Minimum Gain (dBi) required vs. range

—B0GHZ Back'haul System
=120GHz Fronthaul/Backhaul System
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Context of our research work

d Ourresearch work silicon-based

1 Several chipset solutions demonstrated the possibility to use silicon technology to
address mm-Wave high-data rate transmissions

Stanford Berkeley

T |
o] .é ] | J

57-66 GHz  120-140 GHz 200-280 GHz

IBM [/ Mediatek

15% 15% 34%

1-5 Gbps 10 Gbps 40 Gbps

T'he main challenge concerns an efficient Circuit/Antenna combination
v Low-loss mmW packaging technology

v Low-cost mmW packaging technology

v Assembly strategy compliant with industrial constraints

Cyril Luxey 10



Context of our research work

® For example, the availability of cost-effective silicon mmW chipsets will not be enough
in order to reduce the cost of backhaul / fronthaul links

60 GHz BiCMOS chipset ~5% SMPM connector ~15$ K/band antenna ~1000h

Peraso PRS1021 (>100 000 parts) 67 GHz board connector
v
B

A\ W

® So, low-cost high-gain mmW antenna solution is a key enabler in order to support the
development of cost effective backhaul/fronthaul links that can leverage the integration
capability and cost effectiveness of silicon technologies.

Cyril Luxey
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Outline

1 SoCorSiP IC/Antenna integration scheme ?

1 Low-Gain Antennas in organic packaging technology

! Antenna integration strategies: current status

-1 High-Gain Antennas in organic packaging & 3D printing technologies
! 10 Gb/s Low-energy point-to-point demo at 120 GHz

.l Perspectives

! Conclusion
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SoC or SiP IC/Antenna integration scheme ?

Integrating

integrated on

was the first idea but ...

clearly not in line with WiGig transmission over few meters (above 5 dBi)

Low-Resistivity
Silicon

High-Resistivity
Silicon

Cyril Luxey

Reference | Process Antenna Type Gain (dBi) | Size

[2] Silicon [FA -19 2 mm long

[2] Silicon Quasi Yagi -12.5 1.3 mm long
[3] 0.18-um CMOS | Yagi -10.6 1.1 x 0.95 mm?
[4] 0.18-um CMOS | IFA -15.6 0.28 x 0.27 mm?
[5] 0.18-um CMOS | Triangular Monopole | -9.4 1x0.81 mm?
ST/UNS 0.13-um CMOS | IFA -2.7 1x1mm?
ST/UNS 0.13-um CMOS | Dipole -7.9 1 x1 mm?

[6] 0.15-pum pHEMT | Dipole 3.6 0.9 mm?

[7] 0.18-um CMOS | Loop with AMC 4.4 1.8x 1.8 mm?
[8] 0.13-pum HR SOl | Double Slot -5.5 1.2 mm long
[9] 0.13-pum HR SOI | Interdigitated Dipole | 3 NA

ST/UNS HR SOI Folded Slot 3.9 0.8 x 1.7 mm?

[2]Zhang et al., 2005
[3]1Hsu et al., 2008

[4] Guo et al., 2008
[5]Lin et al. 2007

[6] Chen et al., 2009
[71Baoetal., 2012

[8] Barakat et al., 2011
[9] Barakat et al., 2010

(SoC approach) exhibited poor gain,

13



SoC or SiP IC/Antenna integration scheme ?

Jd System-in-Package approach naturally emerged as the solution

)

Example ofa 6o GHz Antenna-in-Packagg ML@\ayer substrate with built-in antenna

O Low profile package { i

-
, _ RF die
O Multi-layer build-up
U Aperture coupled-Patch Antenna -
PCB application board

Cyril Luxey



SiP or SoC integration scheme ?

1 Mainstream technologies for SiP were glass and multi-layer co-fired

ceramics substrates (Low or High Temperature)

12R - LTCC

14.4 mm | thickness 1.0 mm

1Rx antenna

Tokyo Institute of Tech

14.4 mm

IBM
Laminated
packages

IBM
Glass Substrate

Cyril Luxey 15



Low-Gain Antennas in organic packaging tech.

