Structured Clique Networks as Efficient Associative Memories

Vincent Gripon

March 4th, 2021

Vincent Gripon (IMT-Atlantique)

Structured Clique Networks

March 4th, 2021 1/25

Outline

Context

Associative Memories

- Hopfield Neural Networks
- Willshaw Neural Networks

Structured Clique Networks

- Principles
- Theoretical results
- Experiments

Example Applications

- Applications in Hardware
- Approximate Nearest Neighbor Search
- DecisiveNets

Conclusion

Outline

Context

Associative Memories

- Hopfield Neural Networks
- Willshaw Neural Networks

Structured Clique Networks

- Principles
- Theoretical results
- Experiments

Example Applications

- Applications in Hardware
- Approximate Nearest Neighbor Search
- DecisiveNets

Conclusion

Vector space (E^d)

1	Supervised learning,
	Unsupervised learning,
	Indexing,
	Search

- Supervised learning,
- Unsupervised learning,
- Indexing,

Search..

- Supervised learning,
- Unsupervised learning,
- Indexing,
- Search...

Learning

To learn is to **generalize** (\neq memorize),

- Regression,
- Requires an expert,
- Tons of applications.

Learning

To learn is to **generalize** (\neq memorize),

- Regression,
- Requires an expert,
- Tons of applications.

Learning

To learn is to **generalize** (\neq memorize),

- Regression,
- Requires an expert,
- Tons of applications.

Learning

To learn is to **generalize** (\neq memorize),

- Regression,
- Requires an expert,
- Tons of applications.

Learning

To learn is to **generalize** (\neq memorize),

- Regression,
- Requires an expert,
- Tons of applications.

Learning

To learn is to **generalize** (\neq memorize),

Learning

To learn is to **generalize** (\neq memorize),

- Partitioning/disentangling,
- Requires priors,
- Not so many direct applications.

- Partitioning/disentangling,
- Requires priors,
- Not so many direct applications.

- Partitioning/disentangling,
- Requires priors,
- Not so many direct applications.

Classical methods: *k*-means, db-scan, Kohonen maps, autoencoders, EM...

- Partitioning/disentangling,
- Requires priors,
- Not so many direct applications.

Classical methods: *k*-means, db-scan, Kohonen maps, autoencoders, EM...

Definition

Given a collection $\mathbf{X} \in E^{d imes n}$ and a query vector \mathbf{x} :

- Is $\mathbf{x} \in \mathbf{X}$?
- 2 Do we have $\mathbf{x}' \in \mathbf{X}$ s.t. $\mathbf{x}' \approx \mathbf{x}$?

Exhaustive search

- Pros: no error, simple, concurrent,
- Cons: linear with both *d* and *n*.
- Example of database: SIFT1B:
 - n = 1,000,000,000,
 - d = 128,
 - 10,000 queries,
 - $\bullet~$ On my laptop, takes approximatively 4 years.

Definition

Given a collection $\mathbf{X} \in E^{d imes n}$ and a query vector \mathbf{x} :

- Is $\mathbf{x} \in \mathbf{X}$?
- ② Do we have $\mathbf{x}' \in \mathbf{X}$ s.t. $\mathbf{x}' pprox \mathbf{x}$?

Exhaustive search

- Pros: no error, simple, concurrent,
- Cons: linear with both *d* and *n*.
- Example of database: SIFT1B:
 - n = 1,000,000,000,
 - d = 128,
 - 10,000 queries,
 - $\bullet~$ On my laptop, takes approximatively 4 years.

Definition

Given a collection $\mathbf{X} \in E^{d \times n}$ and a query vector \mathbf{x} :

- Is $\mathbf{x} \in \mathbf{X}$?
 - ② Do we have $\mathbf{x}' \in \mathbf{X}$ s.t. $\mathbf{x}' pprox \mathbf{x}$?

Exhaustive search

- Pros: no error, simple, concurrent,
- Cons: linear with both d and n.
- Example of database: SIFT1B:
 - n = 1,000,000,000,
 - d = 128,
 - 10,000 queries,
 - $\bullet~$ On my laptop, takes approximatively 4 years.

Definition

Given a collection $\mathbf{X} \in E^{d \times n}$ and a query vector \mathbf{x} :

- Is $\mathbf{x} \in \mathbf{X}$?
- ② Do we have $\mathbf{x}' \in \mathbf{X}$ s.t. $\mathbf{x}' pprox \mathbf{x}$?

Exhaustive search

- Pros: no error, simple, concurrent,
- Cons: linear with both d and n.

