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_ What is Randomness?

For an idea we are all familiar with, randomness is surprisingly hard
to formally define.

Martin Hairer, Fields 2014
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_ Probabilistic Randomness (Probability Theory)
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I rrobability Distribution vs. Random Variable

p = (p1,P2,---,Pm)  pi =0, Zpizl
i

Vs.
M-ary random variable X : Q - X  |X|=M

Link:
pi = P(X = x;) where X = {x1,x2,...,Xm}

1P PARIS
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_ Uniform vs. Deterministic

Law of insufficient reason (“ideal randomness”)
1
)

11
p= (Ma M
vs. deterministic:
p=(1,0,0,...,0)
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_ Applications

Things that should be “random”:

B jdentifiers,

B cryptographic keys,

B signatures

B . . orany type of intended secret
for application to

B pseudo-random bit generators

B cipher security

B randomness extractors

B hash functions

B physically unclonable functions

B true random number generators

What does it mean that X or p is sufficiently random ?
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_ Synonyms?

“Sufficiently”

B random
entropic
uncertain
unpredictable
hard to guess
surprising

does it mean that we should maximize entropy?
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_ Entropy (Shannon, 1945, 1948)

H(pX) = p11 ! +p2| L + pm | !
= (0] —_ (o) —_— le) -
1 gpl 2 ng M gpM

B minimum = 0 when X is deterministic (not random at all)

B maximum = log M when p is uniform (most random, cf. Laplace’s principle of
“insufficient” reason)

B |ogarithmic “measure of information”

B base of log = information unit (nat, dit, bit, ...) or... (International standard ISO/IEC
80000-13) the Shannon (symbol Sh)
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_ “Game of 20 questions”: Operational Definition of
Entropy

you think of a number X (between 1 and M)

| ask yes/no questions

optimal strategy: min average # questions ?

list of questions = binary codeword 0110111000...
uniquely decodable code of minimum rate: Huffman code
lower bound on coding rate = H(X)

Shannon’s source coding theorem
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_ Guessing Entropy (Massey, 1994)

B you think of a number X (between 1 and M)
B | ask yes/no questions of the form “is X = x?”
optimal strategy: min average # questions ?

most probable first — probability p(;) for 1 guess

second most probable second — probability p(;) for 2 guesses
etc.

Guessing entropy: expectation of the ordered distribution

G(X) = p@) +2p@2) + -+ Mpw)

® Much higher than entropy: G(X) > exp(2H(X)) | % (Rioul, 2022)

e
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_ Coincidence Index / Collision

B X = identifier, signature, fingerprint from some randomized algorithm (e.g., hash).
B should be “unique”
B high probability of non coincidence: for any X’ i.i.d. copy of X
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_ Estimation and Error

B estimate X: minimize the probability of error P = min P(X # X)
B descending order (most probable to least probable):

P@) Z P@) = 2 Pm)
B ensure high probability of error (worst case security):
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_ Generalization: o-Entropy (Rényi, 1961)

Ha(X) = 12 log(p§ + PS5 + -+ pfy) = 12 log [|p|la

B o = 1/2: asymptotically guessing entropy (Arikan, 1996)
IOg G(X) ~ HI/Z(X)

B limiting case o — 1: H1(X) = H(X) (Shannon entropy)
B o = 2: collision entropy

1
Hy(X) = | =1
2(X) = log 5y =18 TR (x)
B |imiting case a — oco: min-entropy
1
Hoo(X) = log — = log
=(X) (1) 1 —Pe(X)

B H>H; > Hy
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_ Remoteness from Uniform

B compare p withu = ( uniform distribution (most random)

® entropy:

11 l)
WM M

H(p) = logM — D(p||u)
where 0 < D(p|ju) < log M is the KL-divergence.
B q-entropy
Ha(p) = log M — Da(pllu)
where 0 < D, (p||u) < logM is the Rényi divergence.
B non-collision index:

Ro(p) =1~ — llp — ull3
B statistical randomness R:
R(p)=1—-y—Alp,u)=1—- 5 —3llp—ul1
where 0 < A(p,u) < 1 is the statistical distance.
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_ Statistical Randomness
B Statistical (Total Variation) Distance:

