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I Fhysical security of embedded systems

O Side Channel Analysis, or Passive Attacks:

» Exploit the observation of non functional channels: power
consumption, electromagnetic radiations, cache timing,...

O Fault Injection Attacks, or Active Attacks

» Disturb the computation to create faults on sensitive
operations: clock glitches, electromagnetic pulses or
harmonics, laser shot, ...

 Hardware Trojan Horses

» Malevolent Design modification to make the system
Inoperative, controllable or with leakages.

] Reverse Engineering, probing,...

Many Physical threats !




I \'achine Learning for Physical Security

J ML is arelevant tool:

» For security analysis

— The designer looks for vulnerabilities and the security level, thus
can better protect the most sensitive parts

— Can also be used by an attacker

» For detection of abnormal situations
— IDS (Intrusion Detection System)
— Real time security monitoring
— Presence of Hardware Trojan Horse

L The security of ML implementation can be compromised
by physical attacks




I Outline

O ML for hardware security
» Example of analysis:

) o

» Example of detection
— Hardware Trojan Horse

O Security of ML
» Example of a CNN implementation
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Example of ML analysis
I Fhysically Unclonable Function: PUF

O Function returning the fingerprint of a device

» Physical function,
» which exploits material randomness, during fabrication

» and is unclonable: same structure for each device

| (iidi;fliljy) o ) PUFI
- PUF 2 a PUF ID is
GDS2 o> g .
(blueprint) : unique :
to each device

4 FPUFM

PUFs are instanciations of blueprints by a fab plant
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I FUF delivers a "Fingerprint”

O List of pairs challenges /responses,

challenge PUE response

Many challenges =>The PUF is "strong" => CRP protocol

O or unique identifier

ID can be used as a
PUF cryptographic key !

few challenges =>The PUF is "weak" => cryptographic protocol -
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I The most famous PUF: the Arbiter-PUF

 Delay difference between two identical pathes:

L

P!
Lo IR =
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challenge
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ID response

\
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|

_______

arbiter

» "Strong" PUF: many challenges for the CRP protocol

B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas. Identification and authentication of

integrated circuits. Concurrency and Computation: Practice & Experience, 16(11):1077-1098, 2004
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I But attacked by Machine Learning !

J The arbiter PUF can be modelled as:

Bj = Sigy{:j . XJ\

Challenge i

Delay difference

This attack is called
modeling attack

n
Ci- X = Z C,'b,')(:,'
=t N\

Elementary delay difference

O Attack by Logistic regression (supervised ML)
» The ML is trained by CRPs

ML No. of | Prediction | CRPs Training
Method | Stages Rate '
95% 640 4/ 0.01 sec \
LR 64 99% 2,555 0.13 sec
99.9% 18,05 0.60 sec
95% 1,35 0.06 sec
LR 128 99% 5,570 0.51 sec
09.9% 39,200 2.10 sec

Very easy to attack by ML !

Ulrich Rihrmair, Frank Sehnke, Jan
Soélter, Gideon Dror, Srinivas Devadas,
and Jirgen Schmidhuber. "Modeling
attacks on physical unclonable
functions”. In Proceedings of the 17th
ACM
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I The arbiter PUF has to be protected
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Lightweight secure PUF XOR PUF

Feed Forward PUF

The response of arbiter 1 is used as a challenge bit of a cascaded arbiter PUF
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But modeling attack still works in

I casonable time

No. of | Pred. | No. of | CRPs Training . .
Stages | Rate XORs o nghtWEIght secure PUF
3 6,000 ¥ 8.9 sec \
64 99% 4 12,000 1:28 hrs
D 300,00 13:06 hrs
3 15,000 40 sec
128 99% 4 500,000\ 59:42 min
5 106 |\267 day XOR PUF
S
ML No. of | Pred. | No. of | CRPs Talni
Method | Stages | Rate | XORs / A?f‘in?:g\
4 12,00 3:42 min
LR 64 99% 5 80,00 | 2:08 hrs
6 200,0p0 | 31:01 hrs
4 24,000 | 2:52 hrs
FF PUF LR 128 | 99% 5 500,000 | 16:36 hrs
N\
No. of | FF- Pred. Rate | CRPs / Training\
Stages | loops | Best Run / Time \
6 07.72% 50,000 27:20 hrs
64 7 07.37% 50,000\ 27:20 hrs
8 05.46% 50,000\ 27:20 hrs / L ecom
T
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I Protection by challenge obfuscation