Example of database: SIFT1B:

- n = 1,000,000,000,
- d = 128,
- 10,000 queries,
- On my laptop, takes approximatively 4 years.

Definition

Given a collection $\mathbf{X} \in E^{d imes n}$ and a query vector \mathbf{x} :

- Is $\mathbf{x} \in \mathbf{X}$?
 - ② Do we have $\mathbf{x}' \in \mathbf{X}$ s.t. $\mathbf{x}' pprox \mathbf{x}$?

Exhaustive search

- Pros: no error, simple, concurrent,
- Cons: linear with both d and n.

Example of database: SIFT1B:

- n = 1,000,000,000,
- *d* = 128,
- 10,000 queries,
- $\bullet~$ On my laptop, takes approximatively 4 years.

Search

Definition

Given a collection $\mathbf{X} \in E^{d \times n}$ and a query vector \mathbf{x} , find:

$$\mathbf{x}' = \arg\min_{\mathbf{x}' \in \mathbf{X}} \|\mathbf{x} - \mathbf{x}'\|,$$

given some metric.

Methods

- Exhaustive search again,
- Act on n and/or d:
 - On n, partition the search space (problems with high dimensions),
 - On *d*, quantify the collection and/or the probe (e.g. Product Quantization).

Search

Definition

Given a collection $\mathbf{X} \in E^{d \times n}$ and a query vector \mathbf{x} , find:

$$\mathbf{x}' = \arg\min_{\mathbf{x}' \in \mathbf{X}} \|\mathbf{x} - \mathbf{x}'\|,$$

given some metric.

Methods

- Exhaustive search again,
- Act on n and/or d:
 - On n, partition the search space (problems with high dimensions),
 - On *d*, quantify the collection and/or the probe (e.g. Product Quantization).

Definition

A neural network is a mathematical function obtained by assembling simple ones, called layers, that can be written as:

$$\mathbf{x} \mapsto \mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}).$$

Nonlinear functions

- Sigmoids (e.g. $x\mapsto 1/\left(1+\exp(-x)
 ight)$),
- ReLU (e.g. $x \mapsto \max(0, x)$)
- Winner-Take-All (WTA)...

Definition

A neural network is a mathematical function obtained by assembling simple ones, called layers, that can be written as:

$$\mathbf{x} \mapsto \mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}).$$

Nonlinear functions

- Sigmoids (e.g. $x \mapsto 1/(1 + \exp(-x))$),
- ReLU (e.g. $x \mapsto \max(0, x)$),
- Winner-Take-All (WTA)...

Outline

1) Context

Associative Memories

- Hopfield Neural Networks
- Willshaw Neural Networks

Structured Clique Networks

- Principles
- Theoretical results
- Experiments

Example Applications

- Applications in Hardware
- Approximate Nearest Neighbor Search
- DecisiveNets

Conclusion

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

• Example:

- Storing binary vector
- Retrieve it from -11-111-1?

•
$$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$$
 (except diagonal),

•
$$\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$$
,

•
$$U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$$

• Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
 , $\mathbf{X} \subset \{-1,1\}^{d imes n}$,

• Example:

• Storing binary vector -11-111-1-11

• Retrieve it from -11-111-1?1

•
$$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$$
 (except diagonal),

•
$$\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$$
,

•
$$U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$$

• Complexity:
$$\mathcal{O}(d^2)$$
.

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

• Example:

• Storing binary vector -11-111-1-11

• Retrieve it from -11-111-1?1

•
$$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$$
 (except diagonal),

•
$$\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$$
,

•
$$U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$$

• Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

• Example:

- Storing binary vector -11-111-1-11
- Retrieve it from -11-111-1?1
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

• Example:

- Storing binary vector -11-111-1-11
- Retrieve it from -11-111-1?1
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
 , $\mathbf{X} \subset \{-1,1\}^{d imes n}$,

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1?1
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1?1
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1?1
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
, $\mathbf{X} \subset \{-1,1\}^{d imes n}$

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1-11
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
 , $\mathbf{X} \subset \{-1,1\}^{d imes n}$,

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1-11
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
 , $\mathbf{X} \subset \{-1,1\}^{d imes n}$,

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1-11
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$,
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))),$
- Complexity: $\mathcal{O}(d^2)$.

