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Fig. 3. Segmentation results from human (a-c) ventricle and (d-f) atrium. (a) and
(d) original OCT images; (b) and (e) predicted tissue label images; (c) and (f) corre-
sponding Mason Trichrome histological images. The segmentation results show great
agreement with histological images. Scale bar: 500 µm.

di↵use level. The fibrosis appears in an isolated, low scattering pattern. This is
a great improvement to ReLayNet, which only focuses on boundary delineation
and high scattering patterns. In Fig. 3 (d)-(f), we demonstrate our capability
to identify patchy fibrosis. Here, two regional features are identified. One is
the patchy fibrosis (marked with a star) and the other is small adipose cells
(marked with a double arrow). Both images show that our algorithm successfully
quantifies the inter-tissue heterogeneity in the myocardium region, on a pixel-
wise level of accuracy.

In addition to inter-tissue heterogeneity, our algorithm shows good perfor-
mance to quantify intra-tissue heterogeneity. Purity maps of two myocardium
region are shown in Fig. 4, indicating two scenarios of intra-tissue heterogeneity.
The purity level is normalized to 1. A high-value indicates a low purity and a
low-value indicates a high purity. In Fig. 3 (a)-(c), we observe low-values (high
purity) all through homogeneous regions with heart muscle. We observed that
some heart muscle fibers are not well aligned due to the dilation of the my-
ocardium. There are also two clusters with low purity that show subtle features
in OCT images. The purity map successfully highlights these two regions (ar-
row and double arrow). This intra-tissue-heterogeneity information is uniquely
obtained in our purity map where all regions are labeled for one predicted tissue
label or from manual label.

4 Conclusion and Discussion

In this work, we have proposed a novel CNN approach for semantic segmentation
of human cardiac OCT images. To attack the data imbalance issue in human
cardiac OCT images, we utilized a focal loss function, speckle noise-base data
augmentation to achieve an accurate state-of-art OCT segmentation method for
eight classes. In addition, we generated a purity map to quantify the hetero-
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Fig. 1: Illustration of the spherical CNN framework proposed for AD diagnosis based
on cortical morphometric data. The basic operation blocks are denoted as arrows and
listed under the network structure.

orthogonal group’). Hence, specially-designed convolution operations are refor-
mulated on S2 and SO(3). Due to space limitation and the experimental focus
of this paper, more theoretical underpinnings can be found in [7, 8].

Elements in the SO(3) space are represented in the Euler ZYZ format as:

Z(↵)Y (�)Z(�) (1)

where Z(·) denotes rotation around the Z axis, Y (·) denotes rotation around
the Y axis, ↵ 2 [0, 2⇡],� 2 [0,⇡], � 2 [0, 2⇡] are the rotation angles respectively.
The elements are passed as 3D matrices in the computation.

Elements in the S2 space can be represented in a similar way and are passed
as 2D matrices in the computation:

Z(↵)Y (�)Z(0) (2)

The network architecture is similar to regular CNN, with spherical convo-
lutional blocks being layered hierarchically. The main parameters include the
bandwidth b, which is similar to the spatial dimension in regular CNN, and the
number of channels c at each convolution block.

In this work, we use a simple yet general network structure with three convo-
lutional layers interleaved with 3D batch normalization (BN) and rectifier linear
unit (ReLU) layers. The network structure is illustrated in Fig. 1. The number of
channels doubles and the spatial dimensions reduce by two across layers. Specifi-
cally, we denote the S2 convolution with bandwidth b and channel c as S2Conv(b,
c), and the SO(3) convolution with bandwidth b and channel c as SO3Conv(b,
c). The fully convolutional part of the network is sequenced as: S2Conv(32, 32)
- BN - ReLU - SO3Conv(16, 64) - BN - ReLU - SO3Conv(8, 128) - BN - ReLU.
The three dimensions ↵,�, � of the feature maps at each layer are all 2b.
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which the left half consisted of the sagittal projection whereas the right half included 
the frontal projection (Figure 2 a). 

                          
(a) (b)                                                             

Figure 1: Reference generation: (a) A digitally reconstructed spine; (b) Back projections of vertebrae 
body on sagittal and frontal view images. 

 
Mask R-CNN 
 

 
Figure 2: Inputs and outputs of Mask R-CNN: (a) Input image; (b) Input image with masks and 

bounding boxes. (c) Output prediction bounding boxes, masks and class scores.  
 
Mask R-CNN is a two-stage detector that localizes vertebrae firstly by predicting 
bounding box containing objects, followed by segmentation and identification at the 
same time in the second stage. We used Mask R-CNN [13] based on the implemen-
tation by Matterport Inc. [14] released under an MIT License to identify and seg-
ment C7, T1-L4 (16 vertebrae), L5 from sagittal view, and C7, T1, T2-L4 (15 ver-
tebrae), L5 from frontal view. In total, 36 vertebrae classified into 7 classes were to 
be detected and segmented from an individual concatenated image (Figure 2 b). The 
data was split for 5-fold cross-validation without overlap for training and testing. 
Augmentation techniques included randomized rotations and contrast normalization 
to generalize unseen data. 

Fig. 2: Deep learning pipeline using either ResNet or VGG.

and full optimization.
VGG-11: Here, nf =25,088 and nF = 75,264-D features,
and we use three fully-connected dense layers. We tested two
initialization and training strategies for the ⇠9M weights: (1)
V GG11 TL = TL and full optimization, (2) V GG11 = full
optimization with random weight initialization.
Batch construction: To build a mini-batch B of size nb, we
sampled, with replacement, nb subjects among our training
set, randomly drawing a triplet of MIPs for each subject, and
then applying augmentation. At training, we used 20 batches
of size nb=32. For validation and testing, we sampled for
each subject 32 different triplets (out of ⇠120 combinatorial
options for ⇠10 CESMI videos per subject).
Cross-validation: We ran a 5-fold cross-validation, training
via Bayesian optimization for hyperparameter on 3 folds, val-
idation on one fold and test on the remaining fold.

3. EXPERIMENTAL RESULTS
We report results using an Adam optimizer for VGG11 and
SGD optimizer for ResNet34, which returned the best perfor-
mance. The learning rates were set to 5 106 for VGG11, and
3.5 105 for ResNet34.

3.1. Classification performance

We report in Table 1 test results for classifying (32⇥97=)
3,104 MIPs from the 97 subjects, using cross-validation.
AUC values are all above 0.89 while other performance
metrics vary significantly between networks. We see that
ResNet34 either with or without TL return the best perfor-
mance except for Recall, which is slighlty better in V GG11.
Using TL generates a tradeoff between Recall and Precision,
leading to stable F1-score values across architectures.

Table 1: Test performance for the CNN classifiers: healthy vs dis-
ease.