PUF Structural Components ‘ System Components E ~
— ,\ sl Qb—— i
& - ¢ i g
P -
D QH D Qp
| ok
B —(— Oy 3 S
| : 2 #CRPs for | #CRPs for | Acc of ACCX
) o = training attacking | training f attacking
ﬁ £ 1000 1.0000 [ 0.5932 \
£ | SVM 5000 5000 0.9912f | 0.6028
E 10000 0.985 0.6202
c, \C\ c 1000 0.780 0.6480
N DT 5000 5000 0.717 0.6768
10000 0.695 0.6754
Challenge obfuscation 1000 1.0000) 1\ 0.532%
RF 5000 5000 1.0000 0.5532
10000 1.0000 0.5660 /
S. S. Zalivaka et al., “"Reliable and modeling attack resistant
authentication of arbiter PUF in FPGA implementation with
tlriréagr_ylc{l,zlgflr;glleg.response, IEEE TIFS, vol. 14, no. 4, pp. mOdE|Ing attacks fa | IS
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I But ML attack can exploit Power traces

Combined ML + side_channel attack

. PUF Structural Components : System Components
SWITCH SWITCH I
: 0 .I N-1 J |
I 1
s —TL 1< [><
1
1
| |
S _Su_______._
CLK
RST e N
Time to
0.0015 ~< Register "9‘
—
©
>
Q
g 0.0010| - fi e
) Q
5 | :
E
=
O
0.0005
T. Kroeger, W. Cheng, S. Guilley, J. 0.0000 I
Danger, and N. Karimi, “Cross-PUF ' 1
Attacks on Arbiter-PUFs through 0 500 200 = 550 T
their Power Side-Channel,” in ITC,
2020. . . . Samples ] ]
Simulation without noise noise
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I /L attacks works even high noise level

realistic noise in a circuit o ~10e-4

#Traces | #Traces | Train acc | Attack acc || Train acc | Attack acc || Train acc | Attack acc || Train ace | Attack ace || Train ace Al-l-ack ac%\
training | attacking o=10 a=10 a=25 og=25 o =16 o=16 =232 o=232 o = 64 o =64
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9936 1.0000 0.8740
SVM 2000 5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9956 1.0000 \ 0.9056
5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980 1.0000 N 0.9098 Y,
200 1.0000 1.0000 1.0000 0.9994 1.0000 0.7996 1.0000 0.6640 1.0000 :
DT 2000 5000 1.0000 1.0000 1.0000 0.9996 1.0000 0.8356 1.0000 0.6820 1.0000
5000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8448 1.0000 0.7114 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9618 0.9980 0.71310
RF 2000 5000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9990 0.9644 0.9740 0.7928
5000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9930 0.9610 0.9604 0.3058

The training sequence is a
set of power traces of

different challenges on a

reference PUF.

o = 16e-4 I

Current (A)

Response = 01
Response = 11
Response = 10
Response = 00

Samples

3800 3900 4000 4100 4200 4300 4400 4500

No necessity
to preprocess
the traces to

reduce the
noise
ﬁﬁ
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I \ccessity to protect against ML+SCA attack

Balancing the power with the dual DFF

PUF Structural | System Components
Components | "
Q I D Q % & D Q &
. T it I
ARRITER I RST { C E RST ﬂ C’
| CLK—p> ,I CLK—> I,
1

______ -

———————— 1
PUF Structural Components | System Components
T. Kroeger, W. Cheng, S. | g _
Guilley, J. Danger, and Q : DQ 75
N. Karimi, “Making | RST ——Q C I s
obfuscated PUFs secure ARBITER I ik S Jm' -
. . SET
against power side- — 1
channel based modeling ~ TTTT"™T Q 1
attacks,” in DATE, 2021  c;mme_————- J —
Obfuscated Challenge == Random Number
Generator
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I Outline

O ML for hardware security
» Example of analysis:

— Hardware Trojan Horse

O Security of ML
» Example of a CNN implementation
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I Hardware Trojan Horse

 Potential attack due to outsourcing
» Design center, fabrication, validation ...

