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The future needs of the global mobile data traffic induces the
massive arrival of new connected devices
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Entreprise IoT

Composants Smart Home

Portables

Véhicules connectés

Smart TV

Ecrans et enceintes connectés

Autres médias Internet

Tablettes

Smartphones

PCs

• IoT Entreprises
• Smart Home Components
• Wearable
• Smart Driving
• Smart TV
• Smart Screens and Speakers
• Other Internet Media Devices
• Tablets
• Smartphone
• PCs

Context of our research work

Consequences

The global mobile data traffic 
will rise to 600 exabyte/month 

in 2025

Challenge

Develop wireless links targeting 
high data rates communications



To address this data challenge a progressive 5G roll out is being planned by telecom 
industries since the beginning of 2020 
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Cloud
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5G Small Cell
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In order to support the 5G network and applications roll out, our research work, 
since 2010, has been concentrated on two main applications:

- Communications between small devices over few meters for kiosk downloading
or docking stations wireless links

→ WiGig (60 GHz), D-band (120 GHz) and Sub-THz (200-300 GHz)

- Backhaul and fronthaul communications

→ Mm-wave and THz point-to-point wireless links targeting 40 Gbit/s
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Context of our research work

Line-of-Sight communications (1m to 2m)

Line-of-Sight communications (2 to 5m)

5-dBi gain antenna

10-dBi gain antenna

Antenna array
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Challenge of Wireless backhaul / fronthaul networks

• Densification of the network (Smalls cells x 10) implies a strong pressure on backhaul links.

• 2 solutions:
• Optics fibers installation is too expensive and cannot be set everywhere.

• Point-to-point mmW wireless link is the most attractive solution.

• R&D at D Band (110 - 140 GHz): wide bandwidth ( > 20 GHz) → 20 Gbit/s

• Sub-THz frequencies could enable wider bandwidth & higher data rates → 40 Gbit/s

Context of our research work
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• Since the output power level is limited, the transmission range of the system mainly depends
on the gain of the antenna.

• 60/120GHz High Gain Antenna Specifications

Context of our research work



❑ Our research work investigated silicon-based technical solutions

❑ Several chipset solutions demonstrated the possibility to use silicon technology to
address mm-Wave high-data rate transmissions

❑ The main challenge concerns an efficient Circuit/Antenna combination

✓ Low-loss mmW packaging technology

✓ Low-cost mmW packaging technology

✓ Assembly strategy compliant with industrial constraints

IBM / Mediatek ST Stanford Berkeley

Context of our research work

V-band D/F-band J-band

57-66 GHz 120-140 GHz 200-280 GHz

15% 15% 34%

1-5 Gbps 10 Gbps 40 Gbps
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• For example, the availability of cost-effective silicon mmW chipsets will not be enough
in order to reduce the cost of backhaul / fronthaul links

• So, low-cost high-gain mmW antenna solution is a key enabler in order to support the
development of cost effective backhaul/fronthaul links that can leverage the integration
capability and cost effectiveness of silicon technologies.

60 GHz BiCMOS chipset  ~5$ 
Peraso PRS1021 (>100 000 parts)

SMPM connector ~15$
67 GHz board connector

V band antenna  ~1000$

Context of our research work



Outline
❑ SoC or SiP IC/Antenna integration scheme ?

❑ Low-Gain Antennas in organic packaging technology

❑ Antenna integration strategies: current status

❑ High-Gain Antennas in organic packaging & 3D printing technologies

❑ 10 Gb/s Low-energy point-to-point demo at 120 GHz

❑ Perspectives

❑ Conclusion 
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SoC or SiP IC/Antenna integration scheme ?