Network Acc F1-score Precision Recall AUC
ResNet34 TL 88.2 ± 1.6 65.5 ± 10.0 77.8 ± 12.5 61.5 ± 17.0 91.4
ResNet34 84.7 ± 5.9 68.6 ± 7.8 59.2 ± 8.9 83.5 ± 12.2 92.2

ResNet34 TL 2l 86.1 ± 3.1 60.7 ± 9.2 71.5 ± 13.0 57.2 ± 16.0 89.7
V GG11 TL 86.9 ± 3.3 66.0 ± 7.8 72.4 ± 16.0 66.8 ± 15.8 91.6
V GG11 80.4 ± 6.4 64.1 ± 6. 52.0 ± 8.6 86.6 ± 12.4 89.4

3.2. Influence of MIP selection

Effect of Ordering MIPs: We inspected results when the 3
MIPs are selected randomly versus according to their high-
est || ||2 norm values (i.e. more vessels being seen), but no
significant improvement was noticed.
Effect of 1 vs 3 MIPs: We tested our trained networks us-
ing only one MIP (replicated in the triplet) via 2 experiments:
(1) one MIP during validation and testing phases; (2) One
MIP during all phases. Compared to Table 1, results for (1)
returned a systematic decrease in performance for all met-
rics, by [2%-5% , 3%-9% 7%-14% 0%-10%]. Experiment
(2) generated fluctuations of 2%-6% for all metrics compared
to (1) and never reached the performance of Table 1. This loss
in performance is illustrated for one network architecuture in
Fig. 3(a). It is interesting to note that when training with only
1 MIP per subject, ResNet and VGG architectures tended to
perform more similarly than when using 3 MIPs.

(a) (b)
Fig. 3: (a) Validation accuracy using 3 vs. 1 MIP per subject for
ResNet34 TL. (b) Histograms of accuracy per subject and per net-
work. ”MAX” = ”oracle” selector of the best network per subject.

3.3. Accuracy per subject

Our framework labels 32 MIPs per subject. Each MIP is
assigned a score between 0 and 1. We plot in Fig. 3(b) the
distribution of ”accuracy per subject” for the five different
networks. We also add the distribution of an ”oracle” se-
lecting the network with maximal accuracy per subject. For
i = 0.25, 0.75, 075, 1, we denote by Si the set of subjects
with i � 0.25 < Accuracy  i (i.e. the bins in Fig. 3(b)).
Set sizes and physiological measures are reported in Table
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IMPORTANCE While air pollutants at historical levels have been associated with cardiovascular
and respiratory diseases, it is not known whether exposure to contemporary air pollutant
concentrations is associated with progression of emphysema.

OBJECTIVE To assess the longitudinal association of ambient ozone (O3), fine particulate
matter (PM2.5), oxides of nitrogen (NOx), and black carbon exposure with change in percent
emphysema assessed via computed tomographic (CT) imaging and lung function.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included participants from the
Multi-Ethnic Study of Atherosclerosis (MESA) Air and Lung Studies conducted in 6
metropolitan regions of the United States, which included 6814 adults aged 45 to 84 years
recruited between July 2000 and August 2002, and an additional 257 participants recruited
from February 2005 to May 2007, with follow-up through November 2018.

EXPOSURES Residence-specific air pollutant concentrations (O3, PM2.5, NOx, and black
carbon) were estimated by validated spatiotemporal models incorporating cohort-specific
monitoring, determined from 1999 through the end of follow-up.

MAIN OUTCOMES AND MEASURES Percent emphysema, defined as the percent of lung pixels
less than −950 Hounsfield units, was assessed up to 5 times per participant via cardiac CT
scan (2000-2007) and equivalent regions on lung CT scans (2010-2018). Spirometry was
performed up to 3 times per participant (2004-2018).

RESULTS Among 7071 study participants (mean [range] age at recruitment, 60 [45-84] years;
3330 [47.1%] were men), 5780 were assigned outdoor residential air pollution concentrations
in the year of their baseline examination and during the follow-up period and had at least 1
follow-up CT scan, and 2772 had at least 1 follow-up spirometric assessment, over a median of
10 years. Median percent emphysema was 3% at baseline and increased a mean of 0.58
percentage points per 10 years. Mean ambient concentrations of PM2.5 and NOx, but not O3,
decreased substantially during follow-up. Ambient concentrations of O3, PM2.5, NOx, and
black carbon at study baseline were significantly associated with greater increases in percent
emphysema per 10 years (O3: 0.13 per 3 parts per billion [95% CI, 0.03-0.24]; PM2.5: 0.11 per
2 μg/m3 [95% CI, 0.03-0.19]; NOx: 0.06 per 10 parts per billion [95% CI, 0.01-0.12]; black
carbon: 0.10 per 0.2 μg/m3 [95% CI, 0.01-0.18]). Ambient O3 and NOx concentrations, but
not PM2.5 concentrations, during follow-up were also significantly associated with greater
increases in percent emphysema. Ambient O3 concentrations, but not other pollutants, at
baseline and during follow-up were significantly associated with a greater decline in forced
expiratory volume in 1 second per 10 years (baseline: 13.41 mL per 3 parts per billion [95% CI,
0.7-26.1]; follow-up: 18.15 mL per 3 parts per billion [95% CI, 1.59-34.71]).

CONCLUSIONS AND RELEVANCE In this cohort study conducted between 2000 and 2018 in 6
US metropolitan regions, long-term exposure to ambient air pollutants was significantly associated
with increasing emphysema assessed quantitatively using CT imaging and lung function.
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Fig. 3. Segmentation results from human (a-c) ventricle and (d-f) atrium. (a) and
(d) original OCT images; (b) and (e) predicted tissue label images; (c) and (f) corre-
sponding Mason Trichrome histological images. The segmentation results show great
agreement with histological images. Scale bar: 500 µm.

di↵use level. The fibrosis appears in an isolated, low scattering pattern. This is
a great improvement to ReLayNet, which only focuses on boundary delineation
and high scattering patterns. In Fig. 3 (d)-(f), we demonstrate our capability
to identify patchy fibrosis. Here, two regional features are identified. One is
the patchy fibrosis (marked with a star) and the other is small adipose cells
(marked with a double arrow). Both images show that our algorithm successfully
quantifies the inter-tissue heterogeneity in the myocardium region, on a pixel-
wise level of accuracy.

In addition to inter-tissue heterogeneity, our algorithm shows good perfor-
mance to quantify intra-tissue heterogeneity. Purity maps of two myocardium
region are shown in Fig. 4, indicating two scenarios of intra-tissue heterogeneity.
The purity level is normalized to 1. A high-value indicates a low purity and a
low-value indicates a high purity. In Fig. 3 (a)-(c), we observe low-values (high
purity) all through homogeneous regions with heart muscle. We observed that
some heart muscle fibers are not well aligned due to the dilation of the my-
ocardium. There are also two clusters with low purity that show subtle features
in OCT images. The purity map successfully highlights these two regions (ar-
row and double arrow). This intra-tissue-heterogeneity information is uniquely
obtained in our purity map where all regions are labeled for one predicted tissue
label or from manual label.

4 Conclusion and Discussion

In this work, we have proposed a novel CNN approach for semantic segmentation
of human cardiac OCT images. To attack the data imbalance issue in human
cardiac OCT images, we utilized a focal loss function, speckle noise-base data
augmentation to achieve an accurate state-of-art OCT segmentation method for
eight classes. In addition, we generated a purity map to quantify the hetero-
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Fig. 1: Illustration of the spherical CNN framework proposed for AD diagnosis based
on cortical morphometric data. The basic operation blocks are denoted as arrows and
listed under the network structure.

orthogonal group’). Hence, specially-designed convolution operations are refor-
mulated on S2 and SO(3). Due to space limitation and the experimental focus
of this paper, more theoretical underpinnings can be found in [7, 8].

