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Why would we need alternative hardwares?

Adapting technology to breakthrough, solving bottlenecks

⬢ AI is a new concept, implemented with unmatched
and decades old hardware computing principles

⬢ Turing – von Neumann machines are matched to
arithmetic computing, not neural network processing

⬢ Digital computers are inefficiently simulating NN models
(multi-task 30W brain vs. MW single task AlphaGo)

⬢ Energy efficiency is a major drawback of currently
available processors (autonomous car driving bottleneck)
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Change of viewpoints?

Possibly requirred change of paradigm or framework

⬢ Digital vs. Analog
(Boolean vs. Continuous functions)

⬢ Clocked discrete time vs. Continuous time varying processing
(e.g. breakthrough from sampling theory to compressive sensing)

⬢ Error-free & repeatable vs. robust & fault tolerant
(fully deterministic rules vs. freedom & randomness)

⬢ Finite (though high-) vs. Infinite dimensional
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Scientific challenges

Examples of a few
• RNN chips: hardware, devices & technologies, are to be discovered
• New paradigms are explored for groundbreaking architectures to be

determined (high risk & unconventional approaches requirred)
• Theory & understanding: The magic “black box” of RNN needs to be

turned into grey, or even white (processing, learning, operation
boundaries)

• Extreme cross-disciplinary research is needed to succeed (far beyond
the nowadays dominating realm of “current” Computer Science)

• Totally new and disruptive approaches are needed (concepts,
principles, design, programming, etc. . . )

In this framework, many paths are to be explored,
photonic Reservoir Computing is one of them
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A few RC concepts

Concepts
• Novel paradigm refered as to Echo State Network (ESM),

Liquid State Machine (LSM) and also Reservoir Computing (RC)

• Processing of time varying information through nonlinear transients
observed in a high-dimensional phase space (could be named
Nonlinear Transient Computing)

• Derived from RNN, however learning is simplified, limited to the output
layer only (other weights, input and internal, chosen at random)

• Physical implementation: Eventually escape from the technologically
unmatched details of the original neural network idea. . .
The structure of a Network of Neurons is not necessarily the optimal
technological solution

Dimensionality, complexity, degrees of freedom might be
the correct ingredients, not the RNN architecture itself
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Introduction to delay dynamics

Actually not that an unsual dynamics

• Living systems (population dynamics, blood cell
regulation mechanisms, people reaction after
perception and neural system processing,. . . )

• Traffic jam, accordeon car flow
• Distant control of satelites or rockets in space
• Game of vertical stick control at the tip of a finger
• Human stand-up position control (and effects of

increased perception delay after some kinds of drinks)
• Hot and cold oscillations at shower start

. . . Any time when information transport occurs (at finite
speed), thus resulting in longer propagation time
compared to intrinsic dynamical time scales
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Optoelectronic delay oscillators (& Apps)

εẋ(t) = −x(t) + β sin2[x(t − 1) + Φ0]

Y.K. Chembo et al., Review of Modern Physics, 2019

ICE monthly seminar, Institut Polytechnique de Paris, 3rd of December, 2020 11 / 38



Optoelectronic delay oscillators (& Apps)

εẋ(t) = −x(t) + β sin2[x(t − 1) + Φ0]

Y.K. Chembo et al., Review of Modern Physics, 2019

ICE monthly seminar, Institut Polytechnique de Paris, 3rd of December, 2020 11 / 38



Optoelectronic delay oscillators (& Apps)
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A bit of DDE physics & modelling

Mackey–Glass- or Ikeda-like DDE

τ · dx
dt

(t) = −x(t) + fNL[x(t − τD)]

Non-delayed (instantaneous) terms:
- Linear differential equation, rate of change γ = 1/τ

- Stable linear Fourier filter, frequency cut-off (2πτ)−1

- A few degrees of freedom≡ filter or diff.eq. order

Delayed (feedback) term:
- Non-linearity (slope sign, # extrema, multi-stability),

- Delay (infinite degrees of freedom, stability)

- Large delay case, τD � τ

Unusual features for delay dynamics

• Bandpass Fourier filter, or integro-differential delay equation
• Dynamical model with a convolution product
• Positive slope operating point, carved nonlinear function profile
• Multiple delay architectures, coupled delay dynamics: many possibilities

τ ·dx
dt

(t)+
1
θ

∫ t

t0
x(ξ) dξ = −x(t)+fNL[x(t−τD)]

τ · dx
dt

(t) = −x(t)−y(t) + fNL[x(t − τD)]

θ · dy
dt

(t) = x(t)
x(t) =

∫ t

−∞
h(t − ξ) · fNL[x(ξ − τD)] dξ
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Chimera states. . .