❑ Integrating 60 GHz mm-wave antennas on chip was the first idea but …

… antennas integrated on standard or high-end Si CMOS process (SoC approach) exhibited poor gain, 

clearly not in line with WiGig transmission over few meters (above 5 dBi)

Reference Process Antenna Type Gain (dBi) Size 

[2] Silicon IFA -19 2 mm long

[2] Silicon Quasi Yagi -12.5 1.3 mm long

[3] 0.18-µm CMOS Yagi -10.6 1.1 x 0.95 mm²

[4] 0.18-µm CMOS IFA -15.6 0.28 x 0.27 mm²

[5] 0.18-µm CMOS Triangular Monopole -9.4 1 x 0.81 mm²

ST/UNS 0.13-µm CMOS IFA -2.7 1 x 1 mm²

ST/UNS 0.13-µm CMOS Dipole -7.9 1 x1 mm²

[6] 0.15-µm pHEMT Dipole 3.6 0.9 mm²

[7] 0.18-µm CMOS Loop with AMC 4.4 1.8 x 1.8 mm²

[8] 0.13-µm HR SOI Double Slot -5.5 1.2 mm long

[9] 0.13-µm HR SOI Interdigitated Dipole 3 NA

ST/UNS HR SOI Folded Slot 3.9 0.8 x 1.7 mm²

[2] Zhang et al., 2005 
[3] Hsu et al., 2008
[4] Guo et al., 2008
[5] Lin et al. 2007
[6] Chen et al., 2009
[7] Bao et al., 2012
[8] Barakat et al., 2011
[9] Barakat et al., 2010

High-Resistivity
Silicon

Low-Resistivity
Silicon
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❑ System-in-Package approach naturally emerged as the solution

Example of a 60 GHz Antenna-in-Package

❑ Low profile package

❑ Multi-layer build-up

❑ Aperture coupled-Patch Antenna
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SoC or SiP IC/Antenna integration scheme ?



SiP or SoC integration scheme ?
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❑ Mainstream technologies for SiP were glass and multi-layer co-fired 

ceramics substrates (Low or High Temperature)

IBM 
Glass Substrate

I2R - LTCC

IBM
Laminated
packages

Tokyo Institute of Tech



Low-Gain Antennas in organic packaging tech.

❑ We had to identify the appropriate packaging technology to support the
development of 60 GHz modules as possible commercial products

❑ We deeply investigated:

❑ HTCC/LTCC

❑ Organic Ball-Grid-Array module
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➢ We developed a low-cost organic millimeter-wave High-Density Integration (HDI)
packaging technology

1 prepreg +2 cores +1 prepreg

[11] R. Pilard et al., ”HDI Organic Technology Integrating Built-In Antennas Dedicated to 60 GHz
SiP Solution”, IEEE AP-S 2012

Tx
Antenna

Rx
Antenna

Bottom side Top side

12 mm

CMOS 
Footprint

SMD 
Footprint

Ballpad
Traces

Low-Gain Antennas in organic packaging tech.

17Cyril Luxey



Low-Gain Antennas in organic packaging tech.
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PNA

Power meter

Control PC

Frequency 
synthesizer

VDI Head & 
support Microscope

RF amplifier

Spectrum Analyzer

Positioners

AUT & probe

SGH & mixer

Foam support
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Low-Gain Antennas in organic packaging tech.

The start of our collaboration with ST was a very good example of cross-cultural development with the 
microelectronics world leveraging both antenna & circuit communities’ expertise



❑ Several modules from different suppliers were fabricated and measured showing successful
reproducibility tests

❑ Antenna performance were fully in line with the 5 dBi Gain requirement

S11 MATCHING BW
53 GHz – 67 GHz @ -10 dB

Frequency (GHz)

Co-Pol (Simulation)
Co-Pol (Measurements)
X-Pol (Measurements)

Low-Gain Antennas in organic packaging tech.
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BROADSIDE GAIN BW (> 5 dBi) 
57 GHz - 67 GHz



❑ Organic BGA technology seems to be the best compromise between cost/performance/assembly

Low-Gain Antennas in organic packaging tech.