A(p,q)

max_|p(T) —q(T)| € [0,1]

event T

1 1
= 5(\p1 —q1| +|p2 — 2|+ + [pm — qu|) = >l —allx

m If A is small, p and g become undistinguishable under any statistical test X € T
* If[P(X € T) — Q(X € T)| is small, type-I or type-ll errors have total probability
P(X € T)+Q(X €T) =1, hence p and g are statistically equivalent

B Statistical Randomness: 1
RX)=1—-—=—A(p,u
() =1- . — A(p.v)

p undistinguishable from uniform ifR ~ 1 — %
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_ Observation Y

Y: physical leakage, disclosed (sensitve) data, etc.

compress/guess/estimate/predict X with side information Y:

IIAY4AYA) LR RIAYAER P L B P oy P L Py fapp
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_ What is (what should be) a Randomness Measure?

B All candidates share many properties:
H' H()Ol R2 (HZ): Ha G, Gp, Pe, Pg’, R...

B Axiomatic approach encompassing all randomness measures R(X)

Equivalence Axiom : Equivalent variables X = f(Y) & Y = g(X) are equally random

X=Y = R(X) =R(Y)

Knowledge Axiom : Knowledge reduces randomness (on average)

R(X|Y) = E,2R(X]y) < R(X)
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_ Equivalence axiom = Symmetry

Equivalence Axiom : Equivalent variables (X = f(Y) and Y = g(X)) are equally random
X=Y = R(X) =R(Y)

means
R(X) = R(p1,p2,--.,pPm) symmetric in p1,pz,...,pm (invariant by permutation)

Examples: H=>",p«log Flk' Pe =1—p(, etc.
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_ Knowledge axiom = Concavity

Knowledge Axiom : Knowledge reduces randomness (on average)

R(X|Y) = E,R(X]y) < R(X)

— E%(px,) < R(px) = R(E,px,)
(Jensen’s inequality)
means
R(X) = R(p1,p2,-.-,Pm) cOncave in p1,pz2,...,Pm

Examples: H(X|Y) < H(X) with difference I(X;Y), G(X|Y) < G(X), Pe(X]Y) < Pe(X), etc.
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_ “Mixing” Increases Randomness

Mixing two distributions p, g of equal randomness R(p) = 2R(q) = R results in a more
random distribution A\p +Aq (A + X = 1)

R(Ap + Aq) = Mi(p) + MR(q) =R

thermodynamical interpretation:

mixing two gases of equal entropy results in a gas with higher entropy
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_ (Stochastic) Data Processing Inequality
If X — Y — Z forms a Markov chain:

X Tl T2 > Z

then
R(X|Y) < R(X|2)

Processing knowledge cannot decrease randomness.

Example: H(X|Y) < H(X|Z) <= I(X;Z) < I(X;Y) (processing cannot increase information)

1P PARIS
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_ Robin Hood vs. Sheriff of Nottingham

“When Robin and his merry hoods performed an operation in the woods they
took from the rich and gave to the poor. The Robin Hood principle asserts that
this decreases inequality (subject only to the obvious constraint that you don’t
take too much from the rich and turn them into poor.)”
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B Robin Hood Operation on p = (p1,p2,...,Pm)

B change only two components p; and p; (keeping their sum p; + p; constant)

* either |p; — pj;| decreases: elementary Robin Hood operation (more equal)
* or |p; — pj| increases: elementary Sheriff of Nottingham operation

n Deﬁne if

° g is obtained from p by finitely many Robin Hood operations: equalize
° i.e., p is obtained from g by finitely many Sheriff of Nottingham operations

This is majorization theory (revisited): p < @ <= q is majorized by p
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_ Properties

Lemma (Majorization (least random))

p=<(PP,....,P, _r ,0,...,0) foranyp with maxp <P

|1/P] terms remainder

. {1/P}
In particular p < (1,0,0,...,0) forany p
Proof.

If p has 0 < pj, p; < P then by a suitable SN-operation, one of these two can be made
= 0 or P, reducing # probabilities € (0, P) by 1. Then continue with a finite # steps. [J

Lemma (Minorization (most random))

U= (g -5) <p foranyp

Proof.