» Small hardware block to change add malevolent features

(DoS, performance loss, high power, spying,...)

| Year | Reporter

| HTs detail

2018 | Bloomberg China used a tiny Chip to infiltrate 30 big U.S. Com-
panies
Defensenews.com Specific US-made components designed to intercept
2014 the satellites’ communications in France-UAE satel-
lite
Edward Snowden NSA planted back-doors in Cisco products as routers
?@teclhmca and NSA secret toolbox used for inserting the backdoors
PIcES and spy gadgets in different products
zergs;istikareorb&ia{f;: The discovery of a backdoor inserted into the Ac-
2012 P tel /Microsemi ProASIC3 chips (military grade chip)
Jonathan Brossard A concept of a hardware backdoor called "Rakshasa"
that China could embed in every computer
Kryptowire Found a backdoor on ZTE Android phones
From Academic Many examples of HT on different targets (cryptog-
2007 .
raphy IPs, processors, Wireless etc.)
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I HTH Countermeasures

HT Protection
¥
Prevention Detection PL)etE_(]:_[lon
(Pre-silicon) (Pre-silicon) (Post=Silicon)
. Heuristic Method . Destructive
= Provable Method | Non Destructive
L Supportive Design
— Optical
. Test Methods
I —t t . ]
e e non invasive |
Side—Channel
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I HTH detection by ML

] State of the art of HTH detection

> Statistical tests (T-Test) to compare the equality of population
according to the null hypothesis.

 Test example

» 3 HTHs of different sizes in RISC-V CPU running in FPGA:
— 2 HTHs (HT1 & HT2) are inserted PicoRV32 target
— 1 HTH (HT3) is inserted in Freedom E300 target

Target design | Insertion phase | Overhead
HT1 PicoRV32 P&R 0.53%
HT2 PicoRV32 P&R 0.27%
HT3 Freedom RTL 0.1%

Junko Takahashi, Keiichi Okabe, Hiroki Itoh, Xuan-Thuy Ngo,Sylvain Guilley, Ritu-Ranjan Shrivastwa, Mushir Ahmed,
PatrickLejoly, "Machine Learning based Hardware Trojan Detection using Electromagnetic Emanation”, ICICS 2020




I HT1insertion

HT1 location: in red (HT ALM logic cell)
in blue (The corresponding Logic blocks)

AY 743
Logic blocks used by design

Unused logic blocks

PicoRV32 without HT

PicoRV32 with HT1
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I 'L Detection Methodology

 Acquire data for training
» 2 FPGAs are used: Reference and HT
» The dataset comes from N cartographies of the device.

» Each cartography is a matrix of 13 * 13 points having each EM
traces of 5000 samples

O Train with supervised ML algorithms
» SVM, Multi-Layer Perceptron, Decision Tree, KNN
 Acquire data on target FPGA

 Apply the trained models to decide if thereis a HTH in
the target FPGA




I Results with T-test

100 40
—a— HI1 —a— HT1
g - HTZ2 HT2
—=— HI3 g 30 ; / —=— HT3
o 80 =
o 3 20
- /0 I o b o
3 e 0
< 60- - n
50 W g
40 . : . . . . 01 : .
2 4 5] 8 10 12 14 16 18 20 2 4 5] 8 10 12 14 16 18 20
Number of cartographies in dataset Number of cartographies in dataset
Accuracy < 80% Many false positives
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I Results in ML 1/2

