
Challenges of large-scale data
synchronization

Petr Kuznetsov
ACES, Télécom Paris, IP Paris

Fault-tolerant state machine
replication
§ Paxos [Lamport 91]
§ Byzantine (arbitrary) faults:

PBFT [Castro-Liskov 1999]

§ Partial synchrony
§ Byzantine quorum systems
f < N/3 replicas may be faulty

A goes first B goes first

A B

Challenge: open environment:

§ Permissionless: no static membership
§ No identities: public keys
§ Sybil attack: any participant subset can be

adversarial

Classical (partially synchronous

quorum-based) protocols do not work!

Sybil-resistant consistency: PoW “consensus”

§ Synchrony: slow down
updates

§ Solve a difficult puzzle
before updating (PoW)

§ Throughput low by design

Is consensus necessary?

Consensus
Processes propose values and must agree on a common

decision value so that the decided value is a proposed value of
some process

1

1

1

After

Before

0

1

1

Why consensus is interesting?
Because it is universal!

§ A key to implement a generic fault-tolerant service (replicated
state machine or blockchain)

Is consensus necessary for a
cryptocurrency (asset transfer)?

Guerraoui et al. The consensus number of cryptocurrency. PODC 2019

Expensive and cumbersome

Commutativity and causality
§ T0: $100 from Alice to Carole
§ T1: $100 from Bob to Alice
§ T2: $100 from Drake to Alice

T0 causally depends on T1 (not enough funds otherwise)
T1 and T2 commute (T0 succeeds regardless of the order)

Alice

Bob Drake

Carole
T0

T1 T2

T0

T1 T2

Partial order

Consensus-less cryptocurrency

Collins et al. Online payments by merely
broadcasting messages [DSN20]

 1000

 10000

 100000

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

Pe
ak

 th
ro

ug
hp

ut
 (p

ps
)

System size (number of replicas in the system)

Broadcast echo-based system (Astro I)
Broadcast signature-based system (Astro II)

 1000

 10000

 100000

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

Pe
ak

 th
ro

ug
hp

ut
 (p

ps
)

System size (number of replicas in the system)

Consensus-based system (BFT-SMaRt)

Fig. 3: Throughput vs. system size. We measure peak throughput as we increase the number of replicas in different payment system
implementations, one based on consensus (BFT-SMaRt), and two based on broadcast (Astro I and II). We do not employ sharding.

 100

 1000

 10000

 1 10 100 1000
 10000

La
te

nc
y

(m
s)

Throughput (pps)

BFT-SMaRt
Astro I
Astro II

Fig. 4: Latency/throughput. Performance evaluation of three pay-
ment systems each running at N = 100.

almost 13.5K pps and Astro II sustains 55K pps. The 4x
improvement of Astro II over Astro I is owed to the the linear
communication complexity of the former system (§IV-A).
As can be seen, however, this benefit slowly tapers off with
increasing system size. At maximum system size (N = 100),
the consensus-based system saturates at 334 pps; Astro I
sustains 6x higher throughput, being able to apply 2K pps,
and Astro II can sustain 5K pps (a 16x improvement over
consensus and 2.5x over Astro I).
Latency-Throughput. We now explore the difference in
performance between the consensus-based baseline and Astro
I/II at the maximum system size we consider, N = 100.
As before, all systems are running in a single-shard setup.
The results depicted in Figure 4 show how latency evolves
with respect to throughput. For clarity sake, the y-axis
(latency) starts at 100ms, and we convey order of magnitude
differences using logscale axes.

The consensus-based implementation typically exhibits
sub-second latencies. We do not show the 95th percentile la-
tencies because they obstruct visibility, but these are between
1.3 and 1.5 seconds. Latencies in Astro I are more variable,
between 400 and 500ms prior to saturation, while the 95th
percentile latencies are on the order of one second. Recall that
clients connect to random replicas, which are geographically
spread. Astro II exhibits more stable performance and lower
latencies: prior to saturation, clients observe a confirmation
latency of 200ms on average. The 95th percentile latency (at
low load) is under 240ms. The 99th percentile for all these
systems are within the same order of magnitude as the 95th.

We remark that the latencies for these three systems are
not necessarily at their worst when N = 100. We also
investigate the same execution at N = 10, for instance, and
observe only slightly better performance (e.g., latency for

Astro II is 150ms on average). The latencies do not change
considerably because there is a lot of parallelism inherent in
the underlying quorum-based protocols, both for consensus
and broadcast. This is intuitive: obtaining one response from
a particular distant replica takes roughly as much time as
obtaining several responses (in parallel) from multiple distant
replicas. Primarily, it is throughput that suffers in quorum-
based systems, and latency secondarily [29], [76], [79].