J We had to identify the appropriate packaging technology to support the
development of 60 GHz modules as possible commercial products

1 We deeply investigated:
- HTCC/LTCC

J Organic Ball-Grid-Array module

Design Rules
Technology (min width/min space ) cost
HTCC/LTCC ~100 um/~100 pm

Organic BGA ~39 Um/~35 um +

Cyril Luxey



Low-Gain Antennas in organic packaging tech.

» We developed a low-cost organic millimeter-wave High-Density Integration (HDI)

packaging technology ‘_
) /4

life.augmented
1 prepreg +2 cores +1 prepreg

Stack-up top Y, solder mask
Metal 1 (copper 18 pm) ] 20 pm
Metal 2 (copper18 pm) 4 45pm
CMOS
Footprint Y ssssssssssss 3
g N B 1 Tx 406 pm
: Antenna
SMD
Footprint ! ¢ < 12 mMm
~_ :.:. -....... , X
Ballpad (5 o . Antenna Metal 3 (copper 18 pm) —t s
-e m
Traces 1 Metal 4 (copper 18 um) _ ) pm
Sowcss STMicrDBacrance ~ solder mask

Bottom side Top side

[11] R. Pilard et al., “"HDI Organic Technology Integrating Built-In Antennas Dedicated to 60 GHz
SiP Solution”, IEEE AP-S 2012

Cyril Luxey 17
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Top view

' IC footprint
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Tx antenna
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Low-Gain Antennas in organic packaging tech




Low-Gain Antennas in organic packaging tech.

The start of our collaboration with ST was a very good example of cross-cultural development with the
microelectronics world leveraging both antenna & circuit communities'’ expertise

1"‘

Power meter ——s W RFam-le.fler

AUT & pro'be £

/

SGH & mixer
Control PC

Frequency

: VDI Head &
synthesizer

support

Aicroscope
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Low-Gain Antennas in organic packaging tech.

1 Several modules from different suppliers were fabricated and measured showing successful
reproducibility tests

U Antenna performance were fully in line with the 5 dBi Gain requirement

S,, MATCHING BW W

53 GHz— 67 GHz @ -10 dB BROADSIDE GAIN BW (> 5 dBi)

) 57 GHz - 67 GHz
I ;7
Tx1 — 5 | WH\
=)
X | | |

Tx4d — 5 = Co-Pol (Simulation)
Tx5 — —_ = Co-Pol (Measurements)
D10 . X-Pol (Measurements)
j
T -15
O]

-20 A

IIII|IIII|IIII|IIII|IIII|IIII -25

45 50 55 60 65 70 / 20
freq, GHz 35

50 52 54 56 58 60 62 64 66
\ Frequency (GHz) /

20
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Low-Gain Antennas in organic packaging tech.

L Organic BGA technology seems to be the best compromise between cost/performance/assembly

TOTAL EFFICIENCY BW
50-60 % - 57-66 GHz

em———— T
/ 'L.__.;_{J;--.H}‘.ﬁ::“”-:-"%d

— Simu
—— Fournisseur #1-Tx1 |
=== Fournisseur #1 - Tx2
02 ] e Fournisseur #1 - Tx3 |
Fournisseur #2 - Tx2

Total Efficiency

0.1 === Fournisseur#2 - Tx3 [
««++« Fournisseur #2 - Tx4

O T T
50 52 54 56 58 60 62 64 66
Frequency (GHz)

Cyril Luxey 21



Total Realized Gains (dBi) — 3D plots

50 GHz 52 GHz @ 54 GHz 56 GHz 58 GHz

Th(db_Tot_52.00

Th(dB_Tot_50.00 4 &i00y:
e s s
o, 3659000 . 3. 585004000 . 3388104000
~7.0838¢+000 6. 6009¢-001 .

3.599064001
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s, 06000000
l 3 3061e.000
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Low-Gain Antennas in organic packaging tech.
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Low-Gain Antennas in organic packaging tech.
Lys

life.augmented

el il v iy

Fig. 8  Low cost 60GHz WiGIG board with Digital Baseband

B E B R B B B BRI [—— il

16 QAM - OFDM
=» 3.8 Gbps over 1m

SNR around 15 dB

Fig. 9 Measured constellations after demodulation in the HRP2
Cyril Luxey mode (OFDM-16QAM modulation) with Agilent tools. 23
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Low-Gain Antennas in organic packaging tech.

-l 120 GHz organic module for high-data rate links: Single Element

S,, MATCHING BW ]

120 GHz-138 GHz @ -10 dB

o-Pol Gain (dBi)

®

ANV ON DM O ®

o

90

freq, GHz Meas.