Elements in the SO(3) space are represented in the Euler ZYZ format as:

Z(↵)Y (�)Z(�) (1)

where Z(·) denotes rotation around the Z axis, Y (·) denotes rotation around
the Y axis, ↵ 2 [0, 2⇡],� 2 [0,⇡], � 2 [0, 2⇡] are the rotation angles respectively.
The elements are passed as 3D matrices in the computation.

Elements in the S2 space can be represented in a similar way and are passed
as 2D matrices in the computation:

Z(↵)Y (�)Z(0) (2)

The network architecture is similar to regular CNN, with spherical convo-
lutional blocks being layered hierarchically. The main parameters include the
bandwidth b, which is similar to the spatial dimension in regular CNN, and the
number of channels c at each convolution block.

In this work, we use a simple yet general network structure with three convo-
lutional layers interleaved with 3D batch normalization (BN) and rectifier linear
unit (ReLU) layers. The network structure is illustrated in Fig. 1. The number of
channels doubles and the spatial dimensions reduce by two across layers. Specifi-
cally, we denote the S2 convolution with bandwidth b and channel c as S2Conv(b,
c), and the SO(3) convolution with bandwidth b and channel c as SO3Conv(b,
c). The fully convolutional part of the network is sequenced as: S2Conv(32, 32)
- BN - ReLU - SO3Conv(16, 64) - BN - ReLU - SO3Conv(8, 128) - BN - ReLU.
The three dimensions ↵,�, � of the feature maps at each layer are all 2b.
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which the left half consisted of the sagittal projection whereas the right half included 
the frontal projection (Figure 2 a). 

                          
(a) (b)                                                             

Figure 1: Reference generation: (a) A digitally reconstructed spine; (b) Back projections of vertebrae 
body on sagittal and frontal view images. 

 
Mask R-CNN 
 

 
Figure 2: Inputs and outputs of Mask R-CNN: (a) Input image; (b) Input image with masks and 

bounding boxes. (c) Output prediction bounding boxes, masks and class scores.  
 
Mask R-CNN is a two-stage detector that localizes vertebrae firstly by predicting 
bounding box containing objects, followed by segmentation and identification at the 
same time in the second stage. We used Mask R-CNN [13] based on the implemen-
tation by Matterport Inc. [14] released under an MIT License to identify and seg-
ment C7, T1-L4 (16 vertebrae), L5 from sagittal view, and C7, T1, T2-L4 (15 ver-
tebrae), L5 from frontal view. In total, 36 vertebrae classified into 7 classes were to 
be detected and segmented from an individual concatenated image (Figure 2 b). The 
data was split for 5-fold cross-validation without overlap for training and testing. 
Augmentation techniques included randomized rotations and contrast normalization 
to generalize unseen data. 

Fig. 2: Deep learning pipeline using either ResNet or VGG.

and full optimization.
VGG-11: Here, nf =25,088 and nF = 75,264-D features,
and we use three fully-connected dense layers. We tested two
initialization and training strategies for the ⇠9M weights: (1)
V GG11 TL = TL and full optimization, (2) V GG11 = full
optimization with random weight initialization.
Batch construction: To build a mini-batch B of size nb, we
sampled, with replacement, nb subjects among our training
set, randomly drawing a triplet of MIPs for each subject, and
then applying augmentation. At training, we used 20 batches
of size nb=32. For validation and testing, we sampled for
each subject 32 different triplets (out of ⇠120 combinatorial
options for ⇠10 CESMI videos per subject).
Cross-validation: We ran a 5-fold cross-validation, training
via Bayesian optimization for hyperparameter on 3 folds, val-
idation on one fold and test on the remaining fold.

3. EXPERIMENTAL RESULTS
We report results using an Adam optimizer for VGG11 and
SGD optimizer for ResNet34, which returned the best perfor-
mance. The learning rates were set to 5 106 for VGG11, and
3.5 105 for ResNet34.

3.1. Classification performance

We report in Table 1 test results for classifying (32⇥97=)
3,104 MIPs from the 97 subjects, using cross-validation.
AUC values are all above 0.89 while other performance
metrics vary significantly between networks. We see that
ResNet34 either with or without TL return the best perfor-
mance except for Recall, which is slighlty better in V GG11.
Using TL generates a tradeoff between Recall and Precision,
leading to stable F1-score values across architectures.

Table 1: Test performance for the CNN classifiers: healthy vs dis-
ease.

Network Acc F1-score Precision Recall AUC
ResNet34 TL 88.2 ± 1.6 65.5 ± 10.0 77.8 ± 12.5 61.5 ± 17.0 91.4
ResNet34 84.7 ± 5.9 68.6 ± 7.8 59.2 ± 8.9 83.5 ± 12.2 92.2

ResNet34 TL 2l 86.1 ± 3.1 60.7 ± 9.2 71.5 ± 13.0 57.2 ± 16.0 89.7
V GG11 TL 86.9 ± 3.3 66.0 ± 7.8 72.4 ± 16.0 66.8 ± 15.8 91.6
V GG11 80.4 ± 6.4 64.1 ± 6. 52.0 ± 8.6 86.6 ± 12.4 89.4

3.2. Influence of MIP selection

Effect of Ordering MIPs: We inspected results when the 3
MIPs are selected randomly versus according to their high-
est || ||2 norm values (i.e. more vessels being seen), but no
significant improvement was noticed.
Effect of 1 vs 3 MIPs: We tested our trained networks us-
ing only one MIP (replicated in the triplet) via 2 experiments:
(1) one MIP during validation and testing phases; (2) One
MIP during all phases. Compared to Table 1, results for (1)
returned a systematic decrease in performance for all met-
rics, by [2%-5% , 3%-9% 7%-14% 0%-10%]. Experiment
(2) generated fluctuations of 2%-6% for all metrics compared
to (1) and never reached the performance of Table 1. This loss
in performance is illustrated for one network architecuture in
Fig. 3(a). It is interesting to note that when training with only
1 MIP per subject, ResNet and VGG architectures tended to
perform more similarly than when using 3 MIPs.

(a) (b)
Fig. 3: (a) Validation accuracy using 3 vs. 1 MIP per subject for
ResNet34 TL. (b) Histograms of accuracy per subject and per net-
work. ”MAX” = ”oracle” selector of the best network per subject.

3.3. Accuracy per subject

Our framework labels 32 MIPs per subject. Each MIP is
assigned a score between 0 and 1. We plot in Fig. 3(b) the
distribution of ”accuracy per subject” for the five different
networks. We also add the distribution of an ”oracle” se-
lecting the network with maximal accuracy per subject. For
i = 0.25, 0.75, 075, 1, we denote by Si the set of subjects
with i � 0.25 < Accuracy  i (i.e. the bins in Fig. 3(b)).
Set sizes and physiological measures are reported in Table
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In SKT, the track velocity at time t is estimated from the previ-
ous measured track position. This estimation is correct only when
motions are slow with respect to the frame rate.

2.6. Update from optical flow
To improve robustness to fast and unexpected motions, we use opti-
cal flow to measure the velocities of particles. Let �t,t+1(z) 2 R2

be the optical flow at pixel position z, from frame t to frame t + 1.
The information provided by dense optical flow is based on pixel
intensity and is often regularised globally in the image, whereas de-
tections are quite local. Thus, optical flow provides useful, comple-
mentary information that can be integrated in the SKT framework.

