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Problem Formulation Wave Energy Converter

Wave Energy Converter

WEC is a device which captures the power of waves and transforms it
to electricity.

The electricity generation from waves could amount to more than
2TW ( 18000TWh/year)

Wave energy distribution kW/m
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Problem Formulation Wave Energy Converter

Some Prototypes
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Problem Formulation Wave Energy Converter

Some Prototypes, cont.
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Problem Formulation WEC Modeling

WEC modeling

Newton’s second law for rotation

J θ̈(t) = Mex(t)−MPTO(t)−Mhd(t)−Mrad(t)

θ(t) : Float angle
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Problem Formulation WEC Modeling

WEC modeling, cont.

J : Mass inertia moment

Mex(t) : Wave excitation moment

MPTO(t) : PTO moment

Mhd(t) : Hydrostatic moment (due to gravity)

Mhd(t) = Kθ(t)

Mrad(t) : Radiation moment (due to the float movement)

Mrad(t) =

∫ t

τ=0
h(t − τ)θ̇(τ)d(τ)
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Problem Formulation WEC Modeling

WEC modeling, cont.

J,K , h(t) can be derived from boundary element methods, estimated
via dedicated experiments or both.

State space equation,{
ẋ(t) = Ax(t) + B(Mex(t)−MPTO(t))
y(t) = Cx(t)

Where

x(t) : State

y(t) =

[
θ(t)

θ̇(t)

]
: Output
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Problem Formulation Control Objective

Control Objective

Find MPTO(t) to maximize

Pavr =
1

T

∫ T

0
µ(t)θ̇(t)MPTO(t)dt

µ(t) : efficiency coefficient, that depends on θ̇(t)MPTO(t)

µ =

{
0.7, if θ̇MPTO ≥ 0
1
0.7 = 1.43, if θ̇MPTO < 0

Pay two times more expensive to use energy from network
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Problem Formulation Control Objective

Control Objective, cont.

Problems
1 Even the control system is linear, the cost function is nonlinear.
2 x(t), Mex(t) are not directly available.
3 Input and state constraints.

Solutions
1 Adaptive PI control.
2 Model predictive control.
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Adaptive PI Control PI control for regular waves

PI control for regular waves

Assumption: Mex(t) is available and

Mex(t) = Aw sin(wt + ϕ)

WEC model in the frequency domain

v(jw)

Mex(jw)−MPTO(jw)
=

1

Z (jw)

Where

v(jw) = θ̇(jw)
Z (jw) : intrinsic impedance
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Adaptive PI Control PI control for regular waves

PI control for regular waves, cont.

Idea: Design a linear control law

MPTO(jw) = K (jw)v(jw)

that maximizes the cost

Denote
K (jw) = Rk + jXk , Z (jw) = Rz + jXz

Theorem

Pavr =
A2
w

(
µRk +

1
π (µ− 1

µ)Rk(
Xk
Rk

− arctan(Xk
Rk
))
)

2((Xz + Xk)2 + (Rz + Rk)2)
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Adaptive PI Control PI control for regular waves

Result of Falness et al., with µ = 1

With µ = 1, recover the well-known result of Falness et al.

Pavr =
A2
wRk

2((Xz + Xk)2 + (Rz + Rk)2)

Pavr is maximal, iff
Xk = −Xz , Rk = Rz

Hence
v(jw)

Mex(jw)
=

1

2Rz(w)

Pavr is maximal iff v(t) is in phase with Mex(t)

Are the results of Falness et al. correct also for µ < 1?
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Adaptive PI Control PI control for regular waves

Falness et al., cont.

Let’s take Xk = −Xz and Rk = Rz for Pavr with µ = 0.7

Pavr < 0 for all ω ≤ 5.5(rad/sec) (where the wave has the most
energy)

Solution is not optimal, since one can take Rk = Xk = 0
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Adaptive PI Control PI control for regular waves

PI control for regular waves, cont.
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It can be shown that the cost
function is convex. Hence the
optimal solution is unique.

v(t) is generally not in phase
with Mex(t), since Xk ̸= −Xz .
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Adaptive PI Control PI control for regular waves

PI control for regular waves, cont.