•
$$\mathbf{x} \in \{-1,1\}^d$$
 , $\mathbf{X} \subset \{-1,1\}^{d imes n}$,

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1-11
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$,
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x})))))$,
- Complexity: $\mathcal{O}(d^2)$

•
$$\mathbf{x} \in \{-1,1\}^d$$
 , $\mathbf{X} \subset \{-1,1\}^{d imes n}$,

- Example:
 - Storing binary vector -11-111-1-11
 - Retrieve it from -11-111-1-11
- $\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top = \mathbf{X} \mathbf{X}^\top$ (except diagonal),
- $\mathbf{y} = sgn(\mathbf{W}\mathbf{x}) = u(\mathbf{x})$,
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x})))))$,
- Complexity: $\mathcal{O}(d^2)$.

Stability of stored vectors

Theorem [1]

Consider
$$n = \frac{d}{\gamma \log(d)}$$
:
• If $\gamma > 6$, then for $d \to \infty$, $\mathbb{P}[\liminf_{d} \{ \bigcap_{\mathbf{x} \in \mathbf{X}} \{ U(\mathbf{x}) = \mathbf{x} \}] = 1$,
• If $\gamma > 4$, then $\mathbb{P}[\bigcap_{\mathbf{x}} \{ U(\mathbf{x}) = \mathbf{x} \}] \to 1$,
• If $\gamma < 2$, then $\mathbb{P}[\bigcap_{\mathbf{x}} \{ U(\mathbf{x}) = \mathbf{x} \}] \to 0$.

Memory efficiency

- $\binom{d}{2}$ connections with n + 1 possible values each \Rightarrow takes $\binom{d}{2} \log_2(n+1)$ bits without compression,
- To be compared to the entropy of $\mathbf{X}{pprox}nd$,
- When patterns are stable, we obtain $\eta \leq rac{1}{\log(d)}.$

[1] "Étude asymptotique d'un réseau neuronal: le modèle de mémoire associative de Hopfield", Franck Vermet

Vincent Gripon (IMT-Atlantique)

Stability of stored vectors

Theorem [1]

Consider
$$n = \frac{d}{\gamma \log(d)}$$
:
• If $\gamma > 6$, then for $d \to \infty$, $\mathbb{P}[\liminf_{d} \{ \bigcap_{\mathbf{x} \in \mathbf{X}} \{ U(\mathbf{x}) = \mathbf{x} \}] = 1$,
• If $\gamma > 4$, then $\mathbb{P}[\bigcap_{\mathbf{x}} \{ U(\mathbf{x}) = \mathbf{x} \}] \to 1$,
• If $\gamma < 2$, then $\mathbb{P}[\bigcap_{\mathbf{x}} \{ U(\mathbf{x}) = \mathbf{x} \}] \to 0$.

Memory efficiency

- $\binom{d}{2}$ connections with n + 1 possible values each \Rightarrow takes $\binom{d}{2} \log_2(n+1)$ bits without compression,
- To be compared to the entropy of $\mathbf{X} {pprox} nd$,
- When patterns are stable, we obtain $\eta \leq \frac{1}{\log(d)}$.

[1] "Étude asymptotique d'un réseau neuronal: le modèle de mémoire associative de Hopfield", Franck Vermet

Vincent Gripon (IMT-Atlantique)

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

• Example: • Storing binary vector 01011001 • Retrieve it from 010?10?1 • $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra), • $\mathbf{y} = sgn(\mathbf{W} \mathbf{x} - s\mathbf{1}) = u(\mathbf{x})$, • $U(\mathbf{x}) \triangleq u(u(u(u(...u(\mathbf{x})))))$. 5 7

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

• Example: • Storing binary vector 01011001 • Retrieve it from 010?10?1 • $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra), • $\mathbf{y} = sgn(\mathbf{W} \mathbf{x} - s\mathbf{1}) = u(\mathbf{x})$, • $U(\mathbf{x}) \triangleq u(u(u(u(-u(\mathbf{x})))))$

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

- Storing binary vector 01011001
 Retrieve it from 010?10?1
- $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),
- $\mathbf{y} = sgn(\mathbf{Wx} s\mathbf{1}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

• Example: • Storing binary vector 01011001 • Retrieve it from 010?10?1 • $W = \max_{x \in X} xx^{\top} \in \{0, 1\}^{d \times d}$ (= XX^{\top} for Boolean algebra), • y = sgn(Wx - s1) = u(x), • $U(x) \triangleq u(u(u(u(...u(x)))))$. • \int_{5}^{0}

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

- Storing binary vector 01011001
 Retrieve it from 010?10?1
- $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),
- $\mathbf{y} = sgn(\mathbf{Wx} s\mathbf{1}) = u(\mathbf{x})$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

- Storing binary vector 01011001
- Retrieve it from 010?10?1
- $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),
- $\mathbf{y} = sgn(\mathbf{Wx} s\mathbf{1}) = u(\mathbf{x}),$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