An important observation here is that our evaluation con-
cerns the critical part of a payment system, the ordering
layer. For the deterministic system model, we are only
aware of prior experiments of this layer which considered a
maximum system size of N = 10, concretely for Hyperledger
Fabric [74], which builds on BFT-SMaRt. To conclude this
part of our evaluation, for systems of moderate size—up to
100 replicas—broadcast-based systems are simpler and sig-
nificantly outperform consensus-based solutions for decen-
tralized payments. Even if Astro relies on broadcast, it still
employs quorum-gathering to achieve consistent replication;
hence the throughput of Astro is inversely proportional to the
system size (akin to consensus-based solutions). To avoid this
throughput decay and scale to larger systems, we now discuss
experiments with sharding.

2) Sharding in Smallbank Application: For a real-world
application workload, we use the Smallbank transaction
family from the BLOCKBENCH framework [33]; this is a
version of the H-Store Smallbank benchmark [25] adapted
to the cryptocurrency setting. The application models bank
accounts, where the owners of these accounts are clients
that can issue several types of transactions. In particular,
accounts can be of either savings or checking type. Some
transactions model payments across two accounts of the same
owner, while other transactions deal with the transfer of
funds between different owners. For the sake of consistency,
hereinafter we refer to bank accounts and their owners as
xlogs and clients, respectively.
Experimental Setup. We associate each client with two
xlogs (for checking and savings). Thus same-client transac-
tions at the application level appear as full-fledged payments
between two distinct xlogs in the underlying layer. We use
a multi-shard setup for Astro II, ensuring that both xlogs of
any client belong to the same shard. Whenever a transac-
tion involves different shards, the cross-shard coordination
consists of the CREDIT message described earlier (§V). For

8

 1000

 10000

 100000

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

Pe
ak

 th
ro

ug
hp

ut
 (p

ps
)

System size (number of replicas in the system)

Broadcast echo-based system (Astro I)
Broadcast signature-based system (Astro II)

 1000

 10000

 100000

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

Pe
ak

 th
ro

ug
hp

ut
 (p

ps
)

System size (number of replicas in the system)

Consensus-based system (BFT-SMaRt)

Fig. 3: Throughput vs. system size. We measure peak throughput as we increase the number of replicas in different payment system
implementations, one based on consensus (BFT-SMaRt), and two based on broadcast (Astro I and II). We do not employ sharding.

 100

 1000

 10000

 1 10 100 1000
 10000

La
te

nc
y

(m
s)

Throughput (pps)

BFT-SMaRt
Astro I
Astro II

Fig. 4: Latency/throughput. Performance evaluation of three pay-
ment systems each running at N = 100.

almost 13.5K pps and Astro II sustains 55K pps. The 4x
improvement of Astro II over Astro I is owed to the the linear
communication complexity of the former system (§IV-A).
As can be seen, however, this benefit slowly tapers off with
increasing system size. At maximum system size (N = 100),
the consensus-based system saturates at 334 pps; Astro I
sustains 6x higher throughput, being able to apply 2K pps,
and Astro II can sustain 5K pps (a 16x improvement over
consensus and 2.5x over Astro I).
Latency-Throughput. We now explore the difference in
performance between the consensus-based baseline and Astro
I/II at the maximum system size we consider, N = 100.
As before, all systems are running in a single-shard setup.
The results depicted in Figure 4 show how latency evolves
with respect to throughput. For clarity sake, the y-axis
(latency) starts at 100ms, and we convey order of magnitude
differences using logscale axes.

The consensus-based implementation typically exhibits
sub-second latencies. We do not show the 95th percentile la-
tencies because they obstruct visibility, but these are between
1.3 and 1.5 seconds. Latencies in Astro I are more variable,
between 400 and 500ms prior to saturation, while the 95th
percentile latencies are on the order of one second. Recall that
clients connect to random replicas, which are geographically
spread. Astro II exhibits more stable performance and lower
latencies: prior to saturation, clients observe a confirmation
latency of 200ms on average. The 95th percentile latency (at
low load) is under 240ms. The 99th percentile for all these
systems are within the same order of magnitude as the 95th.

We remark that the latencies for these three systems are
not necessarily at their worst when N = 100. We also
investigate the same execution at N = 10, for instance, and
observe only slightly better performance (e.g., latency for

Astro II is 150ms on average). The latencies do not change
considerably because there is a lot of parallelism inherent in
the underlying quorum-based protocols, both for consensus
and broadcast. This is intuitive: obtaining one response from
a particular distant replica takes roughly as much time as
obtaining several responses (in parallel) from multiple distant
replicas. Primarily, it is throughput that suffers in quorum-
based systems, and latency secondarily [29], [76], [79].

An important observation here is that our evaluation con-
cerns the critical part of a payment system, the ordering
layer. For the deterministic system model, we are only
aware of prior experiments of this layer which considered a
maximum system size of N = 10, concretely for Hyperledger
Fabric [74], which builds on BFT-SMaRt. To conclude this
part of our evaluation, for systems of moderate size—up to
100 replicas—broadcast-based systems are simpler and sig-
nificantly outperform consensus-based solutions for decen-
tralized payments. Even if Astro relies on broadcast, it still
employs quorum-gathering to achieve consistent replication;
hence the throughput of Astro is inversely proportional to the
system size (akin to consensus-based solutions). To avoid this
throughput decay and scale to larger systems, we now discuss
experiments with sharding.

