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Notations and problems

Vector space (Ed)

1 Supervised learning,
2 Unsupervised learning,
3 Indexing,
4 Search. . .
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Supervised learning

Learning
To learn is to generalize (6=memorize),

Supervised learning
Regression,
Requires an expert,
Tons of applications.

?
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Unsupervised learning

Unsupervised learning
Partitioning/disentangling,
Requires priors,
Not so many direct
applications.
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Indexing

Definition
Given a collectionX ∈ Ed×n and a query vector x:
1 Is x ∈ X?
2 Do we have x′ ∈ X s.t. x′ ≈ x?

Exhaustive search
Pros: no error, simple, concurrent,
Cons: linear with both d and n.

Example of database: SIFT1B:
n = 1, 000, 000, 000,
d = 128,
10,000 queries,
On my laptop, takes approximatively 4 years.
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Search

Definition
Given a collectionX ∈ Ed×n and a query vector x, find:

x′ = arg min
x′∈X

‖x− x′‖,

given somemetric.

Methods
Exhaustive search again,
Act on n and/or d:

On n, partition the search space (problems with high dimensions),
On d, quantify the collection and/or the probe (e.g. Product
Quantization).
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(Artificial) Neural Networks

Definition
A neural network is a mathematical function obtained by assembling
simple ones, called layers, that can be written as:

x 7→ y = σ(Wx+ b).

Nonlinear functions
Sigmoids (e.g. x 7→ 1/ (1 + exp(−x))),
ReLU (e.g. x 7→ max(0, x)),
Winner-Take-All (WTA). . .
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Hopfield Neural Networks

Framework
x ∈ {−1, 1}d,X ⊂ {−1, 1}d×n,

Example:
Storing binary vector
-11-111-1-11
Retrieve it from -11-111-1?1

W =
∑

x∈X xx> = XX> (except
diagonal),
y = sgn(Wx) = u(x),
U(x) , u(u(u(u(. . . u(x))))),
Complexity: O(d2).
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Stability of stored vectors

Theorem [1]
Consider n = d

γ log(d) :
If γ > 6, then for d→∞, P[lim inf

d
{∩x∈X{U(x) = x}] = 1,

If γ > 4, then P[∩x{U(x) = x}]→ 1,
If γ < 2, then P[∩x{U(x) = x}]→ 0.

Memory e�ciency(
d
2

)
connections with n+ 1 possible values each⇒ takes(

d
2

)
log2(n+ 1) bits without compression,

To be compared to the entropy ofX≈nd,
When patterns are stable, we obtain η ≤ 1

log(d) .

[1] “Étude asymptotique d’un réseau neuronal: le modèle de mémoire associative de
Hopfield”, Franck Vermet
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Willshaw Neural Networks

Framework
x ∈ {0, 1}d, ‖x‖0 � d,X ⊂ {0, 1}d×n.

Example:
Storing binary vector 01011001
Retrieve it from 010?10?1

W = maxx∈X xx> ∈ {0, 1}d×d
(= XX> for Boolean algebra),
y = sgn(Wx− s1) = u(x),
U(x) , u(u(u(u(. . . u(x))))).
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Stability of stored vectors

Theorem [2]
ConsiderX generated with ‖x‖0 = blog(d)/dc and x chosen at random
such that ‖x‖0 = blog(d)/dc. With n = αd2 log log(d)/ log2(d):

If α > 2, P[u(x) = x]→ 1,
If α = 2, ∃γ > 0, for d large enough, P[u(x) = x] ≥ γ,
If α < 2, P[u(x) = x]→ 0.

[2] “A Comparative Study of Sparse Associative Memories”, Jour. Stat. Phys.
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Retrievability of stored vectors

Theorem [2]
Consider n = αd2/ log2(d), ρ ∈ [0, 1[ such that bρ log(d)c of 1s in x are
erased to obtain x̃. Then:

If α < − log(1− exp(−1/(1− ρ))), then P[u(x̃) = x]→ 1,
If α > − log(1− exp(−1/(1− ρ))), then P[u(x̃) 6= x]→ 1.

On the di�culty of computing the memory e�ciency(
d
2

)
connections with 2 possible values each⇒ takes

(
d
2

)
bits

without compression,
To be compared to the entropy ofX: ≈ ndH2(log(d)/d),

When patterns are stable, we obtain η ≥ αd log log(d)
log(d) → +∞.