- Storing binary vector 01011001
- Retrieve it from 010?10?1
- $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),
- $\mathbf{y} = sgn(\mathbf{Wx} s\mathbf{1}) = u(\mathbf{x})$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

- Storing binary vector 01011001
- Retrieve it from 01011001
- $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),
- $\mathbf{y} = sgn(\mathbf{Wx} s\mathbf{1}) = u(\mathbf{x})$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

• $\mathbf{x} \in \{0,1\}^d$, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

- Storing binary vector 01011001
- Retrieve it from 01011001
- $\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$ (= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),
- $\mathbf{y} = sgn(\mathbf{Wx} s\mathbf{1}) = u(\mathbf{x})$
- $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

•
$$\mathbf{x} \in \{0,1\}^d$$
, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d \times n}$.

• Example:

- Storing binary vector 01011001
- Retrieve it from 01011001

•
$$\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$$

(= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),

•
$$\mathbf{y} = sgn(\mathbf{Wx} - s\mathbf{1}) = u(\mathbf{x}),$$

• $U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$

•
$$\mathbf{x} \in \{0,1\}^d$$
, $\|\mathbf{x}\|_0 \ll d$, $\mathbf{X} \subset \{0,1\}^{d imes n}$.

- Storing binary vector 01011001
- Retrieve it from 01011001

•
$$\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top} \in \{0, 1\}^{d \times d}$$

(= $\mathbf{X} \mathbf{X}^{\top}$ for Boolean algebra),

•
$$\mathbf{y} = sgn(\mathbf{Wx} - s\mathbf{1}) = u(\mathbf{x}),$$

•
$$U(\mathbf{x}) \triangleq u(u(u(u(\dots u(\mathbf{x}))))).$$

Consider X generated with $\|\mathbf{x}\|_0 = \lfloor \log(d)/d \rfloor$ and x chosen at random such that $\|\mathbf{x}\|_0 = \lfloor \log(d)/d \rfloor$. With $n = \alpha d^2 \log \log(d) / \log^2(d)$:

• If
$$lpha>2$$
 , $\mathbb{P}[u(\mathbf{x})=\mathbf{x}]
ightarrow 1$,

- If lpha=2, $\exists \gamma>0,$ for d large enough, $\mathbb{P}[u(\mathbf{x})=\mathbf{x}]\geq \gamma$,
- If $\alpha < 2$, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \to 0$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

Consider **X** generated with $\|\mathbf{x}\|_0 = \lfloor \log(d)/d \rfloor$ and **x** chosen at random such that $\|\mathbf{x}\|_0 = \lfloor \log(d)/d \rfloor$. With $n = \alpha d^2 \log \log(d) / \log^2(d)$:

- If $\alpha > 2$, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \to 1$,
- If $\alpha = 2$, $\exists \gamma > 0$, for d large enough, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \geq \gamma$,
- If $\alpha < 2$, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \to 0$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

Consider X generated with $\|\mathbf{x}\|_0 = \lfloor \log(d)/d \rfloor$ and x chosen at random such that $\|\mathbf{x}\|_0 = \lfloor \log(d)/d \rfloor$. With $n = \alpha d^2 \log \log(d) / \log^2(d)$:

• If
$$\alpha > 2$$
, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \to 1$

• If $\alpha = 2$, $\exists \gamma > 0$, for d large enough, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \geq \gamma$,

• If
$$\alpha < 2$$
, $\mathbb{P}[u(\mathbf{x}) = \mathbf{x}] \to 0$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

Consider $n = \alpha d^2 / \log^2(d)$, $\rho \in [0, 1[$ such that $\lfloor \rho \log(d) \rfloor$ of 1s in x are erased to obtain $\tilde{\mathbf{x}}$. Then:

- If $lpha < -\log(1 \exp(-1/(1
 ho)))$, then $\mathbb{P}[u(ilde{\mathbf{x}}) = \mathbf{x}] o 1$,
- If $\alpha > -\log(1 \exp(-1/(1 \rho)))$, then $\mathbb{P}[u(\tilde{\mathbf{x}}) \neq \mathbf{x}] \to 1$.