Frequency (GHz)
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TOTAL EFFICIENCY BW
50-60 % - 57-66 GHz
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Low-Gain Antennas in organic packaging tech.
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@ 50 GHz @ 52 GHz @ 54 GHz @ 56 GHz @ 58 GHz

@ 60 GHz @ 62 GHz @ 64 GHz @ 66 GHz

Total Realized Gains (dBi) – 3D plots

Gain Peak = 5.69 dBi Gain Peak = 6.51 dBi Gain Peak = 6.71 dBi Gain Peak = 6.29 dBi Gain Peak = 6.72 dBi 

Gain Peak = 7.14 dBi Gain Peak = 7.33 dBi Gain Peak = 6.6 dBi Gain Peak = 6.08 dBi 



Low-Gain Antennas in organic packaging tech.
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16 QAM – OFDM 
➔ 3.8 Gbps over 1m

SNR around 15 dB
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❑ 120 GHz organic module for high-data rate links: Single Element

Sim.

Meas.

S11 MATCHING BW
120 GHz–138 GHz @ -10 dB

BROADSIDE GAIN BW (>6 dBi) 
120 GHz - ?? GHz

Low-Gain Antennas in organic packaging tech.
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 120 GHz organic module for high-data rate links: 2x2 Array of patches
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Low-Gain Antennas in organic packaging tech.
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BROADSIDE GAIN 
BW (>8 dBi) 

120 GHz - 140 GHz
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Low-Gain Antennas in organic packaging tech.
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SIMULATED BROADSIDE GAIN BW (>7.8 dBi) 
200 GHz - 280 GHz

❑ 240 GHz organic module for high-data rate links: 1x2 Array
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❑ 240 GHz organic module for high-data rate links: 1x2 Array

Low-Gain Antennas in organic packaging tech.
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MEASURED BROADSIDE GAIN BW (>5 dBi) 
220 GHz - 245 GHz



Manufactured design ≠ Simulated design 
→We reached the limitations of this technology in terms of drawing rules at 300 GHz

Low-Gain Antennas in organic packaging tech.

❑ 240 GHz organic module for high-data rate links: 1x2 Array

28Cyril Luxey

575 µm
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• Today, two industrial integration schemes can be considered for the antenna
solution:

• Antenna-in-Package: targeting high integration level and high performance

• Antenna-on-board: in order to enable antenna customization according to
the use-case of the customer → HDI PCB or even recently FR4 PCB

Antenna Integration Strategies:current status

Antenna-in-Package Antenna-on-Board

60 GHz BGA module Antenna on 

Board

• Antenna Gain: from 5 to 10 dBi • Antenna Gain: from 5 dBi to 10 dBi
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FR4 Standard PCB Technology

• Design rules : 60 (line width) × 75 (space between lines) µm²

https://www.st.com/en/wireless-transceivers-mcus-and-modules/60-ghz-short-range-rf-transceivers.html

https://blog.st.com/st60/amp/

Antenna Integration Strategies:current status

https://www.st.com/en/wireless-transceivers-mcus-and-modules/60-ghz-short-range-rf-transceivers.html
https://blog.st.com/st60/amp/


High-Gain Antennas in organic packaging & 3D printing

Reflector

Lens

Organic 
Module

Horn

❑ The path towards high-gain antennas for backhaul and fronthaul wireless links

Antenna Diameter
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An antenna-source is 
needed in those cases



Stereolithography Selective Laser Sintering Fused Deposition Modeling 

Cost Expensive Expensive Inexpensive

Principal Solidifies liquid resin Sinters powdered material Molten plastic deposition

Surface finishing smooth Slightly granular Rough (dented)

Z axis resolution Up to 5 µm Up to 20 µm Up to 100 µm

XY plane resolution Up to 30 µm Up to 300 µm Up to 200 µm

Hot nozzle

Plastic string reel

Molten plastic

Solidified object

Platform

❑ Plastic lens fabricated in Fused Deposition Modeling (FDM) :

❑ Standard ABS plastic (εr = ??? )

𝜀𝑟 and tan 𝛿 of the ABS-M30 at 60GHz, 120, 240  GHz ?

High-Gain Antennas in organic packaging & 3D printing
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❑What about using 3D-printing technology to fabricate plastic lenses instead of

costly Teflon approach ?