(a) Support Vector Machine
30

100
—a— HT1
] 25 HT2
90 ﬂ.-'l —a— HT3
> Z 20
5 B0 =
o Q
; 70 ﬂ_l5
-
£ 60 E 10+
s
—a— HT1 L 5.
50 HT2
—=— HT3
40 — — . oL — —
0 2 4 & 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of cartographies in dataset Number of cartographies in dataset

(b) Multi-layer Perceptron
30

:mlﬂ‘Q_FKfH —%
. T m
] 25 HT2
o NNV g -
> gp \ 2 201
O \ o
@ "\-/h‘ a3
é 70 a o] /\
U
() ]
< 60 - w 10 ,I,
o
—— HT1 TS [
50 HT2 a' '
20 —a— HT3 0 ——— . .
D 2 4 & 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Number of cartographies in dataset Number of cartographies in dataset
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I Results in ML 2/2

(c) Decision Tree Classification

ao

False positive
- — S kg
W (=] <N o [}

=

0 2 4 6 B8 10 12 14 16 18 20
Mumber of carlographies in datasel

(d) K-nearest neighbors

1001
:,\—V—m *
a0 Y
= \,, Sl — |
o 4o 1\' L -
2
=5 f0
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an — .
a Z 4 & § 0 12 14 16 18 20
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g Wﬁ
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Number of cartographies in dataset

False positive
" =53 = = i

=]

—s— HT1
HT2
—a— HT3

-
e
——3—3—1

Number of cartngjraphieg in dataset

Accuracy >80% even for a tiny HTH
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I Outline

O ML for hardware security
» Example of analysis:
— PUF

» Example of detection
— Hardware Trojan Horse

 Security of ML
» Example of a CNN implementation
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I ~ttack of CNN implementation

 The CNN security requires:
» Protection of the trained model which is often patented

» Protection of the user privacy, when personal input data are
computed with CNN

» Protection of the output to prevent adversarial attacks

O But the implementation can be attacked by side-
channel: the cache timing attack




Cache Timing attack example:

I ~lush and Reload

Access . Flush probed address from the cache
Wait D Other events

Cache HIT:

~ The victim
victim m / usetc)l tdhedd

Cache MISS:
. The victim did
viehm / not use the

attacker m probed address




I cxample: Cache Telepathy Attack

 Computation of convolutionnal layers are transformed
Into single matrix multiplications by using GEMM:

in;
. out;
filters !
I
: i I
Dt+1 H
R. |1
i Klnininls Yan, M., Fletcher, C.W., Torrellas, J.
N, ‘Cache telepathy: Leveraging
shared resource attacks to learn
DNN architectures’. In: Capkun, S.,
@ . Roesner, F., editors. 29th USENIX
F; Security Symposium, USENIX
: Security 2020, August 12-14, 2020.
ii:::ﬂ (USENIX Association, 2020. pp.
1 2003-2020. Available from:
. : : https://www:usenix:org/conference
. . usenixsecurity20/presentation/yan
Rf Dg,‘: / y20/p /Yy

!

\.—v—.—?
(W. — R. + P.)(H. — R, + P.)

TELECOM

Paris

mEET
Page 27 Jean-Luc Danger
@ IP PARIS




I Side channel leakage when using Gemm

O 3 functions are repeteadly used
» Kernel, itcopy , oncopy
» They form specific patterns according to the iteration type and

length.
#pairs=iters #pairs=iters-1
f : h f : '|
— itcopy * oncopy —* kernel » itcopy — kernel ——

. The cache attack allows to count the function calls and
determine the number of layers, the input, output
output and filter size

] Protections
> Active research*

* TP: Linda Guiga CIFRE PhD with Idemia




I Conclusion

O ML algorithms provide powerful tools for the security of
embedded systems:

» Point out design weaknesses , as modeling and cloning
unclonable physical functions.

» Efficient leakage analysis by profiling and combining with side-
channels traces.

» No necessity of preprocessing to reduce noise

» Detection of abnormal behavior as those coming from stealthy
Hardware Trojan Horses

> Active research for IDS in connected cars*

 But its implementation can be vulnerable to physical
attacks

* TP: Natasha AlKhatib PhD in the C3S chair




Thank you for your attention
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