To update the state’s velocity at time t, we use the optical flow
between frames t and t + 1. The advantage of this approach is that
it is robust to sudden changes which happen from frame t to t + 1.
It is therefore easier to correctly determine where the particle will
be in frame t + 1. Furthermore, optical flow is usually regularized,
ensuring coherent velocities between spatially close particles.

Unlike [11], we designed a Kalman Filter with two update steps
(Figure 1). First we update the filters with the positional measure-
ments, then we update the filters with the velocity measurements.
Thanks to this 2-steps procedure, the posterior position can be used,
rather than the prior/measured one, to extract the velocity from the
optical flow map. Moreover, this facilitates the update of veloci-
ties for all tracks, even non-linked ones, reducing uncertainty and
improving the motion estimation when particles are undetected. In
other words, the optical flow allows us to follow particles even when
they are difficult to detect. As uncertainty is reduced for non-linked
tracks, we are more robust to false positive association and can there-
fore increase Ngap. We call KOFT--, the method that updates posi-
tion and velocity in a single update as in [11]. We call KOFT the
method with two update steps, and KOFT++ the method which uses
Ngap = 5.
Optical flow. Computing the optical flow �t,t+1 between frame t
and t + 1 is done with Farneback method [14]. We have compared
Farneback with TVL1 [15, 16] and RAFT [17] (deep learning based)
on true video of Hydra Vulgaris neurons [18] and found that it was
faster and more accurate in this case. We emphasize that KOFT can
be used with any performing optical flow method. We pre-process
the frames by downscaling with a factor 4, and by applying a Gaus-
sian smoothing (� = 5 pixels). This is done to speed up the compu-
tations, improve noise robustness and also to extract global, mean-
ingful motions.
Velocity Measurement Model. For each track i (linked or non-
linked), we measure velocities from the optical flow map z

i,vel
t =

�t,t+1(H
pos
x̂

i,SKT
t ). The uncertainty on velocity measurements is

fixed to �vel = 2. The velocity measurement model is:

H
vel =

✓
0 1 0 0
0 0 0 1

◆
, Rvel = �2

velI2 (8)

The state x̂i,SKT
t is updated with velocities according to equations

4 and 5, where H, R and z
i
t are substituted by H

vel, Rvel and z
i,vel
t .

3. SIMULATOR

Annotated data is unavailable and the labeling task is labour inten-
sive and prone to human errors and biases [19, 20]. Therefore, we
evaluate tracking performances on simulated data.

Most existing simulators for particle tracking [19, 8, 7, 9, 20]
usually assume simple motion models (eg. independent particles
with Brownian or partially directed motion) with simple particles
and backgrounds (Gaussian profile with Gaussian or Poisson noise

Fig. 2. Spring-based simulation (a) A complete simulated frame,
with points of mass and springs. (b) Motion induced by random
forces and springs constraints.

independent background). These are not representative of the com-
plex motions targeted by our method. Therefore, we have designed
our own simulator which we present here. Its goal is to produce rep-
resentative and challenging tracking ground truths for particles mov-
ing on a highly deformable background, typically cells on freely-
behaving animals. First, we propose to add a global background
noise to the particles that moves with the particles. This represents
the animal’s body or underlying tissue. Second, we add complex
global and elastic random motion to particles.

3.1. Particles and noise
Each particle is modeled with a 2-dimensional Gaussian profile. The
covariance of the Gaussian profile is random, and evolves in time.
The position of each particle is drawn from a uniform distribution
inside the body mask, with a minimum distance between particles.
The particles’ shapes are 1 to 3 pixels wide. The particles’ signal is
linearly mixed with a background signal. The background is mod-
elled with a mixture of Gaussian profiles, with larger widths. Thus,
the background structures are larger than those of particles, rang-
ing from 20 to 60 pixels wide. An additional Poisson Shot Noise is
added to the process to represent the acquisition noise.

3.2. Motion
At each time-step, we update the position of both background and
particles using the same global motion. We propose two plausible
global elastic motion models:
Optical flow motion. We extract the optical flow of consecutive
frames of a real video (in this work, we use a fluorescence video of
Hydra Vulgaris neurons from [18]). These motions are then applied
to update the positions of both particles and background.
Springs motion. We model the animal body or tissue with n points
of equal mass strung with springs (See figure 2). We apply random
forces to the system and solve the n-body damped harmonic oscilla-
tor equations. Let (pi 2 R2)1in be the n points of mass of our
system, for each pi we define its dampening coefficient �i 2 R+.
For each pair (pi,pj), a spring is created with a stiffness kij 2 R+

and a equilibrium length lij 2 R+. We set kij = 0 (no spring) for
all pairs but the 8 closest neighbors. This system follows:

p̈i = fi(t)� �iṗi �
X

j

kij(||pi � pj ||2 � lij)
pi � pj

||pi � pj ||2
(9)

Figure 23: Samples of each cluster
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1.2 Wild type vs BRAF mutant

In the test dataset, the number of cells Wild = 548 ,and the number of Mutation cells = 528.

1.2.1 4 classes

Figure 7: clustering into 4 classes Figure 8: Wild type (0) and Mutation (1)

Label number of cells % occurrences of wild cells % occurrences of mutation cells

0 401 66.08% 33.92%

1 374 41.71% 58.29%
2 166 70.48% 29.52%

3 135 7.41% 92.59%

Figure 9: Samples of each cluster
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Fig. 1: Overall pipeline of Sim-Click (left) and Click-Ref (right) modules. For simplicity, skip connections have been omitted. The click-ref architecture in red
is detailed in Fig. 2

Fig. 2: Click-ref architecture for |⌦P | = 256⇥256. The insert in the bottom
right details the action of the +p operator with notations taken from Eq. 2.

2. Intensities of RGB channels (dRGB): sum of the com-
plement to one of the intersections of normalized histograms
over each color channel measured via the min operator.
3. Texture features (dTEXT ): We use the 2D wavelet scat-
tering transform [12] on H&E channels separately. This trans-
form uses two hyperparameters J and L that control the num-
ber of scales and rotations respectively. The scattering trans-
form outputs a tensor of size (1 + LJ + L

2
J(J�1)
2 ,

H

2J ,
W

2J )
for an input image of size H ⇥ W . The scattering trans-
form has stability properties with respect to geometrical trans-
forms, and invariance properties with respect to translation up
to 2J . We define the texture distance between two patches as
the sum of the per-channel L2 distances between scattering
coefficients.

4. Baseline segmentation quality (dseg): Let nbase and n
gt

be the numbers of nuclei detected by the baseline (base) and
ground-truth (gt) segmentations in a given patch. Our seg-
mentation quality distance exploits the following patch seg-
mentation features:

1. n
gt

2. � = n
gt � n

base.
3. Overlap area of segmented nuclei in base and gt.
4. Pixel-level Precision and Recall
5. Nuclei size statistics: [average, max, min]

These features are extracted for all training patches and nor-
malized with the population-level mean and variance. For a
pair of patches, the distance dSEG is then computed as the
L
2 norm of the normalized individual differences in the five

features.