Fabry-Perot Open Resonator at 60GHz Non-resonant waveguide method at 120GHz

IST/IT lab

IST/IT ESA/ESTEC Our meas. Teflon

Method
Fabry-Perot Open

resonator
Quasi-optical meas. 

setup
Waveguide

method
NA

Freq. 60GHz 137.5GHz 110-125GHz NA

𝜀𝑟 2.48 2.48 2.49 2

tan 𝛿 0.009 0.008 0.01 0.0002

[12] J. R. Costa, et al, “Compact Beam-Steerable Lens Antenna for 60-GHz Wireless 
Communications”, TAP, 2009.

High-Gain Antennas in organic packaging & 3D printing
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❑ In order to obtain the best performance, a co-design of the source with the lens
is mandatory

Lens directivity vs. Source directivity

Source

Plastic

Elliptical Lens Cross-section

High-Gain Antennas in organic packaging & 3D printing
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❑ In order to lower the dielectric losses, we designed a chopped lens
❑ Fast optimization using ILASH software tool (GO/PO) + HFSS full-wave verification

High-Gain Antennas in organic packaging & 3D printing
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High-Gain Antennas in organic packaging & 3D printing

❑ 40 mm diameter lens for high-data rate links @ 120 GHz 

36
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High-Gain Antennas in organic packaging & 3D printing
❑ 40 mm diameter lens for high-data rate links @ 120 GHz 

>20% bandwidth

E-plane (φ=90°)

H-plane (φ=0°)

Cyril Luxey
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S11 MATCHING BW
112 GHz–140 GHz @ -10 dB

SIMULATION:
- FF Gain: 29 dBi

MEASUREMENTS
- FF Gain: 28.5 dBi



10Gb/s Low-energy Point-to-Point demo @ 120GHz

[13] N. Dolatsha et al., “Compact 130GHz Fully Packaged Point-to-Point Wireless System with 3D-Printed 26dBi Lens Antenna Achieving 12.5Gb/s at 1.55pJ/b/m”, IEEE International Solid-State
Circuits Conference (ISSCC 2017), February 5-9 2017, San Francisco, USA.

 Fully-packaged low-cost energy-efficient OOK Tx/Rx device
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10Gb/s Low-energy Point-to-Point demo @ 120GHz
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• 3D Printed Plastic vs. Teflon Lenses

Teflon Lens 3D Printed Lens

Manufacturing time ~1 day ~9 hours

Manufacturing 
cost/complexity

High Low

Material cost High Low

Lens diameter 25 mm 40 mm

High-Gain Antennas in organic packaging & 3D printing



❑ 120 GHz 3D-printed Cassegrain reflector with plastic casing + BGA source

Perspectives

13×13×3.8cm3

41Cyril Luxey



Arm extension

ACP 140 GHz (pitch 100 µm)F-band VDI head

40 / 60 / 80 cm

Perspectives
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❑ 120 GHz 3D-printed Cassegrain reflector with plastic casing + BGA source



 120 GHz 3D-printed Cassegrain reflector with plastic casing + BGA source
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BROADSIDE NF GAIN BW (>30 dBi) 
120 GHz - 140 GHz

FF GAIN BW 32 dBi
120 GHz - 140 GHz



Copper pillars Antenna-in-Package
PHOTONIC

Organic substrate

Gain: ~10 dBi

Gain: 30-50 dBi
For 1 to 200 m link

Quasi-optical antenna

Copper 
layers

Si photonics System-in-Package
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Perspectives

 300 GHz 50 dBi 3D-printed Cassegrain reflector + BGA source
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❑ Design of a 50 dBi Cassegrain at 300 GHz

Antenna Gain needed for 1 to 200m link: 
30-50 dBi

Perspectives



Conclusion
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• Enabling cost-effective wireless solutions is a key point in order to address future wireless
challenges

• Silicon-based technology as CMOS/BiCMOS are suitable even beyond 200 GHz

• Cost-effective packaging with clever IC/antenna integration will continue to be a strong issue

➔Organic laminate technology has proven its suitability up to 300 GHz

➔3D-printing uses resulted in low-cost plastic-based lenses and reflectors

• From R&D point of view, moving to higher than 300 GHz will require aggressive design rules
exceeding today’s capability of organic substrate technology

➔ Some innovation will be needed here
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