Up to now, for each regular wave Mex(t) = Aw sin(wt + ϕ), the
frequency response of the optimal controller is calculated

K (jw) = Rk(w) + jXk(w)

If K (jw) is chosen as a PI controller

K (jw) = Kp +
Ki

jw

Then
Kp = Kk(w), Ki = −wXk(w)
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Adaptive PI Control PI control for regular waves

Problems

1 Mex(t) is not measurable.

2 Real Mex(t) is not a sinusoid.
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3 Only the second problem is addressed now.
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Adaptive PI Control Adaptive PI control

Frequency estimation

Real Mex(t) is not a sinusoid, but it is not far from the sinusoid.

Idea: approximate ON-LINE Mex(t) as

Mex(t) = Aw (t)sin(w(t)t + ϕ(t))

where Aw (t),w(t), ϕ(t) are parameters.

Classical problem.
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Adaptive PI Control Adaptive PI control

Frequency estimation, cont.

Unscented Kalman filter is used to estimate Aw (t),w(t), ϕ(t)

Details are not presented here.
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Adaptive PI Control Adaptive PI control

Frequency estimation, cont.
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Adaptive PI Control Adaptive PI control

Adaptive PI control

The adaptive PI control algorithm is summarized as follows,

1. Measure p(t), v(t)

2. Estimate Mex(t),
Aw (t),w(t), ϕ(t)

Mex(t) = Aw (t)sin(w(t)t+ϕ(t))

3. Calculate the control action

MPTO(t) = Kp(w)v(t) + Ki (w)

∫ t

0
v(τ)dτ
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Model Predictive Control Model prediction control - Basic concepts

Model predictive control - Basic concepts

A model of the process is used to predict the future evolution of the
process to optimize the control signal
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Model Predictive Control Model prediction control - Basic concepts

Receding horizon philosophy

At time k : Solve an optimal control
problem over a finite future horizon
of N steps

min
u(k),u(k+1),...,u(k+N−1)

J(k),

s.t.

{
umin ≤ u(k + j) ≤ umax ,
ymin ≤ y(k + j) ≤ ymax

J(k) : cost function

Only apply the first move u∗(k)

At time k + 1: Get new measurements, repeat the optimization. And
so on . . .

Hoai-Nam Nguyen (Electronics and Physics Department - Telecom SudParis)Optimal Control of WEC February 03, 2022 30 / 51



Model Predictive Control Model prediction control - Basic concepts

Why MPC for WEC?

Maximize the extracted energy.

Input and state constraints are incorporated in the design phase.

Nonlinear efficiency coefficient is considered in the design phase.

Wave prediction is explicitly used.
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Model Predictive Control Model prediction control - Basic concepts

MPC problems

1 Wave excitation moment at the present and in the future are required

1 Wave moment estimation

2 Wave prediction

2 Nonlinear and non-convex optimization problem due to the nonlinear
efficiency coefficient
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Model Predictive Control Wave excitation moment estimation

Wave excitation moment estimation

Idea: Use a WEC model + measured outputs to estimate Mex(t)

Not a new idea

Mex(t) is decomposed as, P. Kracht et al., 2014

Mex(t) =
m∑
j=1

αj(t)sin(ωj t) + βj(t)cos(ωj t)

where ωj are chosen

αj(t), βj(t) are estimated online using Luenberger observer
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Model Predictive Control Wave excitation moment estimation

Wave excitation moment estimation, cont.

The choice of ωj is crucial

The approach was experimentally tested at the Aalborg university

Slightly overestimate the amplitude

Non-negligible delay

Not reliable in practice, since ωj are time-varying

Hoai-Nam Nguyen (Electronics and Physics Department - Telecom SudParis)Optimal Control of WEC February 03, 2022 34 / 51



Model Predictive Control Wave excitation moment estimation

Random walk approach

Idea: see Mex(k) as a state

Mex(k + 1) = Mex(k) + ϵ(k)

ϵ(k) : variation of Mex(k), and is considered as a noise

Hence
[

x
Mex

]+
=

[
A B
0 1

] [
x

Mex

]
−
[
B
0

]
MPTO +

[
0
1

]
ϵ

y = [C D]

[
x

Mex

]
− DMPTO
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Model Predictive Control Wave excitation moment estimation

Random walk approach, cont.