2.3. Patch similarity metric

Our final distance dPS between pairs of patches (Pi,Pj) is
defined as the weighted sum of the individual distance com-
ponents, as:

dPS(Pi,Pj) = �HE ⇥ dHE(Pi,Pj)+
�RGB ⇥ dRGB(Pi,Pj) + �TEXT ⇥ dTEXT (Pi,Pj) +

�SEG ⇥ dSEG(Pi,Pj)

At training time, let Pq be a query (anchor) patch for which
we want to correct a base segmentation, knowing gt. We
first select the Np patches that minimize dPS(Pq, ·) and
compute dM = maxi=1,..,Np(dPS(Pq,Pi)) and dm =
mini=1,..,Np(dPS(Pq,Pi)). We then transform the values
of dPS as d

⇤
PS

(Pq, ·) = Fs(N(dPS(Pq, ·))) with N the
linear normalisation operator using dM and dm and Fs a

Fig. 3: Sim-Click: % of ”twin” synthetic patchs amoung top neighbours for
a query patch.

training on Stardist baseline segmentation correction. We
found an average value of 0.67 and p-value of 2.4⇥ 10�3 on
the test set.

Fig. 4: Sim-Click: Top similar patches retrieved on 2 test query patches (top
left). All similar patches are from the same WSI than the query.

3.3. Click-Ref: Segmentation improvement

Segmentation improvement is evaluated in terms of nuclei de-
tection (Precision, Recall, F1) and pixel-level segmentation
quality with the aggregated Jaccard index (AJI), the DICE
index and the Panoptic score [15]. Results are reported in
Table 1 for the three baseline methods with clicks initiated
from the ground-truth segmentation (ideal scenario). All
metrics are improved, here in a range from 2.6% to 32.9%.
As desired, the poorer the baseline segmentation quality, the
greater the level of segmentation improvement. We illustrate
in Fig. 5 the quality of segmentation corrections generated
by our proposed automated segmentation correction on three
test patches with significant baseline segmentation errors.

4. DISCUSSION & CONCLUSION

In this paper we proposed a solution for correcting a baseline
segmentation of nuclei on histopathology H&E WSI images
based on few clicks indicative of locations of false positives
and negatives. We reported improvements of up to 25% for
Recall in nuclei detection and 32% in Dice for nuclei con-
tours. Future work will explore the tuning of the p parameter

Table 1: Click-Ref: Test segmentation improvement metrics measured at
nuclei detection level (Precision, Recall, F1) and countour-level (AJI, DICE,
Panoptic score (PS)) with training performed using Stardist baseline segmen-
tation.

Hovernet/Click-
ref

Mask-
RCNN/Click-ref

Stardist/Click-
ref

Precision (%) 81.2/88.0 (+6.8) 69.1/81.1 (+12.0) 85.6/92.1 (+6.5)
Recall (%) 84.2/88.6 (+4.4) 56.8/82.1 (+25.3) 81.6/84.6 (+3.0)
F1 (%) 82.4/88.2 (+5.8) 61/81.3 (+20.3) 83.2/86.9 (+3.7)
AJI (%) 69.5/72.1 (+2.6) 38.2/63.2 (+25.0) 63.3/66.7 (+3.4)
DICE (%) 73.4/78 (+4.6) 36.7/69.6 (+32.9) 63.7/66.9 (+3.2)
PS (%) 63.9/68.4 (+4.5) 44.5/60.0 (+15.5) 63.9/67.2 (+3.3)

Fig. 5: Click-Ref: Examples of segmentation refinements on three test query
patches with multiple baseline segmentation errors of types FP and FN. Ad-
ditions and removals of nuclei are highlighted in white squares.

with respect to the a priori confidence one has in the baseline
segmentation.

We have also validated the learning of a metric to pair
patches that are ”similar” in terms of appearance and seg-
mentation errors. This will be further explored to implement
a smart clicking paradigm - optimising the tradeoff between
manual interventions and gained segmentation refinement.
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We split the sub-dataset into n=110 WSIs training, n=24
validation, and n=24 test WSIs.

2.2. Creation of ground-truth scribbles

For tumoral scribbles: We propose a method to artificially
create random and realistic scribbles from the ground-truth
masks. We sample the contours of each tumoral area into
nc = 15 nodes equally spaced.

We compute the Voronoı̈ Diagram followed by the corre-
sponding Delaunay triangulation of the inside shape and ex-
tract the longest triangle path within the shape. We randomly
sample points in each triangle belonging to the longest path
and interpolate to generate the scribble (See Figure 2).

For each WSI, we generate scribbles on the top 10%
largest tumoral areas with a minimum of 1 and a maximum of
10. On average the number of ground-truth tumoral scribbles
generated per WSI is 6.7.

For non-tumoral scribbles: we extract the tissue region
from the background using a simple Otsu thresholding fol-
lowed by a closing operation to fill the holes. We then subtract
all the annotated tumoral regions from the tissue mask. We
replicate the Delaunay triangulation process described above
on the largest connected tissue components per WSI.

For all the WSI of our scribble dataset, we extracted a
total of 203776 overlapping patches of size 512 ⇥ 512 pix-
els at magnification scale ⇥40 along the generated scribbles
(See Figure 1). This corresponds to an average of 868 healthy
patches and 434 tumor patches per WSI. We assigned the cor-
responding label (1 for tumor and 0 for healthy) to each patch
to constitute our baseline training, validation, and test scribble
dataset.

(a) Scribble of a
metastatic region.

(b) Scribble of a non-tumoral region

Fig. 1. Patch extraction along scribbles created for the 2
classes: tumoral and non-tumoral tissues.

Fig. 2. Scribble creation process.

2.3. Classifier: Rough initial segmentation

We used VGG16 [11] as the backbone architecture for our
binary patch classifier and used dropout regularization with
a probability of 0.2. We started with weights pre-trained on
ImageNet [12] that we fine-tuned for 10 epochs on our train
scribble dataset. We used Adam [13] optimizer and an initial
learning rate of lr = 10�3. For augmentations, we use flips,
90� rotations, and small translations.

We optimized the threshold used on the output probabil-
ity map (heatmap) to maximize the F1 score on the scribble
validation dataset. This led to tthresh = 0.33 for an overlap
value ov = 50%.

3. INCREMENTAL SEGMENTATION
CORRECTIONS

3.1. Naı̈ve implementation

Our iterative correction process is illustrated in Figure 3. We
use an SVM classifier on latent features of our VGG16 [11]
to enable interactive corrections.
1. SVM Initialization: ”true-positive (TP)” and ”true-
negative (TN)” patches are extracted as the patches with
the highest and lowest scores respectively above and below
tthresh. Per WSI, we extract a maximum of 1,000 patches
for each class to have a fast initialization step and avoid class
imbalance.
2. SVM Correction: Additional input scribbles are provided
by the user over regions of the heatmap considered misclas-
sified. False-positives (FP) and false-negatives (FN) patches
are extracted from the corrective scribbles. In our approach,
we automatically generate scribbles on FP or FN areas and
only 10 FP and 10 FN patches per WSI to minimize the ex-
pected size of the correction scribble. We refit the SVM for
nepoch and update all WSI patches with the SVM predictions
except the patches from the scribbles that are hard coded. This
process can be iterated npass passes.

The hyperparameter nepoch controls the balance between
the need for corrections without fully forgetting the initial
segmentation. We, therefore, defined its optimal value n⇤

epoch
as the one returning the highest mean F1 score over the vali-
dation set after npass correction passes.Fig. 3. Incremental segmentation correction process.

3.2. Uncertainty-based implementation

It is desirable to adjust per WSI the level of SVM retraining
(controlled by a fixed value of nepoch in 3.1) with the initial
quality of the rough segmentation.

