DNN Assisted Sphere Decoder

Ghaya Rekaya-Ben Othman

Joint work with Aymen Askri

Novembre 2020

Introduction

- Lattices have many significant applications in pure mathematics
 - Lie algebras
 - Number theory
 - Group theory
- They also arise in applied mathematics in connection with :
 - Coding theory
 - Cryptography
- A classical problem in lattices: Counting lattice points in n-dimensional sphere

Outline

- Overview of Lattices
- Deep Neural Network to Count lattice points in a sphere
- Deep Neural Network assisted Sphere Decoder

Conclusion

Overview of lattices

A lattice Λ in ℝⁿ consists of all integral combinations of a set of linearly independent vectors (b₁,..., b_n) in ℝⁿ called a lattice basis B :

$$\Lambda = \left\{ z_1 b_1 + \dots + z_n b_n \mid z_1 \dots z_n \in \mathbb{Z} \right\}$$

- Let B_r denote the n-dimensional Euclidean ball of radius *r* centered at the origin.
- Counting lattice points inside B_r is an NP-Hard problem

$$N = \# \left\{ x \in \Lambda \mid \| x \| < r \right\}$$

Solutions ?

Some existing solutions:

- Sphere Decoder which uses the Depth-First tree search strategy
- Stack decoder which uses the Best-First tree search strategy
- Problem: The complexity of the search tree phase increases exponentially as a function of lattice dimension.
- Contribution: Learn the number of lattice points in the n-dimensional sphere with fixed radius r centered at the origin using Deep Neural Networks (DNNs)

Deep Neural Network (DNN) Architecture

- The designed DNN is trained with independent input vectors given as $x^{(i)}$
- The loss is defined as the Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE =
$$\frac{100\%}{S} \sum \left| \frac{N^{(i)} - \hat{N}^{(i)}}{N^{(i)} + \hat{N}^{(i)}} \right|$$

Results for arbitrary lattices of dimension n = 10

High percentage of points whose SMAPE is below 10 %.

Ghaya Rekaya-Ben Othman

Results for some Known Lattices

Type	n	Spherical	Gaussian	Measured	Predicted	SMAPE
		Bound	Bound	Cardinality	Cardinality	%
	5	≤ 24	26	7	6	7.69
A	6	≤ 54	47	9	10	5.26
	7	≤ 140	99	13	12	4.00
	8	_	188	41	32	12.33
	9	_	391	69	64	3.76
	10	_	758	119	125	2.46
	5	16	20	7	6	7.69
D	6	≤ 37	42	9	10	5.26
	7	≤ 88	88	11	11	0.00
	8	240	183	77	62	10.79
	9	_	595	103	88	7.85
	10	_	1211	133	130	1.14
E	8	16	77	17	12	17.24

• Reference] Annika Meyer. On the number of lattice points in a small sphere. In WCC, 2011.

Application: MIMO Decoding

 Use of proposed DNN to count lattice points inside an arbitrary sphere to solve the Closest Vector Problem when used for MIMO decoding

 $y = H \cdot s + w$

- Sub-optimal MIMO decoding schemes : low complexity but poor performance
- Optimal MIMO decoding: Maximum Likelihood (ML)

$$\hat{s}_{ML} = \arg(\min \| y - H \cdot s \|^2)$$

- Example : Sphere Decoder finds the closest lattice points \hat{s}_{ML} that lie in a sphere with some radius *r* centered on *y*.
- The complexity of the tree search phase increases exponentially function of the number of transmit and receive antennas and the constellation size.

DNN Assisted Sphere Decoder

Idea: Find an initial search sphere radius for the SD algorithm using DNN

For that, DNN learns the number of lattice points in the n-dimensional sphere, where :

- > The radius is $r \leq 2n\sigma^2$,
- \succ The received signal y is the center,
- \succ The constellation is finite.

