Compact terahertz time-domain spectroscopy systems enabled by modelocked laser diodes

Jan C. Balzer

University of Duisburg-Essen, Germany

Academic career

FH Dortmund Dipl.-Ing. (FH) 2008 (telecommunication engineering)

Ruhr-University Bochum M.Sc. 2010 (nanotechnology) Dr.-Ing. 2014 (Laser diodes)

University of Duisburg-Essen W1 Professor "THz Systems" Since Nov. 2017

Philipps University Marburg Group leader from 2015-2017 (Terahertz technology)

Chair for communication systems

Prof. Czylwik

Xuan Liu

Kevin Kolpatzeck

Vladyslav Cherniak

Riu Liu

Tobias Kubiczek

Prof. Balzer

Kai Tybussek

Dr. Schultze

Dilyan Damyanov

Compact THz TDS system enabled by MLLD's jan.balzer@uni-due.de

3/49

S

Т

Outline

Brief introduction to terahertz technology

Enhancing the performance of THz CCS/QTDS

- Theoretical model for MLLD-driven THz-TDS
- Model-driven optimization of THz-TDS
- Conclusion and outlook

What is Terahertz radiation?

frequency (Hz)

- THz radiation is located between microwaves and infrared
- It took some time to address this spectral range

What is Terahertz radiation?

Terahertz radiation

From Wikipedia, the free encyclopedia

"T-ray" redirects here. For other uses, see T-ray (disambiguation).

Terahertz radiation – also known as **submillimeter radiation**, **terahertz waves**, **tremendously high frequency**^[1] (**THF**), **T-rays**, **T-waves**, **T-light**, **T-lux** or **THz** – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3 terahertz (THz; 1 THz = 10^{12} Hz; 1 THz is 1000 GHz). Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm (or 100 µm). Because terahertz radiation begins at a wavelength of one millimeter and proceeds into shorter wavelengths, it is sometimes known as the *submillimeter band*, and its radiation as *submillimeter waves*, especially in astronomy.

- Definition on English Wikipedia: 300 GHz to 3 THz
- Further: many different names like submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz

What is Terahertz radiation?

Térahertz

Cet article est une ébauche concernant l'électronique et l'astronomie.

Vous pouvez partager vos connaissances en l'améliorant (**comment ?**) selon les recommandations des projets correspondants.

Consultez la liste des tâches à accomplir en page de discussion.

La bande de fréquences **térahertz** désigne les ondes électromagnétiques s'étendant de 100 GHz (ou 300 GHz selon les références^{1, 2}) à 30 THz. Elle est intermédiaire entre les fréquences micro-ondes et les fréquences correspondant à l'infrarouge.

Définition [modifier | modifier le code]

Le domaine des fréquences « térahertz » (THz, 1 THz = 10¹² Hz) s'étend de 100 GHz à 30 THz environ, soit environ aux longueurs d'onde entre 0,01 mm et 3 mm. Il est historiquement connu sous la terminologie d'**infrarouge lointain** mais on le retrouve également aujourd'hui sous l'appellation de **rayon T.** Il se situe dans le spectre électromagnétique entre l'infrarouge (domaine de l'optique) et les micro-ondes (domaine de la radioélectricité).

La bande inférieure à 100 GHz est en général définie comme radioélectrique, alors que les fréquences supérieures à 30 THz sont en général définies comme infrarouge mais ces frontières ne sont pas normalisées, car ce n'est qu'un changement de langage ou de technologie, et non de nature.

- Definition on French Wikipedia: 100 (300) GHz to 30 THz
- Further names: d'infrarogue lointain or rayon T

UNIVERSITÄT

SBURG

Why is THz radiation interesting?

First of all: The frequency range exists!

- 1. THz waves have low photon energy
 - No photoionization in biological tissues like X-rays
 - Safe for sample and operator
 - Even if not: Cannot penetrate human body like microwaves
- 2. THz waves have longer wavelength than VIS or IR
 - Less affected by Mie scattering
 - Dry dielectric materials like cloth, paper, wood and plastic are transparent

Compact THz TDS system enabled by MLLD's

jan.balzer@uni-due.de

• Higher spatial resolution than microwaves

- 3. Spectral fingerprint of materials
 - Many molecules exhibit strong absorption and dispersion
 - Allows to identify specific materials like explosives or drugs
- 4. Detection of amplitude and phase
 - Coherent techniques give access to absorption and dispersion spectroscopy
 - Complex refractive index (or permittivity) can be directly measured

The "THz gap"

Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature photonics, 1(2), 97.