To infer the quality of a given VGG16 [11] prediction
without relying on a ground-truth annotation, we use the no-
tion of uncertainty from Monte-Carlo dropout introduced in
[14] that have already shown good results in [15, 16]. More
specifically in histology, few papers have already explored its
effectiveness and reliability [17, 18, 19].

First, we run nMC predictions for each patch using
Monte-Carlo dropout on VGG16 [11] trained weights. Our
observations showed that large uncertainty values are mainly
located in tumor areas. Thus, in order to have a WSI-level
uncertainty measure that is independent of the size of the
tumor we introduce the following uncertainties:

HWSI =
1

|T |
X

P2T

H(XP)

�WSI =
1

|T |
X

P2T

�(XP)
(1)

with P a patch in the WSI, XP the vector of nMC predictions
on P , T = {P 2 WSI, E[XP ] > tthresh}

To evaluate the sensitivity of these WSI-level uncer-
tainty measures to infer the overall segmentation quality, we
checked their relation with the WSI-level F1 scores of the
VGG16 labels on the test and validation subsets.

From Figure 4 we can see that the two uncertainty mea-
sures have a linear relation with the F1 scores and correlations
above 0.8. They are therefore both good unsupervised proxies
of the segmentation quality, with HWSI having a higher cor-
relation. We therefore propose to set a WSI-specific value of
nepoch based on HWSI using a window centered on n

⇤
epoch:

n
WSI
epoch = 2⇥H

⇤
WSI ⇥ n

⇤
epoch (2)

Fig. 4. WSI-level uncertainty measures versus F1 scores of
the VGG16 compared with the ground truth calculated on all
the WSI patches.

where H
⇤
WSI is the normalised value of HWSI in [0, 1] using

the max and min from Figure 4.

4. RESULTS

For the naı̈ve approach, we tested the following values of
nepoch 2 {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

For npass = 1, the best F1 value on the validation set was
found with n

⇤
epoch = 20 and for npass = 2, 3, 4 with n

⇤
epoch =

30.
Here, we detail results on the test set for npass = 4 cor-

rection passes with n
⇤
epoch = 30.

For the uncertainty-based approach, we set nMC = 20.
For each test WSI (n=24) we ran the whole correction process
10 times using randomly chosen correction scribbles. This
leads to 10 segmentations per WSI per correction pass.

We report in Table 1 for each performance metric its over-
all average value over the 10⇥24 segmentations and the aver-
age of its standard deviation per WSI across the 10 correction
runs.

Results using the uncertainty-based corrections are re-
ported in Table 2. We observe better performance with the
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Based on 3D Masked Autoencoding and Pseudo-labeling
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Figure 2. Overview of the proposed MAPSeg framework. (a) A 3D multi-scale masked autoencoder (MAE) module: trained simultaneously
at local (randomly sampled patches of 963 voxels ) and global (volumetric scan downsampled to 963 voxels) levels. (b) Supervised
segmentation module on the source domain. (c) 3D masked pseudo labeling (MPL) in source and target domains module: f✓ and f�
represent the ensemble of image encoders and segmentation decoders, and f✓ is updated from f� through exponential moving average
(EMA). The teacher network (f✓) takes the unmasked target image as input and outputs pseudo labels, which are then used to supervise
the segmentation of masked target images with f�. (d) Global-local collaborative (GLC) segmentation module: latent representations from
local and global levels are matched and concatenated through cropping and resizing the corresponding global features of the local patches.

vide stable pseudo labels on an unlabeled target domain
during training. After MAE pre-training, we keep the MAE
encoder g and append a segmentation decoder h to build the
segmentation model f = g � h (Fig.2b-d). Given an input
image xs and label ys from the source domain and an in-
put image xt from the target domain, a teacher model f✓
takes the target image xt as input and generates pseudo la-
bels f✓(xt), with gradient detached. In the MPL, the student
model f� takes the masked inputs xM

t /xM
s from target and

source domains, respectively. It is then optimized to mini-
mize the segmentation loss calculated on {f�(xM

t ), f✓(xt)}
and {f�(xM

s ), ys}, which can be formulated as:

LMPL = LSeg(f�(x
M
t ), f✓(xt)) + �LSeg(f�(x

M
s ), ys)

(2)
where � is the weight of source data and is set as 0.5. The
teacher model’s parameters ✓ are then updated during train-
ing via exponential moving average (EMA) based on the
student model’s parameters � [53].

✓t+1  ↵✓t + (1� ↵)�t, (3)

where t and t + 1 indicate training iterations and ↵ is the
EMA update weight. For model initialized from the large-
scale MAE pretraining, we set ↵ as 0.999 during the first
1,000 steps and 0.9999 afterwards. For model pretrained on
small-scale source and target datasets (e.g., only dozens of
scans), we set ↵ as 0.99 during the first 1,000 steps, 0.999
during the next 2,000 steps, and 0.9999 for the remaining
training. The teacher model f✓ is initialized by duplicat-
ing student model’s parameters ✓ = � after 1,000 steps of
warm-up.

3.4. 3D Global-local Collaboration (GLC)

Directly applying MPL for UDA segmentation with large
domain shift (e.g., cross-modality/sequence) may lead to
unreliable pseudo-label and disrupt the training. There-
fore, we design a GLC module (Fig.2d) to improve pseudo-
labeling. The rationale behind the GLC is the spatial global-
local contextual relations in medical images owing to the
anatomical distribution prior. We hypothesize that we can
leverage this strong prior to improve the quality of pseudo-
label. To take advantage of the global-local contexts, with
the image encoder pretrained to extract image features at
both local and global levels during multi-scale MAE, we
afterward concatenate local and global semantic features in
the latent space, and make prediction based on the concate-
nated feature. Concatenation of global and local features
has been explored in a previous study [7], while we differ
from their implementation in the perspectives that we only
apply GLC in latent space instead of all layers to mitigate
computation cost and employ a different regularization to
prevent segmentation decoder from predicting solely based
on local feature.

In GLC, local patch x and downsampled global volume
X are separately fed into image encoder g and we have a
binary mask M indicating the corresponding location of
x inside X . The local latent feature can be expressed as
�loc = g(x), and the cropped and resized global latent
feature is �glo = \M � g(X), where � indicate cropping
the g(X) based on M and b is the upsample operation
to match the spatial size of �loc. Therefore, segmenting a
local patch x can be rewritten as f(x) = h(�loc � �glo),
where � is the concatenation along channel dimension
(Fig.2d). To prevent model from solely relying on local

4

Integrating Prior Knowledge in Contrastive Learning with Kernel

Figure 1: Illustration of the proposed method. Each point is an original image x̄. Two points are connected if they can be
transformed into the same augmented image using a distribution of augmentations A. Colors represent semantic (unknown)
classes and light disks represent the support of augmentations, A(·|x̄), for each sample x̄. From an incomplete augmentation
graph (1) where intra-class samples are not connected (e.g. A is insufficient or not adapted), we reconnect them using a
kernel defined on prior information (either learnt with generative model, viewed as feature extractor, or given as auxiliary
attributes). The extended augmentation graph (3) is the union between the (incomplete) augmentation graph (1) and the
kernel graph (2). In (2), the gray disks indicate the set of points x̄0 that are close to the anchor (blue star) in the kernel space.

the augmentations are too weak or inadequate to remove
irrelevant signal w.r.t. a discrimination task, then how can
we define positive and negative samples?

