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Some history : from Affective Computing to Social Computing

1997, MIT: Affective Computing

Now
From emotions to social signals and
opinions

Also called Social Computing / Emotion
AI
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Social Computing - My Research scope

Natural language processing for the analysis of socio-emotional behaviours1 in
interactions

↪→ Projects of the team : H2020 ITN Pierre et Marie Curie Animatas, Chaire Data
Science and Artificial Intelligence for Digitalized Industry and Services, ANR
JCJC MAOI,

1socio-emotional behaviours : sentiments, emotions, moods, social stances, etc.
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General challenges of sentiment analysis

Define sentiment/opinion-related phenomena
Emotion? opinion? mood? personality traits?

phenomena that are often intertwined in their expressive realisation and that are
complex to annotate and subjective

↪→ requires to leverage social sciences and humanities to obtain meaningful labels for
supervision and computational models

• ex : generic definition given by Appraisal theory [Martin and White, 2005]:
• an appraisal of a target by a source and can be expressed through

Affect/Judgment/appreciations
• ex: hateful speech : appraisal through affect of a certain type of person by the

author of the tweet
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General challenges of sentiment analysis

This film should be brilliant. It sounds like a great plot, the actors are first grade,
and the supporting cast is good as well, and Stallone is attempting to deliver a
performance. However, it can’t hold up.

↪→ more complex than a simple positive vs. negative word counts.

• conditional tense

• discourse markers

• negation processing (I don’t like this movie)

• modifiers and intensifiers (the plot is not very good)

• dealing with metaphors (global warming vs. climate change [Ahmad et al., 2011])

• dealing with noisy inputs (call-centre transcripts, customer inputs)

↪→ requires advanced information extraction/machine learning models
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Challenges of user’s sentiment analysis in human-agent interactions

• user’s expressions of sentiments are triggered by agent’s utterances

↪→ requires a specific modelling of interaction processes in information
extraction/machine learning models

c© C. Langlet’s presentation at ACII 2015

Clavel, C.; Callejas, Z., Sentiment analysis: from opinion mining to human-agent
interaction, IEEE Transactions on Affective Computing (2016)
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Grammars for the detection of user’s likes in human-agent interaction

Symbolic AI for sentiment analysis

Principles
Formal models integrating knowledge from:

• psycholinguistics

• small corpus observation

Advantages

• useful when problems are still not correctly stated (functions of inputs/outputs)

• useful when we don’t have a sufficient quantity of data with relevant labels

• useful when there is a strong need for model interpretability
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Social Computing and symbolic AI

Example of research on symbolic AI :

• Formal grammars for the detection of user’s sentiment in human-agent interaction

C. Langlet and C. Clavel, Improving social relationships in face-to-face human-agent
interactions: when the agent wants to know user’s likes and dislikes , in ACL 2015
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Grammars for the detection of user’s likes in human-agent interaction

1/Focus on a certain type of user’s sentiment: user’s likes and dislikes
Choice driven by literature in psychology :

↪→ Heider theory [Heider, 1982]: the quality of an inter-personal relationship depends
on a balance between the likes and dislikes of each person for different entities.

Representation of user’s likes and dislikes according to Appraisal theory
[Martin and White, 2005]:
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Grammars for the detection of user’s likes in human-agent interaction

2/Modelling interaction process

• based on psycholinguistic theory [Clark and Schaefer, 1989] we identified the
adjacency pair (agent utterance, user utterance) as unit for the analysis

c© C. Langlet’s presentation at ACII 2015
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Grammars for the detection of user’s likes in human-agent interaction

Formal model: patterns and rules within the adjacency pair
based on psycholinguistic theories for modelling the appraisal process within the
interaction

Two appraisals : (dislike, Dali) and (like, Picasso)

C. Langlet and C. Clavel, Improving social relationships in face-to-face human-agent
interactions: when the agent wants to know user’s likes and dislikes , in ACL 2015
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Grammars for the detection of user’s likes in human-agent interaction

Evaluation method
Annotation of a corpus of human-agent interaction

Development of an annotation guide within a crowdsourcing platform for the
annotation of opinions in interactions

Langlet, C., Duplessis, G.D. and Clavel, C., 2017. A Web-Based Platform for Anno-
tating Sentiment-Related Phenomena in Human-Agent Conversations. In International
Conference on Intelligent Virtual Agents (pp. 239-242). Springer, Cham.
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Challenge: How to model interactive processes for the detection of user’s
sentiment using deep learning?

• Using recurrent Neural Networks for utterance classification:

• good to model the sequential nature of video, audio or text
• can be extended to model the conversation sequentiality

• and seq2seq approaches in particular:

Pierre Colombo and Emile Chapuis and Matteo Manica and Emmanuel Vignon and
Giovanna Varni and Chloe Clavel, Guiding attention in Sequence-to-sequence models
for Dialogue Act prediction, AAAI 2020
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Seq2seq approaches for utterance classification in dialogue

widely used by Neural Machine Translation to model the strong dependencies that
exist between units composing:

• the input sequences (sequences of words in a language)

• the output sequences (sequences of words in another language in NMT → the
sequence of labels for utterance classification)

Here, seq2seq is used to model two types of dynamics:

• the dynamics between the labels to predict for each utterance

• the dynamics between the contents of the utterances

Pierre Colombo and Emile Chapuis and Matteo Manica and Emmanuel Vignon and
Giovanna Varni and Chloe Clavel, Guiding attention in Sequence-to-sequence models
for Dialogue Act prediction, AAAI 2020
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Seq2seq approaches for utterance classification in dialogue

Speaker A Speaker B

Hi B How are you Good Bye

Sentence-level encoder

Persona-level encoder

Word-level encoder

DA decoder

<SOS>

(a) (b)

Greeting Open Question Closing

The proposed architecture relies on the encoder-decoder architecture of seq2seq with:

• A hierarchical RNN encoder (word and utterance levels)

• A RNN decoder

• Attention mechanisms
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The NoRDF project’s research lines related to the Social Computing topic

Using neuro-symbolic approaches for helping different tasks specific to Social
Computing...

• Predict links between source, target and evaluation components of a sentiment
expression ("I think this movie is not a good one")

• Identify different expressions referring to a same target or to a same source

• Adapt methods for the understanding of user’s utterance in the context of a
dialogue (complex referring expressions, modelling of dialogue dynamics)
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