Optoelectronic THz generation

Optoelectronic THz generation

• The electric field from an electric dipole can be described as follows:

$$\mathbf{E}(r,t)\frac{1}{4\pi\varepsilon_0}\left[\frac{1}{r^3}\vec{p}(t_r) + \frac{1}{cr^2}\dot{\vec{p}}(t_r) + \frac{1}{c^2r}\ddot{\vec{p}}(t_r)\right]$$

• We can see 3 different contributions to the electric field:

$$\frac{1}{r^3}\vec{p}(t_r) = \text{static electric field}$$

$$\frac{1}{cr^2}\dot{\vec{p}}(t_r) = j(t) \text{ current density}$$

$$\frac{1}{c^2r}\ddot{\vec{p}}(t_r) = \frac{dj(t)}{dt} \text{ first derivative of the current density}$$

- Since we are interested in the far field $(r \gg \lambda \gg d)$, where *d* is the size of the electric dipole) only the last term survives due to the 1/r proportationaliy
- The radiated (far) field is hence proportional to a change in current density

UNIVERSITÄT

DUISBURG

Time-resolved pump-probe technique

- Due to the short duration and high peak power, femtosecond lasers can be used to excite effects like ionization, polarization changes and measure the duration
- With time-resolved pump probe experiments, **reversible** processes can be measured with a high temporal resolution only limited by pulse duration (~6 fs) and accuracy of translation stage (~0.1 fs)
- Samples are measured by probe in transmission, reflection and/or scattering
 - Important: Mode locked lasers emits periodic pulse train

Lee, Yun-Shik. *Principles of terahertz science and technology*. Vol. 170. Springer Science & Business Media, 2009.

Terahertz time-domain spectroscopy (THz-TDS)

- Setup like pump-probe technique: Transmitter and Receiver are used for frequency conversion
- The THz pulse is sampled at the receiver with the shorter optical probe pulse
- The variable delay line (translation stage) enables optical sampling of the THz field amplitude
- For spectroscopy: THz pulses are measured with and without sample
- Fourier transforms of the waveforms give information about dispersion and absorption

Terahertz time-domain spectroscopy (THz-TDS)

Development of THz-TDS systems

<u>... 2004</u> Systems require lab conditions

2014

Development of THz-TDS systems

Development of THz-TDS systems

<u>2011</u>

First demonstration of a mobile fiber coupled system (@1550 nm)

2014

Development of THz-TDS systems

<u>2014</u>

Companies sell complete systems: Menlo Systems GmbH TOPTICA Photonics AG Hübner GmbH & Co. KG

2007 2011

UNIVERSITÄT

TOPTICA Photonics AG

Hübner-Photonics

Rainbow Photonics

Frequency (THz)

Development of LD-driven THz-TDS systems

Morikawa et al. (2000) [1]:

- Cross-correlation spectroscopy (CCS)
- THz-TDS setup using a commercial 810 nm multi-mode laser diode

Scheller et al. (2009) [2]:

- Quasi time-domain spectroscopy (QTDS)
- Adapted the CCS approach using a commercial 660 nm multi-mode laser diode

Kohlhaas et al. (2017) [3]:

- QTDS using a 1550 nm multi-mode laser diode
- Using photodiode-based emitter and photoconductive receiver

[1] O. Morikawa et al., "A cross-correlation spectroscopy in subterahertz region using an incoherent light source", APL.
 [2] M. Scheller and M. Koch, "Terahertz quasi time domain spectroscopy," Opt. Express.

[3] R.B. Kohlhaas, A. Rehn et al., "Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm" Opt. Express.

UNIVERSITÄT DUISBURG ESSEN

Development of LD-driven THz-TDS systems

Merghem et al. (2017) [1]:

- THz-TDS using a research-grade monolithic 1550 nm QDash mode-locked laser diode (MLLD)
- Ultra-high repetition rate THz-TDS (UHRR THz-TDS)

Tybussek et al. (2019) [2]:

- TDS using a low-cost "accidentally mode-locked" Fabry-Perot laser diode
- Comparison between conventional THz-TDS and UHRR THz-TDS

[1] K. Merghem et al., "Terahertz time-domain spectroscopy system driven by a monolithic semiconductor **0** laser", J. Infrared, Millimeter, Terahertz Waves (2017).