2) Sharding in Smallbank Application: For a real-world
application workload, we use the Smallbank transaction
family from the BLOCKBENCH framework [33]; this is a
version of the H-Store Smallbank benchmark [25] adapted
to the cryptocurrency setting. The application models bank
accounts, where the owners of these accounts are clients
that can issue several types of transactions. In particular,
accounts can be of either savings or checking type. Some
transactions model payments across two accounts of the same
owner, while other transactions deal with the transfer of
funds between different owners. For the sake of consistency,
hereinafter we refer to bank accounts and their owners as
xlogs and clients, respectively.
Experimental Setup. We associate each client with two
xlogs (for checking and savings). Thus same-client transac-
tions at the application level appear as full-fledged payments
between two distinct xlogs in the underlying layer. We use
a multi-shard setup for Astro II, ensuring that both xlogs of
any client belong to the same shard. Whenever a transac-
tion involves different shards, the cross-shard coordination
consists of the CREDIT message described earlier (§V). For

8

§ Each transfer relates to its causal past (incoming/outgoing
transactions)

§ Make sure that a faulty account holder cannot lie about its causal
past

§ Secure broadcast [Bracha, 1987, Malkhi-Reiter, 1997]
üSource-order: messages by the same source are delivered in the same order

Total order vs. partial order

§ Consensus = total order
üParticipants learn an ordered

sequence

{ },,,{ }

{ },,, { },,,}{{ } ,

§ Lattice agreement = partial order
üParticipants learn a partially

ordered sequence

Lattice Agreement on 𝐿, ⊑, ⨆
L – set of values, ⊑ - partial order, ⨆ - join
operator
§ Comparability: all learned values are

comparable
§ Validity: every learned value is a join of

proposed values
§ Liveness: every value proposed by a correct

process eventually appears in a learned value

{2}

∅

{1}

…

{1,2}

{3}

{2,3}

{1,2,3}

…

…

Allows for efficient asynchronous

implementations [FRR+, 2012] Perfect fit for asynchronous

reconfiguration [OPODIS19,DISC20]

Permissionless asset transfer?

§ Bitcoin [Nakamoto 2008] and Ethereum [Wood 2015]: consensus and proof-
of-work mechanism.

§ Proof-of-stake [Bentov et al. 2016, Chen et al. 2019, Kiayias et al. 2017],
proof-of-space [Dziembowski et al. 2015], proof-of-space-time [Moran et al.
2016]: synchronous networks, consensus and randomization.

§ Asynchronous solutions [Guerraoui et al. 2019, Collins et al. 2020] are built
on top of reliable broadcast instead of consensus. Quorum-based -> not
Sybil-resistant

Kuznetsov, Pignolet, Ponomarev, Tonkikh. Permissionless and asynchronous
asset transfer. DISC’21

Permissionless and asynchronous
asset transfer

Idea:
§ Use weighted (stake-based) quorums
§ A transaction is accepted if validated by >2/3 of stake

Solution:
§ Treat stake distribution as a configuration
§ A transaction is a reconfiguration call
§ Reconfigurable Lattice Agreement as a building block

Permissionless and asynchronous asset transfer

[Kuznetsov et al., DISC 2021]

Strong consistency of data in an open system:
a hard problem in a hard model?

§ Relax the problem
üAsset transfer (LADT [OPODIS19]) instead of blockchain [PODC

2019,DSN 2020, DISC 2021]
üMultiple spending [Bezerra et al., PODC 2022]
üAccountability vs. fault-tolerance [Freitas et al., OPODIS 2021]

§ Strengthen the model
ü(Eventual) synchrony
üStake assumptions
üSome trust (federated quorums)

TrustShare 2021: Innovation Chair
§ Reconfigurable systems

üThe set of participants can be (actively) reconfigured without consensus
[OPODIS 2019, DISC 2020]

§ Randomness in blockchain protocols
üLeader election and sortition in a blockchain protocol [OPODIS 2021], approximate

random coin [DISC 2022]

§ Accountability [SOSP 2007, OPODIS 2009, PODC 2021, OPODIS 2021]

üDetect misbehavior rather than anticipate it
§ Asynchronous cryptocurrency [PODC 2019,DISC 2019,DSN 2020, DISC 2021]

üUse stake for permissionless asset exchange
§ Decentralized trust assumptions [PODC 2022]

üDouble spending under control
§ Security and privacy in sharing data, reconciling blockchains, coding for

communication-efficiency and more…

Merci!

Consensus on configuration Lattice agreement on configuration

Consensus-based:
• RAMBO [Gilbert et al., 2010]
• Casper [Buterin-Griffith, 2017]
• Fairledger [Lev-Avirt et al., 2019]
• LLB [Ranchal-Pedrosa & Gramoli, 2020]

Asynchronous:
• Lattice-agreement instead of

consensus [Kuznetsov et al., 2019]

How to reconfigure?

Accountable and reconfigurable lattice

agreement [Freitas et al., OPODIS 2021]

Accountability and asynchronous
reconfiguration