The problem of estimating Mex(k) becomes the state estimation
problem

Kalman filter is used for this purpose

Clearly, the approach can be used to estimate any kind of Mex (not
necessarily periodic)
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Model Predictive Control Wave excitation moment estimation

Experimental results
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Model Predictive Control Wave excitation moment prediction

Wave excitation moment prediction

Given wave moments y(k), k = 0, 1, . . . , k0 until time k0

Predict wave moments at times k0 + 1, k0 + 2, . . . , k0 + N
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Model Predictive Control Wave excitation moment prediction

AR model based forecast

Idea: Wave moment at time k is a linear function of a number p of
its past values

y(k + 1) = a1y(k) + a2y(k − 1) + . . .+ apy(k − p + 1)

{a1, a2 . . . , ap} : parameters

{a1, a2 . . . , ap} can be found by minimizing the one step ahead
prediction error

min
a1,a2,...,ap

k∑
j=p+1

(y(j)−
p∑

i=1

aiy(j − i))2
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Model Predictive Control Wave excitation moment prediction

AR model based forecast, cont.

Least square problem. Solution can be found analytically

Result is not satisfactory for prediction

Fusco’s and Ringwood’s idea: Long Rang Predictive Identification, i.e.
minimizing not only the one step, but also the two-step, . . ., the
h−step prediction errors

Nonlinear least square optimization problem. Batch-processing based
solution.
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Model Predictive Control Wave excitation moment prediction

Filter bank based forecast

Previous method: iterative forecast

Idea: forecast each horizon independently from the others

N models for forecasting N steps ahead
y(k + 1) = a11y(k) + a12y(k − 1) + . . .+ a1py(k − p + 1)
y(k + 2) = a21y(k) + a22y(k − 1) + . . .+ a2py(k − p + 1)
...
y(k + N) = aN1y(k) + aN2y(k − 1) + . . .+ aNpy(k − p + 1)

Unknown parameters aij , i = 1,N, j = 1, p are estimated by Kalman
filter
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Model Predictive Control Wave excitation moment prediction

Filter bank based forecast

To forecast N steps ahead, one needs N Kalman filters

Computational complexity is higher than iterative forecast

Performance is better
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Model Predictive Control Weighted MPC

Nonlinear MPC

Finally, we are getting to the point

Recall the state space equation of WEC{
x(k + 1) = Ax(k) + BMex(k)− Bu(k)
y(k) = Cx(k) + DMex(k)− Du(k)

where u(k) = MPTO(k).

Cost function at time k,

max
u(k),...,u(k+N)

j=N∑
j=0

µ(k + j)v(k + j)u(k + j)

µ : nonlinear efficiency coefficient
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Model Predictive Control Weighted MPC

Nonlinear efficiency function

Taking into account directly µ in the cost gives rise to a nonlinear
and nonconvex optimization problem

min
U(k)

(U(k)TH(µ)U(k) + f (µ)TU(k))

s.t. umin ≤ u(k + j) ≤ umax , j = 0,N

Issues

Computational load

Difficult to investigate:
feasibility, stability,
robustness
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Model Predictive Control Weighted MPC

Weighted MPC

Consider again the cost function, for µ = 1

J = max
U(k)

(u(k)v(k) + u(k)v(k + 1) + u(k + 1)v(k + 1) + . . .)

Weights are equal for all future costs

This is not reasonable, since

Wave prediction performance is better for a short horizon, than for a
large horizon.
It is better to put high weights on the current obtained energy for the
first few time instants.
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Model Predictive Control Weighted MPC

Weighted MPC, cont.

In the result

J = max
U(k)

(w0u(k)v(k) + w0u(k)v(k + 1) + w1u(k + 1)v(k + 1) + . . .)

w0,w1, . . . ,wN−1 : tunning coefficients

We usually choose
w0 ≥ w1 ≥ . . . ≥ wN−1

QP problem
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Experimental Results

Experimental Setup

Tests in Aalborg University
basin on a pivoting-buoy point
absorber.

4 different sea states are
considered.
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Experimental Results

Experimental results, cont
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Experimental Results

Conclusions

Two main solutions are proposed for WECs with non-perfect PTO

Adaptive PI: optimal control for regular waves, wave force and
dominant wave frequency estimation.

Model predictive control: wave estimation, wave prediction, weighted
MPC, QP problem.

Successfully implemented for a real system.

Perspective: Decentralized/distributed control, stochastic MPC.
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Experimental Results

THANK YOU
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