In our work, we propose to integrate prior information,
learnt from generative models (viewed as features extrac-
tor or prior representation) or given as auxiliary weak at-
tributes (e.g., phenotypes of participants for medical im-
ages), into contrastive learning, to make it less dependent
on data augmentation. Using the theoretical understand-
ing of CL through the augmentation graph, we make the
connection with kernel theory and introduce a novel loss
with theoretical guarantees on downstream performance.
This loss additionally benefits from the decoupling effect
between positive and negative samples that affects InfoNCE-
based frameworks (Yeh et al., 2022). Prior information
is integrated into the proposed decoupled contrastive loss
using a kernel. In the unsupervised setting, we leverage
pre-trained generative models, such as GAN (Goodfellow
et al., 2014) and VAE (Kingma & Welling, 2013), to learn a

prior representation of the data. We provide a solution to
the feature suppression issue in CL (Chen et al., 2021) and
also demonstrate SOTA results with weaker augmentations
on visual benchmarks (both on natural and medical images).
In the weakly supervised setting, we use instead auxiliary
image attributes as prior knowledge (e.g. birds color or size)
and we show better performance than previous conditional
formulations based on these attributes (Tsai et al., 2022).
In summary, we make the following contributions:

1. We propose a new decoupled contrastive loss which al-
lows the integration of prior information, given as auxiliary
attributes or learnt from generative models, into the positive
and negative sampling.

2. We derive general guarantees, relying on weaker as-
sumptions than existing theories, on the downstream classi-
fication task especially in the finite-samples case.

3. We empirically show that our framework performs
competitively with small batch size and benefits from the
latest advances of generative models to learn a better repre-
sentation than existing CL methods.

4. We show that we achieve SOTA results in the unsuper-
vised and weakly supervised setting.

2. Related Works
In a weakly supervised setting, recent studies (Dufumier
et al., 2021; Tsai et al., 2022) about CL have shown that
positive samples can be defined conditionally to an auxiliary
attribute in order to improve the final representation, in par-
ticular for medical imaging (Dufumier et al., 2021). From
an information bottleneck perspective, these approaches es-
sentially compress the representation to be predictive of the
auxiliary attributes. This might harm the performance of
the model when the attributes are too noisy to accurately
approximate the true labels of a given downstream task.

In an unsupervised setting, recent approaches (Dwibedi
et al., 2021; Zheng et al., 2021a;b; Li et al., 2021) used the
encoder f , learnt during optimization, to extend the positive
sampling procedure to other views of different instances
(i.e. distinct from the anchor) that are close to the anchor in
the latent space. In order to avoid representation collapse,
multiple instances of the same sample (Azizi et al., 2021), a
support set (Dwibedi et al., 2021), a momentum encoder (Li
et al., 2021) or another small network (Zheng et al., 2021a)
can be used to select the positive samples. In clustering

2

Gori.ICML’23

Open-access cohorts

MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical

Images Segmentation Based on 3D Masked Autoencoding and Pseudo-labeling
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Abstract

The heterogeneity of medical images poses a significant
challenge to robust segmentation. This challenge is par-
ticularly pronounced in the segmentation of infant brain
magnetic resonance images (MRI) acquired across multi-
ple ages, modalities, and sites due to the intrinsic hetero-
geneity caused by different MRI scanners, vendors, and
acquisition sequences, as well as varying stages of neu-
rodevelopment. This paper introduces Masked Autoen-
coding and Pseudo-labelling Segmentation (MAPSeg), a
unified unsupervised domain adaptation (UDA) segmenta-
tion framework designed to tackle the challenges of cross-
sequence, -age, and -site segmentation of subcortical re-
gions in infant brain MRI. Utilizing 3D masked autoencod-
ing, masked pseudo-labeling, and global-local collabora-
tive module, MAPSeg can jointly learn from labeled and
unlabeled scans and works for different medical imaging
modalities. Extensive experiments demonstrate that, with
only dozens of scans, MAPSeg outperforms previous cen-
tralized UDA frameworks on a private infant brain MRI
dataset and a public cardiac MRI-CT dataset. Furthermore,
with access to large-scale unannotated scans for pretrain-
ing, MAPSeg scales with the dataset and can be efficiently
adapted to other UDA scenarios (i.e., test-time and feder-
ated) without sacrificing the performance on the target do-
main too much. Our codes will be published upon accep-
tance.

1. Introduction

Robust segmentation of medical images is often challenged
by the high variability in contrasts observed between similar
structures across imaging techniques and even within a sin-
gle modality. Computed tomography (CT), with standard-

†Co-first authors.
‡Co-senior supervising authors.
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Figure 1. (a). Illustrations of three domain shifts in infant brain
MRI. (b). Overview of different UDA settings and how MAPSeg
can fit into different scenarios through masked autoencoder pre-
training (MAE) and masked pseudo labeling (MPL).

ized intensity values based on X-ray attenuation in different
tissues, has homogeneous contrast. However, a segmenta-
tion model trained on CT scans cannot be directly applied
to magnetic resonance imaging (MRI) scans, even for the
same anatomical region, because of cross-modality domain
shift.

In addition, MRI bears intrinsic heterogeneity due to the
sequence used (cross-sequence domain shift - e.g., same tis-
sue exhibits completely different contrasts in T1- vs. T2-
weighted MRI), scanner types, and sequence parameteriza-
tion (cross-site domain shift - even within the same T1w or
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Association Between Long-term Exposure to Ambient
Air Pollution and Change in Quantitatively Assessed
Emphysema and Lung Function
Meng Wang, PhD; Carrie Pistenmaa Aaron, MD; Jaime Madrigano, ScD; Eric A. Hoffman, PhD; Elsa Angelini, PhD; Jie Yang, PhD;
Andrew Laine, PhD; Thomas M. Vetterli, MS; Patrick L. Kinney, ScD; Paul D. Sampson, PhD; Lianne E. Sheppard, PhD;
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Ana V. Diez-Roux, MD, PhD; Sverre Vedal, MD; Joel D. Kaufman, MD, MPH; R. Graham Barr, MD, DrPH

IMPORTANCE While air pollutants at historical levels have been associated with cardiovascular
and respiratory diseases, it is not known whether exposure to contemporary air pollutant
concentrations is associated with progression of emphysema.

OBJECTIVE To assess the longitudinal association of ambient ozone (O3), fine particulate
matter (PM2.5), oxides of nitrogen (NOx), and black carbon exposure with change in percent
emphysema assessed via computed tomographic (CT) imaging and lung function.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included participants from the
Multi-Ethnic Study of Atherosclerosis (MESA) Air and Lung Studies conducted in 6
metropolitan regions of the United States, which included 6814 adults aged 45 to 84 years
recruited between July 2000 and August 2002, and an additional 257 participants recruited
from February 2005 to May 2007, with follow-up through November 2018.

EXPOSURES Residence-specific air pollutant concentrations (O3, PM2.5, NOx, and black
carbon) were estimated by validated spatiotemporal models incorporating cohort-specific
monitoring, determined from 1999 through the end of follow-up.