[2] “A Comparative Study of Sparse Associative Memories”, Jour. Stat. Phys.
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Associative memories

Store Storage capacity
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Associative memories

Retrieve Storage capacity

Noisy version of
previously stored
piece of information
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Associative memories

Retrieve Storage capacity
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Summary

Hopfield Willshaw

Framework x ∈ {−1, 1}d x ∈ {0, 1}d, ‖x‖0 � d

Memory xx> xx>

Aggregation W =
∑
x∈X

xx> W = max
x∈X

xx>

W = XX> W = XX>

using classical linear algebra using Boolean algebra

Search sgn(Wx̃) sgn(Wx̃− s1)
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Adding structure toWillshaw networks

` neurons/cluster

c clusters
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Leveraging the structure

Willshaw rule for retrieval
xij denotes the j-th neuron in the i-th cluster,
u(x)ij = 1⇔

∑
i′
∑

j′ Wi′j′,ijxi′j′ ≥ s.
Storage is performed using Boolean algebra, retrieving is
performed using classical linear algebra.

New rule for retrieval
u(x)ij = 1⇔

∑
i′ maxj′ Wi′j′,ijxi′j′ is maximal in cluster i,

u(x)ij = 1⇔ ∧i′ ∨j′ Wi′j′,ij ∧ xi′j′ ,
if neurons in erased clusters are all initialized active.
Both storage and retrieval are performed using Boolean algebra.
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Memory e�ciency (with some approximations)

Approaching log(2)
Let us choose: αc = 2 log2(`),
η ∼ nc log2(`)

(c2)`2
∼ αn

`2
,

Probability a given connection exists (i.i.d. uniform vectors):
p = 1− (1− `−2)n ⇒ n ∼ −`2 log(1− p),

Probability to accept a random vector: Pe ≈ p(
c
2), none of them :

P ∗e ≤ Pe`c,

P ∗e ≤
+∞

exp

(
c2

2
[log2(p) + α]

)
→ 0 if α = −β log2(p), β < 1.

Conclusion : η ∼ β log2(1− p) log2(p) log(2)
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Asymptotic behavior

Storage diversity
Theorem: consider n = α log(c)`2, with c = log(`), then:

For α > 2, a random vector is accepted with probability that goes
to 1,
For α = 2, probability is strictly positive,
For α < 2, probability goes to 0.

Stability and error correction
Theorem: Consider n = α`2/c2 vectors. Deactivate ρc initial neurons,
then for α < − log(1− exp(−1/(1− ρ))), probability to retrieve the
vector goes to 1.

“A comparative study of sparse associative memories,” Jour. Stat. Phys.
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Performance in search

Amari (Hopfield)
No structure
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2048 neurons total,
8 neurons per vector,
4 initially activated
neurons,
(` = 256).

“A comparative study of sparse associative memories,” Jour. Stat. Phys.
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Performance in indexing
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With 1% of error, memory e�ciency is 137.1%
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Application to Implementation of Search Engines

Conclusion: 13.6x memory
reduction and 89% energy saving
compared to classical CAMs.

“A Nonvolatile Associative Memory-BasedContext-Driven Search Engine Using 90 nmCMOS/MTJ-Hybrid Logic-in-Memory
Architecture,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems
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Application to Approximate Nearest Neighbor Search

“Associative Memories to Accelerate Nearest Neighbor Search,” Applied Science
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Application to Approximate Nearest Neighbor Search

Recalls on SIFT1M
dataset.

“Associative Memories to Accelerate Nearest Neighbor Search,” Applied Science
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DecisiveNets: from DNNs to DAMs

Resnet18 and CIFAR10

“DecisiveNets: Training Deep Associative Memories to Solve Complex Machine Learning Problems,” in review
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Conclusion

Take-away message
Structured Clique Networks are very e�cient associative
memories,
They can help in many problems,
They are very e�cient for specific hardware.

Interesting directions of research
Improving explanability, robustness, transferability of knowledge
in DNNs,
DNNs on edge,
Intricating storing and learning in neural networks,
Continual learning.

email: vincent.gripon@imt-atlantique.fr
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