[2] K.-H. Tybussek et al., "Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and ErAs:In(Al)GaAs photoconductors", Appl. Sci. (2019).

ENHANCING THE PERFORMANCE OF QTDS/CCS

Enhancing the performance of QTDS/CCS

How to increase the photocurrent?

- Idea: $E_{THz} \propto \frac{d}{dt} I_{opt} \Rightarrow$ Increase the photocurrent!
- However, thermal damage threshold for PCA's around $P_{avg} \approx 30 mW$
- Reduce the duty cycle to gain a higher peak intensity at constant P_{avg} :

duty cycle laser operation. *Optics Express*, 26(25)

23/49

Variation of the duty cycle

- Measurements have shown that not only the emitted power is increased
- Lower duty cycle decreases the roll-off and increases the spectral bandwidth!

Rehn, A., Mikerov, M., Preu, S., Koch, M., & Balzer, J. C. (2018). Enhancing the performance of THz quasi time-domain spectroscopy systems by low duty cycle laser operation. *Optics Express*, *26*(25)

Variation of the duty cycle

- The increased bandwidth stems from an increase optical bandwidth
- Linear correlation between optical bandwidth and THz roll-off
- However, very low duty cycle destroys laser diode

Rehn, A., Mikerov, M., Preu, S., Koch, M., & Balzer, J. C. (2018). Enhancing the performance of THz quasi time-domain spectroscopy systems by low duty cycle laser operation. *Optics Express*, *26*(25)

Optical feedback

- Idea: Feedback has shown some potential to stabilize laser diodes
- Here, we used a variable attenuator with a delay line to manipulate feedback strength and delay:

Rehn, A., Kohlhaas, R., Globisch, B., & Balzer, J. C. (2019). Increasing the THz-QTDS Bandwidth from 1.7 to 2.5 THz Through Optical Feedback. Journal of Infrared, Millimeter, and Terahertz Waves, 40(11), 1103-1113.

26/49

S

Optical feedback

- Our observation: stronger feedback (i.e. lower attenuation) broadens the optical spectrum
- Broad optical spectrum leads to an increased THz bandwidth

Compact THz TDS system enabled by MLLD's jan.balzer@uni-due.de

S

27/49

Enhancing the performance of QTDS/CCS

Optical feedback

- But what about the phase?
- A closer look reveals quite different THz spectrum for identical optical spectrum
- This must be related to the phase of the optical spectrum!

Rehn, A., Kohlhaas, R., Globisch, B., & Balzer, J. C. (2019). Increasing the THz-QTDS Bandwidth from 1.7 to 2.5 THz Through Optical Feedback. Journal of Infrared, Millimeter, and Terahertz Waves, 40(11), 1103-1113.

28/49

THEORETICAL MODEL FOR MLLD-DRIVEN THZ TDS

Theoretical model for MLLD-driven THz TDS

How to measure the optical phase

- Indirect methods: frequency resolved optical gating (FROG)
- Direct measurement: Stepped-heterodyne optical complex spectrum analyzer [*]

[*] Reid, D. A., Murdoch, S. G., & Barry, L. P. (2010). Stepped-heterodyne optical complex spectrum analyzer. Optics express, 18(19), 19724-19731.

30/49

How to measure the optical phase

Theoretical model for MLLD-driven THz TDS

Results for the commercial laser diode

Theoretical model for MLLD-driven THz TDS

Results for the commercial laser diode

- Laser is mode-locked but strongly chirped!
- With dispersion compensation: conventional THz-TDS is feasible

Comparison to fiber laser:

- Fiber laser: 70 dB peak SNR and > 4 THz bandwidth
- Laser diode: 51 dB peak SNR and ~ 1.4 THz bandwidth

Tybussek, K. H., Kolpatzeck, K., Faridi, F., Preu, S., & Balzer, J. C. (2019). Terahertz Time-Domain Spectroscopy Based on Commercially Available 1550 nm Fabry–Perot Laser Diode and ErAs: In (Al) GaAs Photoconductors. Applied Sciences, 9(13), 2704.