On the difficulty of computing the memory efficiency

- $\binom{d}{2}$ connections with 2 possible values each \Rightarrow takes $\binom{d}{2}$ bits without compression,
- To be compared to the entropy of \mathbf{X} : $\approx ndH_2(\log(d)/d)$,
- When patterns are stable, we obtain $\eta \geq rac{lpha d \log \log(d)}{\log(d)} o +\infty$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

Consider $n = \alpha d^2 / \log^2(d)$, $\rho \in [0, 1[$ such that $\lfloor \rho \log(d) \rfloor$ of 1s in x are erased to obtain $\tilde{\mathbf{x}}$. Then:

• If $\alpha < -\log(1 - \exp(-1/(1 - \rho)))$, then $\mathbb{P}[u(\tilde{\mathbf{x}}) = \mathbf{x}] \to 1$,

• If $\alpha > -\log(1 - \exp(-1/(1 - \rho)))$, then $\mathbb{P}[u(\tilde{\mathbf{x}}) \neq \mathbf{x}] \to 1$.

On the difficulty of computing the memory efficiency

- $\binom{d}{2}$ connections with 2 possible values each \Rightarrow takes $\binom{d}{2}$ bits without compression,
- To be compared to the entropy of X: ≈ ndH₂(log(d)/d),
- When patterns are stable, we obtain $\eta \geq rac{lpha d \log \log(d)}{\log(d)} o +\infty$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

Consider $n = \alpha d^2 / \log^2(d)$, $\rho \in [0, 1[$ such that $\lfloor \rho \log(d) \rfloor$ of 1s in x are erased to obtain $\tilde{\mathbf{x}}$. Then:

• If
$$\alpha < -\log(1 - \exp(-1/(1 - \rho)))$$
, then $\mathbb{P}[u(\tilde{\mathbf{x}}) = \mathbf{x}] \to 1$,

• If $\alpha > -\log(1 - \exp(-1/(1 - \rho)))$, then $\mathbb{P}[u(\tilde{\mathbf{x}}) \neq \mathbf{x}] \to 1$.

On the difficulty of computing the memory efficiency

- $\binom{d}{2}$ connections with 2 possible values each \Rightarrow takes $\binom{d}{2}$ bits without compression,
- To be compared to the entropy of X: ≈ ndH₂(log(d)/d),
- When patterns are stable, we obtain $\eta \geq rac{lpha d \log \log(d)}{\log(d)} o +\infty$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

Consider $n = \alpha d^2 / \log^2(d)$, $\rho \in [0, 1[$ such that $\lfloor \rho \log(d) \rfloor$ of 1s in x are erased to obtain $\tilde{\mathbf{x}}$. Then:

- If $\alpha < -\log(1 \exp(-1/(1 \rho)))$, then $\mathbb{P}[u(\tilde{\mathbf{x}}) = \mathbf{x}] \to 1$,
- If $\alpha > -\log(1 \exp(-1/(1 \rho)))$, then $\mathbb{P}[u(\tilde{\mathbf{x}}) \neq \mathbf{x}] \to 1$.

On the difficulty of computing the memory efficiency

- (^d₂) connections with 2 possible values each ⇒ takes (^d₂) bits without compression,
- To be compared to the entropy of **X**: $\approx ndH_2(\log(d)/d)$,
- When patterns are stable, we obtain $\eta \geq \frac{\alpha d \log \log(d)}{\log(d)} \to +\infty$.

[2] "A Comparative Study of Sparse Associative Memories", Jour. Stat. Phys.

March 4th, 2021 14/25

Vincent Gripon (IMT-Atlantique)

Structured Clique Networks

March 4th, 2021 14/25

Vincent Gripon (IMT-Atlantique)

Structured Clique Networks

March 4th, 2021 14/25

Vincent Gripon (IMT-Atlantique)

March 4th, 2021 14 / 25

	Hopfield	Willshaw
Framework	$\mathbf{x} \in \{-1,1\}^d$	$\mathbf{x} \in \{0,1\}^d$, $\ \mathbf{x}\ _0 \ll d$
Memory	$\mathbf{x}\mathbf{x}^{\top}$	$\mathbf{x}\mathbf{x}^\top$
Aggregation	$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{ op}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{ op}$ using classical linear algebra	$\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{\top}$ using Boolean algebra
Search	$sgn(\mathbf{W} ilde{\mathbf{x}})$	$sgn(\mathbf{W}\tilde{\mathbf{x}} - s1)$

	Hopfield	Willshaw
Framework	$\mathbf{x} \in \{-1,1\}^d$	$\mathbf{x} \in \{0,1\}^d$, $\ \mathbf{x}\ _0 \ll d$
Memory	$\mathbf{x}\mathbf{x}^{ op}$	$\mathbf{x}\mathbf{x}^{\top}$
Aggregation	$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{\top}$ using classical linear algebra	$\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{\top}$ using Boolean algebra
Search	$sgn(\mathbf{W} ilde{\mathbf{x}})$	$sgn(\mathbf{W}\tilde{\mathbf{x}} - s1)$