Sim.

BROADSIDE GAIN BW (>6 dBi)
120 GHz - ?? GHz

100

110 120 130 140 150
24
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1:4 Divider (M1)
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Low-Gain Antennas in organic packaging tech.

L1 120 GHz organic module for high-data rate links: 2x2 Array of patches

i
o o
L1

S,, MATCHING BW
92 GHz-140 GHz @ -10 dB

BROADSIDE GAIN
BW (>8 dBi)
120 GHz - 140 GHz

-20-]
] Sim.
-30—
. Meas.
-40 |||||||||||||||||||||||||||||
90 100 110 120 130 140 150
E
=
c
5
4 B B Simu (Co-Pol)

e Meas (Co-Pol)

Polynomial interpol. (order 6)
----- Polynomial interpol. (order 6) - 1.2
- - = Polynomial interpol. (order 6) + 1.2

110 120
Frequency (GHz)

130 140




1 240 GHz organic module for high-data rate links: 12x2 Array

Cyril Luxey

Slots (P1)

SIMULATED BROADSIDE GAIN BW (>7.8 dBi)
200 GHz - 280 GHz

10 —

220 GHz; 9.07dB

268 GHz;7.8dB

240GHz 260GHz

o E zz’oeHz& % 280GHz

240 260 280
Freq (GHz)

Low-Gain Antennas in organic packaging tech.
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Low-Gain Antennas in organic packaging tech.

240 GHz organic module for high-data rate links: 1x2 Array .\X‘(IT

AN

0 \/ MEASURED BROADSIDE GAIN BW (>5 dBi)
220 GHz - 245 GHz

15 Post-simulation

— Measurement
20
00 220 240 260 280 300
Freq (GHz)

/ Antenna realized gain (dBi) !

Cyril Luxey



Low-Gain Antennas in organic packaging tech.

240 GHz organic module for high-data rate links: 12x2 Array

Manufactured design # Simulated design
— We reached the limitations of this technology in terms of drawing rules at 300 GHz




Antenna Integration Strategies:current status

® Today, two industrial integration schemes can be considered for the antenna

solution:
- : targeting high integration level and high performance
° : in order to enable antenna customization according to

the use-case of the customer — HDI PCB or even recently FR4 PCB

/ Antenna-in-Package \ / Antenna-on-Board \

- Antenna Gain: from 5 to 10 dBi  Antenna Gain: from 5 dBi to 10 dBi

Multi layer substrate
with integrated antenna

60 GHz BGA module Antenna on

— _—

Antenna

Silc

/

29
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Antenna Integration Strategies:current status

FR4 Standard PCB Technology
* Designrules: 60 (line width) X 75 (space between lines) um?

Vias

pVias

0 - -
" @

= :

z ] ]

— 20 1 ul ]

GSG pads & 1 3

¥ - ll Jr ‘1: :

[_‘ -30 1 s i 210 ]

[ .; -

20 ] -15 -

50 52 54 56 58 60 62 64 66 68 70 72 74
Frequency (GHz)

50 52 54 56 58 60 62 64 66 68 70
Frequency (GHz)

Simulation diam_via = 200 pm Simulation diam_via =100 pm
Simulation diam_via = 100 pm Simulation diam_via = 200 pm
....... Measurement Measurement

https://www.st.com/en/wireless-transceivers-mcus-and-modules/60-ghz-short-range-rf-transceivers.html

Cyril Luxey https://blog.st.com/st6o/amp/
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High-Gain Antennas in organic packaging & 3D printing

1 The path towards high-gain antennas for backhaul and fronthaul wireless links

D (Ao)
0O 4 8 12 16 20 24 28 32 36 40 44 48
50

45

40

Lens
35
2 30 Reflector
c 25
1]
O 2
15
Organic 1°
Module ° An antenna-source is

0 needed in those cases

\ Antenna Diameter /

Cyril Luxey




High-Gain Antennas in organic packaging & 3D printing

J What about using 30-printing technology to fabricate plastic lenses instead of
costly Teflon approach ?