DNN architecture

Deep Neural Network (DNN) architecture

- The designed DNN is trained with independent input vector $x^{(i)}$ received signal y, the generator matrix elements $R_{ij}, 1 \le i \le j < n$, the radius of the sphere r, and the measured number of lattice points $N^{(i)}$, create a set of training data.
- Training data is obtained via list sphere decoding implementations to obtain the exact number of lattice points $N^{(i)}$
- The loss is defined as the mean squared error :

$$L(\theta) = \frac{1}{\left|S\right|} \sum_{i \in S} \left(N^{(i)} - f\left(x^{(i)};\theta\right)\right)^2$$

DNN Assisted Sphere Decoder

• We start by predicting the number of lattice points with an initial radius :

$$r^{(0)} = 2n\sigma^2 \Rightarrow N^{(0)}_{Predicted}$$

If the predicted number is high, we update the radius by using a dichotomic strategy: we divide the radius by two and we recalculate the predicted number of lattice points using the DNN.

$$r^{(1)} = \frac{r^{(0)}}{\sqrt{2}} \Rightarrow N^{(1)}_{Predicted}$$

 We repeat the procedure until obtaining a number of lattice points equal or below a fixed threshold.

$$N_{Predicted}^{(L)} \le N_{Threshold}$$

SD search phase is started with a radius equal to :

$$r = \frac{r^{(0)}}{\sqrt{2^L}}$$
Ghaya Rekaya-Ben Othman

 $(\mathbf{0})$

DNN assisted SD : simulations results

For 16 × 16, at 12 dB SNR: Decoding time of the DNN-SD is 100 times that of the MMSE

DNN assisted SD : simulations results

 8×8 MIMO system

 16×16 MIMO system

- The average lattice points is constant for DNN-SD
- DNN SD gives the ML solution faster by examining much fewer number of lattice points.

Smart Sphere Decoder

- We propose to evaluate the average number of radius updates L
- We analyse theoretically this average number of radius updates function of SNR using a well-known counting function of lattice points in n-dimensional sphere :

$$N_{p} = \operatorname{Card}\left\{s \in \mathbb{Z}^{n} \mid \left\|y - H \cdot s\right\| \leq r\right\} \approx \frac{\operatorname{Vol}\left(B_{r}\right)}{\operatorname{det}\left(\Lambda\right)}$$

where $Vol(B_r) = r^n \cdot V_n$, V_n is the volume the volume of a sphere of a unit radius in \mathbb{R}^n , and $det(\Lambda)$ is the determinant of the lattice Λ

• If we set $r^{(0)} = 2n\sigma^2$, and consider L radius updates $r^{(L)} = r^{(0)}/\sqrt{2^L}$, we can prove that :

$$L = a \cdot \rho + b$$

where ρ is the SNR in dB, a and b are functions of the lattice parameters.

Smart SD : Simulation results

 8×8 MIMO system

Number of radius updates is linear function of SNR

Smart SD : Simulation results

 8×8 MIMO system

For 16×16 , at 12 dB SNR: Decoding time of the SSD is 33 times that of the MMSE, Decoding time of the SD is 4570 times that of the MMSE

- We train a DNN model to predict the number of lattice points falling inside the ndimensional sphere with an arbitrary radius.
- The proposed model can proceed with accurate approximations for arbitrary lattices compared to analytical upper bounds existing in the literature., and this is for some known lattices.
- A novel low-complexity Sphere Decoder (DNN-SD) based on DNNs is proposed, gives the ML performance with greatly lower computational complexity
- Smart sphere decoder (SSD), achieves ML performance with more significant complexity reduction

Associated publications

- A. Askri, G. Rekaya-Ben Othman and H. Ghauch, "Counting Lattice Points in the Sphere using Deep Neural Networks", Asilomar Conference on Signals, Systems and Computers", USA, November 2019.
- A. Askri and G. Rekaya-Ben Othman, "DNN assisted Sphere Decoder", IEEE ISIT, Paris, France, July 2019.
- G. Rekaya-Ben Othman and A. Askri, "DEVICES AND METHODS FOR MACHINE LEARNING ASSISTED SPHERE DECODING", European Application July 2019, n° EP 19305886.4.

Question Time !

Smart SD

 $_{\scriptscriptstyle (2)}~$ it starts the search hypersphere with an enhanced radius $r_{\rm L}$

$$r_{L}^{2} = \frac{r_{0}^{2}}{2^{L}}$$

$$\int r_0^2 = 2 n \sigma_{noise}^2$$

L= ap+b

 $_{(2)}$ L is the number of radius updates that is a linear function of SNR in dB (ρ), with a, b real numbers determined theoretically

$$a = \frac{-1}{10 * \log_{10} 2} \approx 0.332$$

$$b = \frac{2}{n * \log_{10} 2} \left(\log_{10} V_n - E \left[\log_{10} de i(\Lambda) \right] - E \left[\log_{10} N_p \right] \right) + \frac{1}{\log_{10} 2} \left(\log_{10} 2n + \log_{10} \frac{P_t}{2} \right)$$