	Hopfield	Willshaw
Framework	$\mathbf{x} \in \{-1,1\}^d$	$\mathbf{x} \in \{0,1\}^d$, $\ \mathbf{x}\ _0 \ll d$
Memory	$\mathbf{x}\mathbf{x}^\top$	$\mathbf{x}\mathbf{x}^\top$
Aggregation	$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{ op}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{ op}$ using classical linear algebra	$\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{\top}$ using Boolean algebra
Search	$sgn(\mathbf{W} ilde{\mathbf{x}})$	$sgn(\mathbf{W}\tilde{\mathbf{x}} - s1)$

	Hopfield	Willshaw
Framework	$\mathbf{x} \in \{-1,1\}^d$	$\mathbf{x} \in \{0,1\}^d$, $\ \mathbf{x}\ _0 \ll d$
Memory	$\mathbf{x}\mathbf{x}^\top$	$\mathbf{x}\mathbf{x}^\top$
Aggregation	$\begin{split} \mathbf{W} &= \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top \\ \mathbf{W} &= \mathbf{X} \mathbf{X}^\top \\ \text{using classical linear algebra} \end{split}$	$\begin{split} \mathbf{W} &= \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^\top \\ \mathbf{W} &= \mathbf{X} \mathbf{X}^\top \\ \text{using Boolean algebra} \end{split}$
Search	$sgn(\mathbf{W} ilde{\mathbf{x}})$	$sgn(\mathbf{W}\tilde{\mathbf{x}}-s1)$

	Hopfield	Willshaw	
Framework	$\mathbf{x} \in \{-1,1\}^d$	$\mathbf{x} \in \{0,1\}^d$, $\ \mathbf{x}\ _0 \ll d$	
Memory	$\mathbf{x}\mathbf{x}^\top$	$\mathbf{x}\mathbf{x}^\top$	
Aggregation	$\mathbf{W} = \sum_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{ op}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{ op}$ using classical linear algebra	$\mathbf{W} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x} \mathbf{x}^{\top}$ $\mathbf{W} = \mathbf{X} \mathbf{X}^{\top}$ using Boolean algebra	
Search	$sgn(\mathbf{W} ilde{\mathbf{x}})$	$sgn(\mathbf{W}\tilde{\mathbf{x}}-s1)$	

Outline

Context

Associative Memories

- Hopfield Neural Networks
- Willshaw Neural Networks

Structured Clique Networks

- Principles
- Theoretical results
- Experiments

Example Applications

- Applications in Hardware
- Approximate Nearest Neighbor Search
- DecisiveNets

Conclusion

Adding structure to Willshaw networks

• \mathbf{x}_{ij} denotes the *j*-th neuron in the *i*-th cluster,

•
$$u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \sum_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'} \ge s.$$

• Storage is performed using Boolean algebra, retrieving is performed using classical linear algebra.

- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \max_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'}$ is maximal in cluster *i*,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \wedge_{i'} \vee_{j'} \mathbf{W}_{i'j',ij} \wedge \mathbf{x}_{i'j'}$, if neurons in erased clusters are all initialized active.
- Both storage and retrieval are performed using Boolean algebra.

- \mathbf{x}_{ij} denotes the *j*-th neuron in the *i*-th cluster,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \sum_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'} \ge s.$
- Storage is performed using Boolean algebra, retrieving is performed using classical linear algebra.

- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \max_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'}$ is maximal in cluster *i*,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \wedge_{i'} \vee_{j'} \mathbf{W}_{i'j',ij} \wedge \mathbf{x}_{i'j'}$, if neurons in erased clusters are all initialized active.
- Both storage and retrieval are performed using Boolean algebra.

- \mathbf{x}_{ij} denotes the *j*-th neuron in the *i*-th cluster,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \sum_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'} \ge s.$
- Storage is performed using Boolean algebra, retrieving is performed using classical linear algebra.

- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \max_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'}$ is maximal in cluster *i*,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \wedge_{i'} \vee_{j'} \mathbf{W}_{i'j',ij} \wedge \mathbf{x}_{i'j'}$, if neurons in erased clusters are all initialized active.
- Both storage and retrieval are performed using Boolean algebra.

- \mathbf{x}_{ij} denotes the *j*-th neuron in the *i*-th cluster,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \sum_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'} \ge s.$
- Storage is performed using Boolean algebra, retrieving is performed using classical linear algebra.

- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \sum_{i'} \max_{j'} \mathbf{W}_{i'j',ij} \mathbf{x}_{i'j'}$ is maximal in cluster *i*,
- $u(\mathbf{x})_{ij} = 1 \Leftrightarrow \wedge_{i'} \vee_{j'} \mathbf{W}_{i'j',ij} \wedge \mathbf{x}_{i'j'}$, if neurons in erased clusters are all initialized active.
- Both storage and retrieval are performed using Boolean algebra.

• Let us choose: $\alpha c = 2 \log_2(\ell)$,

- Probability a given connection exists (i.i.d. uniform vert $p = 1 (1 \ell^{-2})^n \Rightarrow n \sim -\ell^2 \log(1 p)$,
- Probability to accept a random vector: $P_e\approx p^{\binom{c}{2}}$, none of them : $P_e^*\leq P_e\ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(p) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta \log_2(p), \beta < 1.$$

• Let us choose: $\alpha c = 2 \log_2(\ell)$,

•
$$\eta \sim \frac{nc \log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha n}{\ell^2}$$
,

- Probability a given connection exists (i.i.d. uniform vectors): $p = 1 - (1 - \ell^{-2})^n \Rightarrow n \sim -\ell^2 \log(1 - p)$,
- Probability to accept a random vector: $P_e\approx p^{\binom{c}{2}}$, none of them : $P_e^*\leq P_e\ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(p) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta \log_2(p), \beta < 1.$$

- Let us choose: $\alpha c = 2 \log_2(\ell)$,
- $\eta \sim \frac{nc\log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha n}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform vectors): $p = 1 - (1 - \ell^{-2})^n \Rightarrow n \sim -\ell^2 \log(1 - p)$,
- Probability to accept a random vector: $P_e\approx p^{\binom{c}{2}}$, none of them : $P_e^*\leq P_e\ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(p) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta \log_2(p), \beta < 1.$$

- Let us choose: $\alpha c = 2 \log_2(\ell)$,
- $\eta \sim \frac{nc\log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha n}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform vectors): $p = 1 - (1 - \ell^{-2})^n \Rightarrow n \sim -\ell^2 \log(1 - p)$,
- Probability to accept a random vector: $P_e\approx p^{\binom{c}{2}}$, none of them : $P_e^*\leq P_e\ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(p) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta \log_2(p), \beta < 1.$$

- Let us choose: $\alpha c = 2 \log_2(\ell)$,
- $\eta \sim \frac{nc\log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha n}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform vectors): $p = 1 - (1 - \ell^{-2})^n \Rightarrow n \sim -\ell^2 \log(1 - p)$,
- Probability to accept a random vector: $P_e\approx p^{\binom{c}{2}}$, none of them : $P_e^*\leq P_e\ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(p) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta \log_2(p), \beta < 1.$$

- Let us choose: $\alpha c = 2 \log_2(\ell)$,
- $\eta \sim \frac{nc\log_2(\ell)}{\binom{c}{2}\ell^2} \sim \frac{\alpha n}{\ell^2}$,
- Probability a given connection exists (i.i.d. uniform vectors): $p = 1 - (1 - \ell^{-2})^n \Rightarrow n \sim -\ell^2 \log(1 - p)$,
- Probability to accept a random vector: $P_e\approx p^{\binom{c}{2}}$, none of them : $P_e^*\leq P_e\ell^c$,

•
$$P_e^* \leq \exp\left(\frac{c^2}{2}\left[\log_2(p) + \alpha\right]\right) \to 0 \text{ if } \alpha = -\beta \log_2(p), \beta < 1.$$

Asymptotic behavior

Storage diversity

Theorem: consider $n = \alpha \log(c)\ell^2$, with $c = \log(\ell)$, then:

- For α > 2, a random vector is accepted with probability that goes to 1,
- For $\alpha = 2$, probability is strictly positive,
- For $\alpha < 2$, probability goes to 0.

Stability and error correction

Theorem: Consider $n = \alpha \ell^2 / c^2$ vectors. Deactivate ρc initial neurons, then for $\alpha < -\log(1 - \exp(-1/(1 - \rho)))$, probability to retrieve the vector goes to 1.

'A comparative study of sparse associative memories," Jour. Stat. Phys.

Storage diversity

Theorem: consider $n = \alpha \log(c)\ell^2$, with $c = \log(\ell)$, then:

- For α > 2, a random vector is accepted with probability that goes to 1,
- For $\alpha = 2$, probability is strictly positive,
- For $\alpha < 2$, probability goes to 0.

Stability and error correction

Theorem: Consider $n = \alpha \ell^2/c^2$ vectors. Deactivate ρc initial neurons, then for $\alpha < -\log(1 - \exp(-1/(1 - \rho)))$, probability to retrieve the vector goes to 1.