- -10 dB-bandwidth: 1.61 THz
- 544 fs deconvoluted pulse duration
- Fourier-limited pulse duration: ~450 fs

33/49

System theoretical model

• Transfer function of the terahertz system

 $H_{\mathrm{THz}}(m\Omega) = m\Omega \cdot H_{\mathrm{Tx}}(m\Omega) \cdot H_{\mathrm{path}}(m\Omega) \cdot H_{\mathrm{Rx}}(m\Omega) \ , \ m = 1 \dots N - 1$

Kolpatzeck, K., Liu, X., Tybussek, K. H., Häring, L., Zander, M., Rehbein, W., ... & Balzer, J. C. (2020). System-theoretical modeling of terahertz time-domain spectroscopy with ultra-high repetition rate mode-locked lasers. Optics Express, 28(11), 16935-16950.

UNIVERSITÄT DUISBURG ESSEN

UNIVERSITÄT

S

SR

RG

Verification of the complex optical spectrum

Compact THz TDS system enabled by MLLD's jan.balzer@uni-due.de

S

35/49

Verification of the model

Two different MLLDs

- Thorlabs FPL1009P: Single-section Fabry-Perot laser
- QD laser from Fraunhofer HHI: Two-section quantum dot laser
- Different amounts of chirp generated by adding different lengths of single-mode fiber between laser and spectrometer

Measured quantities

- Complex optical spectrum using optical spectrum analyzer and stepped-heterodyne technique
- Terahertz transfer function by frequency-domain spectroscopy (FDS)
- Intensity autocorrelation with SHG autocorrelator
- Terahertz spectrum using TDS setup with MLLD

Theoretical model for MLLD-driven THz TDS

Optical spectrum

Kolpatzeck, K., Liu, X., Tybussek, K. H., Häring, L., Zander, M., Rehbein, W., ... & Balzer, J. C. (2020). System-theoretical modeling of terahertz time-domain spectroscopy with ultra-high repetition rate mode-locked lasers. Optics Express, 28(11), 16935-16950.

Optical phase spectra

UNIVERSITÄT

SSEN

ISBURG

Terahertz path transfer function from THz FDS

UNIVERSITÄT ISBURG 5

Compact THz TDS system enabled by MLLD's jan.balzer@uni-due.de

S

Theoretical model for MLLD-driven THz TDS

Measured and calculated TDS spectra

40/49 NTS

MODEL-DRIVEN OPTIMIZATION OF THZ TDS

Model-driven optimization of THz TDS

Model-driven spectral shaping

- Systematic enhancement of terahertz spectra in UHRR THz-TDS.
- Optical spectrum is shaped with a programmable optical filter (=waveshaper) to synthesize a desired terahertz spectrum.
- Fast offline optimization of the optical spectrum using a genetic algorithm based on an analytical model of UHRR THz-TDS system.

Spectral synthesis

Synthesis procedure

- 1. Determination of the unshaped optical spectrum:
 - Measurement of the unshaped optical amplitude spectrum.
 - Linearization of the optical phase spectrum.
- 2. Definition of an optimization goal.
- 3. Optimization with a genetic algorithm:
 - Genetic algorithm in MATLAB determines the optimized optical amplitudes E_k .
 - Calculation of the amplitude coefficients of the programmable optical filter from the desired amplitudes E_k and the unshaped optical spectrum.
- 4. Implementation of the amplitude coefficients in the programmable optical filter.
- 5. Measurement of the terahertz spectrum.

Model-driven optimization of THz TDS

Spectral shaping for maximum bandwidth

• Spectral amplitude of the weakest spectral component in the terahertz spectrum is maximized. Step by step, the spectral components are "pulled up" by the GA

• Increase of up to 8 dB for spectral components between 1.1 and 1.6 THz

Compact THz TDS system enabled by MLLD's jan.balzer@uni-due.de

45/49

Model-driven optimization of THz TDS

Spectral shaping for rectangular THz spectrum

• Amplitude variation of the spectral components in the detected terahertz spectrum is minimized. Tradeoff between flatness and amplitude.

Conclusion & outlook

- MLLD's can be used to built compact and cost-effective THz-TDS systems
- Performance of MLLD crucial for performance of THz-TDS (especially the pulse duration/spectral bandwidth)
- Optimization methods must be combined to achieve a bandwidth of 3 THz
- Complete integration of MLLD-driven THz-TDS systems is a big challenge, but we have a concept:

Liu, X., Kolpatzeck, K., Häring, L., Balzer, J. C., & Czylwik, A. (2020). Wideband Beam Steering Concept for Terahertz Time-Domain Spectroscopy: Theoretical Considerations. *Sensors*, *20*(19), 5568.

47/49

UNIVERSITÄT DUISBURG ESSEN

Thank you for your attention!

