

Ubiquitous Mixed Reality

Designing Mixed Reality Technology to Fit into the Fabric of our Daily Lives

Avec le soutien de la Fondation Mines-Télécom

Jan Gugenheimer | Télécom Paris / LTCI / Institute Polytechnique de Paris

Ubiquitous Mixed Reality: Human-Computer Interaction and our Path Towards Ubiquitous Mixed Reality

Interaction

Human

Computer

	Mainframe →	
Human Weiser, M. (1999). The computer for the 21	st century. Mobile Computing and Comm	Computer

THE

I. (1999). The computer for the 21st century. Mobile Computing and Communications Review, 3(3), 3-11.IS

Weiser, M. (1999). The computer for the 21st century. Mobile Computing and Communications Review, 3(3), 3-11.ISO 690

Ubiquitous Mixed Reality: Or how Facebook (sorry I mean META) calls it: The Metaverse

Ubiquitous Mixed Reality: How do we get there ?

Ubiquitous Mixed Reality: New types of Input

FaceTouch

Enabling Touch Interaction in Display Fixed UIs for Mobile Virtual Reality

Jan Gugenheimer¹, David Dobbelstein¹, Christian Winkler¹², Gabriel Haas¹, Enrico Rukzio¹

¹Institute of Media Informatics, Ulm University, Germany ²Daimler Protics GmbH, Stuttgart, Germany

In Proceedings of UIST 2016

Artifact Modified Oculus DK2 with touch digitizer

Succesful Centor

Theoretical

Three example applications, exploring the Design Space

Empirical

Two Fitt's Law Studies on accuracy (n=18) and mounting position (n=18)

FingerMapper

Enabling Arm Interaction in Confined Spaces for Virtual Reality through **Finger Mappings**

Wen-Jie Tseng, Samuel Huron, Eric Lecolinet, Jan Gugenheimer

Télécom Paris, Institut Polytechnique de Paris, France

Demo (Extend Abstract) at CHI 2021 Poster at IEEE VR 2022

Artifact Two different mappings between finger and arm

Empirical

Two Fitt's Law Studies on accuracy (n=18) and mounting position (n=18)

CHI 2021

Wen-Jie Tseng Samuel Huron

Theoretical Three example applications, exploring the Design Space

Ubiquitous Mixed Reality: New types of Feedback

GyroVR

Simulating Inertia in Virtual Reality using Head Worn Flywheels

Jan Gugenheimer¹, Dennis Wolf¹, Eythor R. Eiriksson², Pattie Maes³, Enrico Rukzio¹

¹Institute of Media Informatics, Ulm University, Germany ²TU Denmark, Lynbyrg, Denmark ³MIT Media Lab, Cambridge, USA

In Proceedings of UIST 2016

Artifact Modified Oculus DK2 with flywheels of old HDDs

Empirical

One mounting study (n=12) evaluating: Enjoyment, Immersion and Simulator Sickness

Theoretical

Three example applications and mapping techniques exploring the Design Space

CarVR Enabling In-Car Virtual Reality Entertainment

Philipp Hock, Sebastian Benedikter, Jan Gugenheimer, Enrico Rukzio

Institute of Media Informatics, Ulm University, Germany

In Proceedings of CHI 2017

Artifact

Sensing car using IMU and OBD Reader + Samsung GearVR

Empirical

Comparing driving condition vs standing (n=23) in terms of enjoyment, immersion and simulator sickness

E²I Presence

parking driving

Theoretical

Design space exploration and design guidelines

Ubiquitous Mixed Reality: New types of Collaboration

FruitSlicer

ShARe: Enabling Co-Located Asymmetric Multi-User Interaction for Augmented Reality Head-Mounted Displays

Pascal Jansen¹, Fabian Fischbach¹, Jan Gugenheimer², Evgeny Stemasov¹, Julian Frommel³, Enrico Rukzio¹

¹Ulm University; ²Télécom Paris – LTCI, IP-Paris; ³University of Saskatchewan

institute of media informatics

Ubiquitous Mixed Reality: How do we get there ?