What is a Chimera state?
• Network of coupled oscillators with clusters of incongruent motions
• Predicted numerically in 2002, derived for a particular case in 2004, and

1st observed experimentally in 2012
• Not observed (initially) with local coupling, neither with global one

Features allowing for Chimera states?
• Network of coupled identical oscillators, spatio-temporal dynamics
• Requires non-local nonlinear coupling between oscillator nodes
• Important parameters: coupling strength, and coupling distance

Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002); D. M. Abrams and S. H. Strogatz,
Phys. Rev. Lett. 93, 174102 (2004); I. Omelchenko et al. Phys. Rev. Lett. 106 234102 (2011); A. M. Hagerstrom et al. &
M. Tinsley et al., Nat. Phys. 8, 658 & 662 (2012)
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Spatio-temporal setup demonstating Chimera

Light controlled
Belousov-Zhabotinsky
chemical reaction

Image formation in
a CCD camera – SLM
feedback loop

M. Tinsley et al., and A. M. Hagerstrom et al. Nat. Phys. 2012
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DDE recipe for chimera states

Symmetric fNL[x]: Similar σ−“clusters” for x < 0 and x > 0

Asymmetric fNL[x]: Distinct σ−clusters for x < 0 and x > 0

And i DDE

δ

∫ s

s0

x(ξ) dξ + x(s) + ε
dx
ds

(s) = fNL[x(s− 1)]
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Laser based delay dynamics experiment
Tunable SC Laser setup, for i DDE Chimera

fNL[x]: the Airy function of a Fabry-Pérot interferometer

⇒ fNL[λ] = β
1+m sin2(2πne/λ)

= β
1+m sin2(x+Φ0)

with x = 2πne
λ2

0
δλ and Φ0 = 2πne

λ0+Stun. iDBR0

LL, Penkovsky, Maistrenko, Nat. Commun. 2015
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1st Chimera in (σ, n)−space

Numerics:

• β = 0.6, ν0 = 1, ε = 5.10−3,
δ = 1.6× 10−2

• Initial conditions: small amplitude
white noise (repeated several times
with different noise realizations)

• Calculated durations: Thousands of n

Experiment. . .

• Very close amplitude and time parameters,
τD = 2.54ms, θ = 160ms, τ = 12.7µs

• Initial conditions forced by background noise

• Recording of up to 16× 106 points,
allowing for a few thousands of n

LL et al. Phys. Rev. Lett. 2013.
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How can a DDE emulate a Network?
Normalization wrt Delay τD: s = t/τD, and ε = τ/τD

ε ẋ(s) = −x(s) + fNL[x(s− 1)], where ẋ =
dx
ds
.

Large delay case: ε� 1, potentially high dimensional attractor
∞−dimensional phase space, initial condition: x(s), s ∈ [−1, 0]

Space-time representation

• Virtual space variable σ,

σ ∈ [0; 1 + γ] with γ = O(ε).

• Discrete time n

n → (n + 1)

s = n(1 + γ) + σ → s = (n + 1)(1 + γ) + σ

F.T. Arecchi, et al. Phys. Rev. A 1992
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How can a DDE emulate a Network?
Convolution product involving the linear impulse response,

h(t) = FT−1[H(ω)]

x(s) =
∫ s
−∞ h(s− ξ) · fNL[x(ξ − 1)] dξ with s = n(1 + γ) + σ

. . . partitioning the time domain:

]−∞; s] = ]−∞ ; n(1 + γ) + σ ] ∪ ]n(1 + γ) + σ ; (n + 1)(1 + γ) + σ ]

and make a change of integration variable ξ ↔ ξ − (n + 1)(1 + γ) + γ

⇒ xn+1(σ) = Iε(n, σ) +

∫ σ+γ

σ−1
h(σ + γ − ξ) · fNL[xn(ξ)] dξ, with Iε � xn(σ){

∂φ

∂t
= ω −

∫ π

−π
G(x− x′) · sin[φ(x, t)− φ(x′, t) + α] dx

}

LL, Penkovsky, Maistrenko, Nat. Commun. 2015

Remark: the NL dynamics and coupling features of each virtual oscillator are by construction identical at any position σ!!!
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Double delay dynamics: toward 2D chimera

Setup and delay dynamics features

Double delay nonlinear integro-differential equation

ε
dx
dt

(t) + x(t) + δ

∫
x(ξ)dξ = (1− γ) fNL[x(t− τ1)] + γ fNL[x(t− τ2)]
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2D-chimera with chaotic sea, or chaotic island
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Isolated pulses
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Outline

Background and motivations

Basics in Reservoir Computing (RC)

Delay dynamics as an emulated network of neurons

Reservoir Computing with Photonic DDE

Conclusion & perspectives
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Emulating RNN with delay dynamics

A convenient hardware solution for RC

• Designing a complex and controlled 3D network of nodes as a brain:
a very difficult technological challenge

• Serial processing: common in many communication systems
• Delay dynamics known as virtual Space-Time dynamics
• Schematic of RC architecture with delay dynamics
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Examples of delay-based RC

. . . and now even available in hardware
• Low speed analogue electronic

• Moderate speed optoelectronic
• High speed all-optical and optoelectronic demo

Appeltant et al., Nature Commun. 2011.