If there is one p; > % and one p; < % by a suitable RH-operation, one of these two can
be made = %, reducing # probabilities # 1 by 1. Then continue with a finite #
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_ Schur Concavity

Theorem (More Equal = More Random)

XY = R(X) <R(Y)

Any Robin Hood operation can be written as (p;, p;) = (Api + Apj, Ap; + Ap;). But then

R(Api + Apj, Apj + Api) = Ae(pi, ;) + Ae(py, pi) = R(pi, py)

by concavity and symmetry. O

@
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_ Min/Max Random

Since

PRI

(170707"'70)—\<p—\<( b

<=
<=
Nl

randomness R(X) is
B minimum for deterministic X (least random)
B maximum for uniformly distributed X (most random)

Examples: H, H,, G, G,, Pe, R. ..

(0
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_ (Deterministic) Data Processing Inequality

R(F(X)) < RX)

Applying f consists of successive gatherings of two distinct values x;, x; of x in the same
preimage of y = f(x). Each such gathering corresponds to a SN-operation
(pi, pj) = (pi + pj, 0) and the result follows by Schur concavity. O

Example: H(f(X)) = I(f(X); f(X)) < I(X; f(X)) < H(X) by data processing inequality since
X — f(X) — f(X) is a Markov chain.

ASIES pmaiare
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_ Addition Increases Randomness

For any additional random variable Y,

R(X) < R(X,Y)

This is equivalent to the deterministic data processing inequality.

Take f(x,y) = x in the deterministic DPI. Conversely, apply it to (f(X), X). O

Example: H(X,Y) > H(X) with difference H(Y|X).
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_ Robert Fano and Mark Pinsker in the 1960s

USA

28 / 38 e
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_ Interplay Between Entropies and Estimation Error:
Fano Inequalities

® original inequality H < h(Pe) + Pe log(M — 1) (Fano, 1961) for X and X|Y
B Fano-type inequality: upper bound R in terms of Pe
B reverse Fano inequality: lower bound R in terms of Pe

Theorem (Optimal Reverse Fano and Fano Inequalities)

R(1 —Pe,...,1 —Pe,r,0,...,0) < R(X) <R — Pe, 515, 557)

Let Ps = maxp = 1 — Pg, apply Schur concavity to

Pe Pe
(PS""7P57raO7"'7O)<p<(]PS7 ma""[v],]_)
= ~ %/_/
Majorization Lemma Minorization Lemma
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_ Optimal Reglons (top: M =4; bottom: M = 32)

“Hi?

P, |

H>

Pe

I()g G

H>

log G
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_ Interplay Between Entropies and Total Variation:
Pinsker Inequalities

® original inequality D(p||q) > 2(loge)A(p||q)? (Pinsker & many others, circa 1960),
that is, for g = u, H < logM — 2(loge)(1 — 1/M — R)?

B “Pinsker-type” inequality: upper bound A in terms of R

B “reverse Pinsker” inequality: lower bound (R in terms of R

B Most known Pinsker/reverse Pinsker inequalities are suboptimal in this sense

Theorem (Optimal “reverse Pinsker” and “Pinsker”)

For any S-concave R(p) and any K between # probabilities > % and # probabilities
R(L-R+4, L....,1.r0,...,0) <R(p) <R(E+LE,. A +LB L LR

~
S

|

2
N

Proof.
Let A =1 — R, apply S-concavity to
1 1 1 1 A 1 A 1 A 1 A
(AN SR o o ona aao #3705, 0) =P (Gt % T KoM — MK 1 — FK)
Majorization Lemma Majorization Lemma Minorization Lemma Minorizati‘t;n Lemma
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_ Optimal Reglons (top M = 4; bottom: M = 32)
Hi/2 . H> log G
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_ Application 1: Universal Hash Functions are Good
Randomness Extractors

B secret key X : an adversary knows part of the key, but we don’t know which bits are
left over.
— X has low quality randomness, only H> bits of (collision) entropy is remaining
B pick a uniformly distributed hash function h (seed on ¢ bits), independent of X

key X — — h(X) hashed key
~ — —~~
H> bits ¢ bits m bits
Universal hash function: P(h(X) = h(X’),X # X’) =~ 2~™ (lowest collision)
B Aim: h(X) extracts m < H; bits of high quality randomness (uniform) from X,
even knowing the seed h (which can be publicly available, or recycled).
= h(X) can still be used as a secret key (on < H; bits).
That is, we want (h, h(X)) to be (jointly) maximally random = ¢ + m bits (M = 2¢+™)
— high statistical randomness, low statistical distance A to the uniform.
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B soiution: Optimal Pinsker inequality applied to (h, h(X))