"A comparative study of sparse associative memories," Jour. Stat. Phys.

Performance in search

"A comparative study of sparse associative memories," Jour. Stat. Phys.

Performance in indexing

False positive rate for various number of clusters c and $\ell = 512$ neurons per cluster.

With 1% of error, memory efficiency is 137.1%

random positive rate

Outline

Context

Associative Memories

- Hopfield Neural Networks
- Willshaw Neural Networks

Structured Clique Networks

- Principles
- Theoretical results
- Experiments

Example Applications

- Applications in Hardware
- Approximate Nearest Neighbor Search
- DecisiveNets

Conclusion

Application to Implementation of Search Engines

Conclusion: 13.6x memory reduction and 89% energy saving compared to classical CAMs.

"A Nonvolatile Associative Memory-BasedContext-Driven Search Engine Using 90 nmCMOS/MTJ-Hybrid Logic-in-Memory Architecture," IEEE Journal on Emerging and Selected Topics in Circuits and Systems

Vincent Gripon (IMT-Atlantique)

Structured Clique Networks

Application to Approximate Nearest Neighbor Search

Offline processing:

"Associative Memories to Accelerate Nearest Neighbor Search," Applied Science

Vincent Gripon (IMT-Atlantique)

Structured Clique Networks

Application to Approximate Nearest Neighbor Search

Table 1. Comparison of recall@1 and computation time for one scan (in ms) of the proposed method, kd-trees, K-means trees [1], ANN [16] and LSH [22] on the SIFT1M dataset for various targeted recall performances.

	Scan Time	Recall@1	Scan Time	Recall@1	Scan Time	Recall@1
Random kd-trees [1]	0.04	0.6	0.22	0.8	3.1	0.95
K-means trees [1]	0.06	0.6	0.25	0.8	2.8	0.99
Proposed method (hybrid)	0.17	0.6	0.25	0.8	1.1	0.99
ANN [16]	3.7	0.6	8.2	0.8	24	0.95
LSH [22]	6.4	0.6	11.1	0.8	28	0.98

"Associative Memories to Accelerate Nearest Neighbor Search," Applied Science

DecisiveNets: from DNNs to DAMs

$$\begin{split} \hat{\mathbf{y}}[\ell(i-1):\ell i] &= \sigma_t \left(\mathbf{x}[\ell(i-1):\ell i] \right), \forall i, \text{ where } \\ \sigma_t(\mathbf{z}) &= \frac{\texttt{softmax} \left(t \cdot \sigma(\mathbf{z}) \right)}{\max \left(\texttt{softmax} \left(t \cdot \sigma(\mathbf{z}) \right) \right)} \sigma(\mathbf{z}). \end{split}$$

	Resnet18 and CIFAR-10		Resnet50 and CIFAR-100	
l	accuracy	multiplications	accuracy	multiplications
1 (baseline)	95.21%	5,070,848	78.50%	1,297,809,408
2	95.25%	3,125,248	79.23%	861,601,792
4	94.65%	2,152,448	76.58%	643,497,984
8	92.95%	1,666,048	70.46%	534,446,080
16	88.95%	1,422,848	64.36%	479,920,128
32	84.90%	1,301,248	61.07%	$452,\!657,\!152$
64	78.28%	1,240,448	53.05%	439,025,664

Resnet18 and CIFAR10

l	clean data	Gaussian noise	Shot noise	Impulse noise	
1	95.21%	46.40%	59.50%	51.75%	
2	95.25%	47.59%	60.21%	53.45%	
4	94.65%	49.98%	61.99%	52.33%	
8	92.95%	46.34%	58.07%	53.54%	
16	88.95%	50.51%	60.26%	48.95%	
32	84.90%	56.56%	64.34%	54.78%	
64	78.28%	48.72%	55.60%	40.03%	

"DecisiveNets: Training Deep Associative Memories to Solve Complex Machine Learning Problems," in review

Outline

Context

Associative Memories

- Hopfield Neural Networks
- Willshaw Neural Networks

3 Structured Clique Networks

- Principles
- Theoretical results
- Experiments

Example Applications

- Applications in Hardware
- Approximate Nearest Neighbor Search
- DecisiveNets

5 Conclusion

Conclusion

Take-away message

- Structured Clique Networks are very efficient associative memories,
- They can help in many problems,
- They are very efficient for specific hardware.

Interesting directions of research

- Improving explanability, robustness, transferability of knowledge in DNNs,
- DNNs on edge,
- Intricating storing and learning in neural networks,
- Continual learning.

email: vincent.gripon@imt-atlantique.fr