Stereolithography | Selective Laser Sintering |Fused Deposition Modeling
Cost Expensive Expensive Inexpensive
Principal Solidifies liquid resin | Sinters powdered material| Molten plastic deposition

Surface finishing smooth Slightly granular Rough (dented)
Z axis resolution Upto 5 um Up to 20 um Up to 100 um
XY plane resolution Up to 30 um Up to 300 um Up to 200 um

) Plastic lens fabricated in Fused Deposition Modeling (FDM) : e O Plastic string reel
I Standard ABS plastic (g, = ???) ' Hot nozzle
‘ &, and tan 6 of the ABS-M30 at 60GHz, 120, 240 GHz ? Molten plastic
Solidified object

Cyril Luxey 32



High-Gain Antennas in organic packaging & 3D printing

Y4

Fabry-Perot Open Resonator at 60GHz Non-resonant waveguide method at 120GHz

) ==

l S——

WRO08 waveguide

IST/IT lab

TECNICO
LISBOA

Plastic sample (ABS-M30)

[12]J. R. Costa, et al, "Compact Beam-Steerable Lens Antenna for 60-GHz Wireless

4791 s
™
&1 Z 7 7
\Communications”, TAP, 2009. / \ A i

TR c - BT
Method Fabry-Perot Open Quasi-optical meas. Waveguide NA
resonator setup method
Freq. 60GHz 137.5GHz 110-125GHz NA
& 2.48 2.48 2.49 2
tan o 0.009 0.008 0.01 0.0002
Cyril Luxey
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High-Gain Antennas in organic packaging & 3D printing

) In order to obtain the best performance, a co-design of the source with the lens

Lens directivity vs. Source directivity

Elliptical Lens Cross-section

. Plastic

r
>
.

Source

[ )

% 39 4.""’*—— I .

"CI_.'J /./ 1 \

% 30 /.ﬁ"——,_ \.\

o /

S ‘/.’ \.

%‘ 26 H

2 |

£

524 ro—e—T® | a="71 <a

_.?:" a — 6}»0

= _

g 22 a =54,

9 a— 4‘10

=

20 .
6 8 10 12128 14 16 18

\ Directivity of the gaussian source (dBi) j
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High-Gain Antennas in organic packaging & 3D printing

) In order to lower the dielectric losses, we designed a chopped lens
I Fast optimization using ILASH software tool (GO/PO) + HFSS full-wave verification

Full ellipticallens Chopped elliptical lens

Elliptical profiles
ABS-M30 . X
\A

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Cyril Luxey 35



High-Gain Antennas in organic packaging & 3D printing

1 40 mm diameter lens for high-data rate links @ 120 GHz

Z 4 Bottom View

Chopped Elliptical Lens ™
eecee
. L
©
®
o

R 7 mm

e
Notch 4
°
eeeen
GSG pad 1:4 power divider Patch (M2)  Dummy
ICfootprint (M1) Ballpads (M1) Metallic ring metallic plate
(M1) (M1) (P2) (M2)

Supporting

structure for the
/ source

Holes for
the notch

Aperture in the”
support

<

PCB Source /

Cyril Luxey
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High-Gain Antennas in organic packaging & 3D printing

1 40 mm diameter lens for high-data rate links @ 120 GHz

S, MATCHING BW

112 GHz-140 GHz @ -10 dB

5 ~>20% bandwidth

-10
-15
-20
25
-30
35+

30

“% 95 100 105 110 115 120 1 28

Frequency (GHz) 26

24

—22

KSIMULATION: ) €

- FFGain: 29 dBi 8

16

MEASUREMENTS .

\_- FF Gain: 28.5 dBi ), "

10>

Cyril Luxey

—=&— Simulation (HFSS) in the direction (¢,8)=(0°,0°) |

Measurement (CP)
————- Polynomial interpol. (order 4)

mrmeee Polynomial interpol. (order 4) -1.2 dB
"""" Polynomial interpol. (order 4) +1.2 dB

1 1 1 1 1 1

95 100 105 110 115 120
Frequency (GHz)

Normalized amplitude (dB)

Normalized amplitude (dB)

45

-50

-10

151

20

=256
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-40 |

-45
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= = = Simulations
Measurements + NFFF Transform
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8

H-plane ($=0°)

= = = Simulations

Measurements + NFFF Transform
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10Gb/s Low-energy Point-to-Point demo @ 120GHz