Closed-form optimal Pinsker inequality (for M even and A < 1/2)

A< %Jm
Now
2-H2(hh(X0) — p((h, h(X)) = (W, h(X')))
= 27'P(h(X) = h(X'))
= 27 YP(h(X) = h(X'),X # X') + P(X = X))
=272 ™ 4 27 ()

by universality, so

A< %\/2”'“(24(2*m +2-H2(0))) — 1 = 2(m—H2)/2-1

very small since if m sufficiently <« H5.
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_ Application 2: Information Leakage over Side Channel

Framework of [Cherisey-Guilley-Rioul-Piantanida’19]:
B AES-256 implementation with many (q) measurement traces
B Hamming weight leakage model Y; = wy(S(T; & K))+N;, (i=1,2,...,9)
B upper bound success rate Ps as a function of g
B |[ower bound # traces gmin Needed to achieve a given success Pg
B compare to optimal (maximum likelihood) attacks giving Ps(K|Y)
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_ Solution: Optimal Fano Inequality for a-Information
X — Y — X with M-ary X, probability of success Ps = P(X = X)
B X is a sensitive data (depending on a secret);
B Py|x is a “side-channel” through which information leaks
B Y is disclosed to the attacker (measurements by probes/sniffers...)
n P)?IY is the attack (MAP rule maximizes probability of success)

/a(X;Y)>/a(X,)A<)=Da(Px7prxq§) o (Ps(X|Y)|[P5) > z do(Ps(X]Y)|[[Ps(X))

where Pg = 3, px(x)q3(x) < maxc px(x) = ]P’S(X).

a-Fano’s Inequality [Rioul’21]

1a(X;Y) = da (Bs(X|Y) || Ps(X))

generalizes [HanVerd(’'94] (o = 1)
= implicit upper bound on Ps(X|Y) as a function of a-information.
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_ Upper Bounds on Success Rate P

1.0 =
0.8 1
o’ |
Loe6 -+
© ’ —_ —
,r a=0.25 —=— a=4.00
o —~— a=050 -5 a=28.00
3 —%— a=0.80 - a=100.00
O 0.4 ‘ ‘ ‘ ‘
@ | | | |
0.2 V— Bounds by /,(X; Y|T) with a <1.00
--  Bounds by I(X; Y|T)
[3—£1 Bounds by /,(X; Y|T) with a >1.00
00 H H H H H
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_ Upper Bounds on Success Rate P

1.0

o
(o]
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_ Lower Bounds on # of Traces to Achieve 95% Success

120{ —s— Predicted by I(X; Y|T) with 2=0.80
° —=— Predicted by /,(X; Y|T) with a=1.20
& 100+ -
a —— Predicted by I(X; Y|T)
N —6— ML attacks
Ql_” 801 : : j
o |
© 601
(@] i
® s
© 401
< |
£ |
209
ol —— ; i ; ; ; i
0.251.00 2.00 3.00 4.00 6.00 8.00 10.00
Noise level: g2
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_ Lower Bounds on # of Traces to Achieve 95% Success

1201 —— Predicted by Io(X; Y|T) with a=0.50
° —=— Predicted by /I,(X; Y|T) with a=2.00
S 100+ ,
a —— Predicted by I(X; Y|T)
A —o— ML attacks
Ql_” 80 1 ; ; ; ;
> |
‘= 601
O :
o i
< 404 |
< :
£ 1
20+ :
0l s i i i i i
0.251.00 2.00 3.00 4.00 6.00 8.00 10.00

Noise level: o2
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_ Lower Bounds on # of Traces to Achieve 95% Success

120{ —s— Predicted by I(X; Y|T) with @=0.25
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_ Lower Bounds on # of Traces to Achieve 95% Success

1201 —— Predicted by /o(X; Y|T) with a=0.01
o —=— Predicted by I,(X; Y|T) with a=100.00 |
o i i
w1001 predicted by /(X; Y|T)
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