LL et al., Opt. Expr. 2012. Paquot et al., Sci. Rep. 2012. Martinenghi et al., Phys. Rev. Lett. 2012.Brunner et al., Nature Comm. 2013. LL et al., Phys. Rev. X 2017. Fiers et al., Nature Comm. 2014.
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EO phase setup: Modeling
RF Bandpass filter, DPSK NL delayed feedback

• Integro-differential (linear bandpass filter) nonlinear delay equation

1
θ

∫ t

t0

ϕ(ξ) dξ + ϕ(t) + τ
dϕ
dt

(t) = β ·
[
f(t−τD)(ϕ

?)
]

• Non linearity via imbalanced interferometer (temporal non locality)

• Standard DPSK demodulator

ft(ϕ) = {1 + cos[ϕ(t)− ϕ(t − δT) + Φ0]}

• Generalized multiple wave interferometer

ft(ϕ) = F0

∣∣∣∣∣1 +
∑

k

αk ei[ϕ(t)−ϕ(t−δTk)+Φk]

∣∣∣∣∣
2
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RC operation of an EO phase setup

Amplitude parameters

• Input ΦM amplitude: 1.2π
• feedback gain: β ' 0.7
• offset phase: Φ0 ' 2π/5

(nearly parabolic)

Time parameters

• Loop filter bandwidth: 566 MHz⇒ δτ ' 56.8 ps
(AWG limited, 17.6 GS/s)

• Time delay: τD ' 63.33 ns (a few meters of fiber)
• internal input sample memory: 3⇒ 371 virtual nodes / input sample, or

1113 virtual nodes / time delay: “hidden” layers within the delay
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Impulse response: Delay-RC characterization

The whole setup
• Information injection by an AWG
• Dynamical processing by the EO phase DDE
• Recording of the dynamical response (oscilloscope)

Injecting a single pulse
• Echoes (memory, feedback strength, instability neighborhood)

• Head: Nonlinear transformation (input amplitude, nonlinear scan)
• Tail: Linear response
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Dynamical Processing of Spoken Digits

Input pre-processing
• Lyon Ear Model transformation (Time & Frequency 2D formatting, 60

Samples x 86 Freq.channel)

• Sparse “connection” of the 86 Freq. channel to the 371 neurons:
random connection matrix

Reservoir transient response:
• Time series record for Read-Out post-processing
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Read-Out, Training, and Testing

Training of the Read-Out with target output function
Learning: optimization of the W matrix,
for each different digit

→ Regression problem for A×W ' B:
Wopt = (AT A− λI)−1AT B

Testing with training-defined Read-Out

Test result: State of the art
(close to 0% Word Error Rate)

With Telecom Bandwidth setup:
record speed recognition, 1M word/s

(LL et al., Phys. Rev. X 2017)
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Complexifying delay-based RC

Advanced architectures
• Parallel delay-RC units, with distributed filter parameters
• Cascaded delay-RC units, with different filtering features: Deep

convolutional RC

Integrated optics photonic chips
• Photonic hybrid integrated technologies are mature to fabricate

collective delay-RC photonic chips, with Opto-Electronic architectures
• Interfacing input and output data is still challenging

Learning: From supervised to unsupervised
• Could learning of the Read-Out coefficients be viewed as a pattern

formation triggered by some specific data feature to be filtered?
• Chimera as the spontaneous formation of a pattern allowing for feature

extraction?

Grigoryeva et al., Neural Networks 2014. Penkovsky et al. Phys. Rev. Lett. 2019
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3D spatio-temporal photonic RC

Experimental bulk optics setup (D. Brunner, M. Jacquot)
• Nodes are spatially distributed in an image plane
• Coupling between nodes makes use of DOE
• Nonlinear is performed by SLM (polarization filtering)
• Read-Out is physically implemented (cascaded DMD and a photodiode)

J. Bueno et al., Optica, 2018
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3D spatio-temporal photonic RC

Elements characterization
• Node coupling: two cascaded DOE

• Nonlinear transformation (SLM)
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3D spatio-temporal photonic RC

Chaotic time series prediction
• Random initialization and learing

• After re-inforcement learning
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Toward integrated 3D photonic RC chips

Integrated laser array
(Stefan Reizenstein et al., TU Berlin)

3D-printed integrated
photonic couplers
(Daniel Brunner et al., FEMTO-ST)

Heuser et al., IEEE JSTQE 2020. Moughames et al., Optical Materials Express 2020
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Thank you for attention

Thanks to many collaborators, from many disciplines:
FEMTO-ST Y.K. Chembo, M. Jacquot, D. Brunner, J.M. Dudley, M. Kadic
PhD students: R. Martinenghi, A.B. Fuentes, B. Penkovsky, B. Marquez, L.
Andreoli, S. Maktoobi, N. Semenova, V. Semenov
Postdoc: X. Porte, J. Moughames
formerly @ LMB J.-P. Ortega (Sankt Gallen), L. Grigoryeva (Konstanz)
TU Berlin E. Schöll, Y. Maistrenko, R. Levchenko, S. Reizenstein
IFISC I. Fischer, P. Colet, C.R. Mirasso, M.C. Soriano
PhD students: R.M. Nguimdo, N. Oliver, J. Bueno
ULB T. Erneux
PhD student: L. Weicker
Univ. Maryland R. Roy, T.E. Murphy, Y.K. Chembo
PhD student: J.D. Hart
VUB J. Danckaert, G. Van der Sande
PhD student: L. Appeltant
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