L1 Fully-packaged low-cost energy-efficient OOK Tx/Rx device

Fully-Packaged System

Data Center

Internet Kiosk

3D-Printed Lens

Stanford

University

Antenna- :
in-Package ~ ama—""Chip

life.augmented

* ST 55nm BiCMOS
* Center frequency: 130GHz
* Pg,i~10dBm

= e

. e o, : Current . L
TX efficiency of 15% = 3x higher Switching ——— e
than the state-of-the-art

TX Data,
.......@% %@.................

o

o

<]

X o

0

S $

)
<

= ST 55nm BiCMOS
= Bandwidth ~15GHz
= Receiver sensitivity: -47dBm

BRKE -
RX Datagy;

[13] N. Dolatsha et al., “Compact 130GHz Fully Packaged Point-to-Point Wireless System with 3D-Printed 26dBi Lens Antenna Achieving 12.5Gb/s at 1.55pJ/b/m”, IEEE International Solid-State
Circuits Conference (ISSCC 2017), February 5-9 2017, San Francisco, USA.
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(1.62x1.98mm?)

TRX Power
Consumption <100mW

X

Reflector _ g -9\\
%1 AN 9
‘oo“d -
AN
7
Cyril Luxey

Fully-Packaged System

TRX Power Consumption

1% i 3%

Measured BER 10-¢

- Measured BER 106 g

ll(eysig ht N4903B 10°

14 [eee Measured Bathtub
w

o [CoTE, 12.5Gbps @ 2m

| W

m

A

N
N

_ :\'.1 ‘50

. er%—
<o0e0e0e | ©

5__".
£
Y <
i Tx
Z \ /
_ \
Metal NS 10
Reflector Sau

-0.5 -0.25 0 0.25

7.76 pJ/b Energy Efficiency
1.55 pJ/b/m, >40X better than state-of-the-art

10Gb/s Low-energy Point-to-Point demo @ 120GHz

0.5 -0.25 0 0.25 0.5
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High-Gain Antennas in organic packaging & 3D printing

* 3D Printed Plastic vs. Teflon Lenses

_ Teflon Lens 3D Printed Lens
 J

pppppp

Manufacturing time ~9 hours
Manufacturlr?g High Low
cost/complexity

Material cost High Low

Lens diameter 25 mm 40 mm

40



Perspectives

Main reflector

0 50 100 (mm) 0 50
I Piastic (ABS-M30)
- Plastic (ABS-M30) with metal coated

Source antenna position

13X13X3.8cm3

\_

~

Sub reflector

1 120 GHz 3D-printed Cassegrain reflector with plastic casing + BGA source

L Sub reflector

.
~_ After two metallization...

Main reflector ‘ ...using an EMI

Casing box

Cyril Luxey

aerosol paint
(KONTAKT CHEMIE EMI 35)

A
v

12cm >
14cm /
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Perspectives

120 GHz 3D-printed Cassegrain reflector with plastic casing + BGA source

F-band VDI head ACP 140 GHz (pitch 1200 um)

Arm extension

40/60/80cm

®

..

L B
°

.

®

.

.

eece
TR
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Perspectives

S,; MATCHING BW

118 GHz-140 GHz @ -10 dB

KN
o

a

Frequency (GHz)

m
S
o -20
£
e
Qo
o -
= 30
Measured
-40 Simulated
-50
100 110 120 130 140

w w
o ol

N
ol

Gain (dBi)

10

J

Cyril Luxey

\_

-
BROADSIDE NF GAIN BW (>30 dBi)
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Perspectives

.1 300 GHz 50 dBi 3D-printed Cassegrain reflector + BGA source
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Si photonics System-in-Package
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Perspectives

-l Design of a 5o dBi Cassegrain at 300 GHz

Antenna Gain needed for 1 to 200m link:
30-50 dBi
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Conclusion

® Enabling cost-effective wireless solutions is a key point in order to address future wireless
challenges

® Silicon-based technology as CMOS/BiCMOQOS are suitable even beyond 200 GHz
® Cost-effective packaging with clever IC/antenna integration will continue to be a strong issue
=» Organic laminate technology has proven its suitability up to 300 GHz

93D-printing uses resulted in low-cost plastic-based lenses and reflectors

® From R&D point of view, moving to higher than 300 GHz will require aggressive design rules
exceeding today’s capability of organic substrate technology

=» Some innovation will be needed here
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