Research Question: How to shape and design the technology to create a desirable, usable and pleasant system and interaction concept for Ubiquitous Mixed Reality technology

Computer

Research Question: In case Ubiquitous Mixed Reality technology will be widely available. What potential negative implications has the technology on the human and how can we overcome these downsides ?

Ubiquitous Mixed Reality Potential negative implications around Privacy

Exploring Augmented Visual Alterations in Interpersonal Communication

Jan Ole Rixen¹, Teresa Hirzle¹, Mark Colley¹, Yannick Etzel¹, Enrico Rukzio¹, **Jan Gugenheimer**²

¹Institute of Media Informatics, Ulm University, Germany ²Telecom-Paris/IP-Paris/LTCI

Accepted CHI 2021

Empirical

(N=64), we measured the user's comfort, acceptance of altering and being altered, and how it is impacted by being able to perceive or not perceive the alteration

"Should we have the ability to alter the visual appearance of our conversational partner ever if its only perceived by us" ?

Opinion

Discussion of the potential implications for future Technology

Exploring Augmented Visual Alterations in Interpersonal Communication

Jan Ole Rixen¹, Teresa Hirzle¹, Mark Colley¹, Yannick Etzel¹, Enrico Rukzio¹,**Jan Gugenheimer**²

Mixed Reality can **not** be explored and evaluated from a **single user** perspective ! There is always **someone that is augmenting** and **someone that is augmented**.

How do you feel about when I am able to change your appearance and see your most recent social media footprint ?

Non Wearers Viewpoint Non Wearers Viewpo

Empirical

N=64), we measured the user's comfort, acceptance of altering and being altered, and how it is impacted by being able to perceive or not perceive the alteration

Opinion

Discussion of the potential implications for future Technology

Shirt

appearance of our conversational partner ever if its only perceived by us" ?

Ubiquitous Mixed Reality Potential negative implications around Safety

Understanding the Experience of Breaking Out of Virtual Reality Safety Boundaries

Wen-Jie Tseng, Petros Dimitrios Kontrazis, Samuel Huron, Eric Lecolinet and **Jan Gugenheimer**

Telecom-Paris/IP-Paris/LTCI

In submission UIST 2022

Artifact

We developed an application that is able to induce "breaking out" experiences in the lab

Empirical/Theoretical

We ran an online survey (n=148) and created a first framework to explain breaking out experiences which we verified in a consecutive lab experiment (n=12)

Understanding the Experience of Breaking Out of Virtual Reality Safety Boundaries

The Dark Side of Perceptual Manipulations in Virtual Reality

Wen-Jie Tseng¹, Elise Bonnail¹, Mark McGill², Mohamed Khamis², Samuel Huron¹, Eric Lecolinet¹ and **Jan Gugenheimer¹**

¹ Telecom-Paris/IP-Paris/LTCI ² University of Glasgow

In proceedings of CHI 2022

"Virtual-Physical Perceptual Manipulation (VPPM) refers to Extended Reality (XR) driven exploits that alter the human multi-sensory perception of our physical actions and reactions to nudge the user's physical movements"

Theoretical

We define, conceptualize and demonstrate the existence of Visual Perceptual Manipulations in the field of HCI and XR

Empirical

Using speculative design workshops, we explore and characterize the threats/risks posed, proposing mitigations and preventative recommendations against the malicious use of VPPMs

Artifact

We implement two sample applications as an evaluation-by-demonstration showing how existing VPPMs could be trivially subverted **Research Question**: How to shape and design the technology to create a desirable, usable and pleasant system and interaction concept for Ubiquitous Mixed Reality technology

Computer

Research Question: In case Ubiquitous Mixed Reality technology will be widely available. What potential negative implications has the technology on the human and how can we overcome these downsides ?

Ubiquitous Mixed Reality

Designing Mixed Reality Technology to Fit into the Fabric of our Daily Lives

Avec le soutien de la Fondation Mines-Télécom

Jan Gugenheimer | Télécom Paris / LTCI / Institute Polytechnique de Paris