MAIN OUTCOMES AND MEASURES Percent emphysema, defined as the percent of lung pixels
less than −950 Hounsfield units, was assessed up to 5 times per participant via cardiac CT
scan (2000-2007) and equivalent regions on lung CT scans (2010-2018). Spirometry was
performed up to 3 times per participant (2004-2018).

RESULTS Among 7071 study participants (mean [range] age at recruitment, 60 [45-84] years;
3330 [47.1%] were men), 5780 were assigned outdoor residential air pollution concentrations
in the year of their baseline examination and during the follow-up period and had at least 1
follow-up CT scan, and 2772 had at least 1 follow-up spirometric assessment, over a median of
10 years. Median percent emphysema was 3% at baseline and increased a mean of 0.58
percentage points per 10 years. Mean ambient concentrations of PM2.5 and NOx, but not O3,
decreased substantially during follow-up. Ambient concentrations of O3, PM2.5, NOx, and
black carbon at study baseline were significantly associated with greater increases in percent
emphysema per 10 years (O3: 0.13 per 3 parts per billion [95% CI, 0.03-0.24]; PM2.5: 0.11 per
2 μg/m3 [95% CI, 0.03-0.19]; NOx: 0.06 per 10 parts per billion [95% CI, 0.01-0.12]; black
carbon: 0.10 per 0.2 μg/m3 [95% CI, 0.01-0.18]). Ambient O3 and NOx concentrations, but
not PM2.5 concentrations, during follow-up were also significantly associated with greater
increases in percent emphysema. Ambient O3 concentrations, but not other pollutants, at
baseline and during follow-up were significantly associated with a greater decline in forced
expiratory volume in 1 second per 10 years (baseline: 13.41 mL per 3 parts per billion [95% CI,
0.7-26.1]; follow-up: 18.15 mL per 3 parts per billion [95% CI, 1.59-34.71]).

CONCLUSIONS AND RELEVANCE In this cohort study conducted between 2000 and 2018 in 6
US metropolitan regions, long-term exposure to ambient air pollutants was significantly associated
with increasing emphysema assessed quantitatively using CT imaging and lung function.

JAMA. 2019;322(6):546-556. doi:10.1001/jama.2019.10255

Video and Supplemental
content

CME Quiz at
jamanetwork.com/learning
and CME Questions page 573

Author Affiliations: Author
affiliations are listed at the end of this
article.

Corresponding Author: Joel D.
Kaufman, MD, MPH, University of
Washington, Box 354695, 4225
Roosevelt Way NE, Ste 100, Seattle,
WA 98105 (joelk@uw.edu).

Research

JAMA | Original Investigation

546 (Reprinted) jama.com

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ Imperial College London by Elsa Angelini on 06/24/2020

Machine Learning

IF = 56

è Very large cohorts + no annotations = 
unsupervised learning

Unsupervised Learning of 
emphysema subtypes on lung CT 

scans

Emphysema subcategories

Centrilobular
Emphysema 

(CLE)

Panlobular
Emphysema 

(PLE)

Paraseptal
Emphysema 

(PSE)

J. G. LEOPOLD and J. GOUGH

anatomy of the emphysematous spaces and their con-
nexions with the bronchi in 90 individual centrilobular
lesions. The bronchiolar connexions to the centri-
lobular spaces were compared in calibre with normal
terminal bronchioles, which are the narrowest passages
in the lung. For control, 20 systems of the respira-
tory structure, from terminal bronchiole to alveolar
duct, from five normal adult lungs fixed in expansion
were examined in serial sections.

Material from the emphysematous left upper lobes
of two cases of congenital lobar emphysema, aged 3
and 52 weeks respectively, was also examined in serial
histological sections, as these have a bearing on our
interpretation of the pathogenesis of emphysema.

FINDINGS
In 65 cases the inflated lung showed generalized

emphysema alone (eight were from female sub-
jects). In the remaining 75 there was centrilobular,
in addition to generalized, emphysema (two were

from female subjects). The recognition of the
centrilobular disease depends
upon the identification of the
lobular outline, and for this
purpose it is essential to fix
the lung in the expanded
position. The lobules (Basle
terminology, syn. secondary
lobules of Miller) are the
smallest discrete units of the

u n g enclosed by fibrous
septa. In this paper they
will be called simply lobules.

They are polygonal in sec-

tion and approximately 1 to
2 cm. in each dimension (Fig.
1). Emphysematous spaces

tend to collapse in f resh
necropsy material and be-
come distorted and to rn
when the unfixed lung is cut.
When the lung is fixed in ex-
pansion, however, and then
cut and examined u n d e r
water the interlobular septa

and their relationship to the
emphysematous spaces c a n
usually be identified. The
septa show as fine lines and
often lobules contrast with

each other by their differing
degrees of congestion. Even

in the normal lung, the septal outlines of lobules
vary in clarity, and the lobules may only be com-
pletely enclosed in some areas. As a rule the
septa are best developed around lobules near the
periphery of the lung.

GROSS APPEARANCES OF CENTRILOBULAR
EMPHYSEMA AND ITS DISTINCTION FROM

GENERALIZED EMPHYSEMA
Owing to their small size the normal air spaces

as seen in large sections of the lungs from young
adults can be identified only with difficulty when
examined macroscopically. The spaces become
larger with age, and in the normal lungs of the
elderly may be nearly 1 mm. in diameter and easily
visible. In generalized emphysema the air spaces
are uniformly enlarged and to a greater degree
than occurs simply as an age change, so that they
become individually identifiable even when the

FIG. 1.-Cut surface of a lung showing
interlobular septa and centrilobular
emphysema. x 2/3. Man aged 52.
Cough and dyspnoea eight years.
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ABSTRACT
Background Treatment and preventative advances 
for chronic obstructive pulmonary disease (COPD) have 
been slow due, in part, to limited subphenotypes. We 
tested if unsupervised machine learning on CT images 
would discover CT emphysema subtypes with distinct 
characteristics, prognoses and genetic associations.
Methods New CT emphysema subtypes were 
identified by unsupervised machine learning on only 
the texture and location of emphysematous regions on 
CT scans from 2853 participants in the Subpopulations 
and Intermediate Outcome Measures in COPD Study 
(SPIROMICS), a COPD case–control study, followed by 
data reduction. Subtypes were compared with symptoms 
and physiology among 2949 participants in the 
population- based Multi- Ethnic Study of Atherosclerosis 
(MESA) Lung Study and with prognosis among 6658 
MESA participants. Associations with genome- wide 
single- nucleotide- polymorphisms were examined.
Results The algorithm discovered six reproducible 
(interlearner intraclass correlation coefficient, 0.91–1.00) 
CT emphysema subtypes. The most common subtype 
in SPIROMICS, the combined bronchitis- apical subtype, 
was associated with chronic bronchitis, accelerated 
lung function decline, hospitalisations, deaths, incident 
airflow limitation and a gene variant near DRD1, which 
is implicated in mucin hypersecretion (p=1.1×10−8). 
The second, the diffuse subtype was associated with 
lower weight, respiratory hospitalisations and deaths, 
and incident airflow limitation. The third was associated 
with age only. The fourth and fifth visually resembled 
combined pulmonary fibrosis emphysema and had 
distinct symptoms, physiology, prognosis and genetic 
associations. The sixth visually resembled vanishing lung 
syndrome.
Conclusion Large- scale unsupervised machine 
learning on CT scans defined six reproducible, familiar 
CT emphysema subtypes that suggest paths to specific 
diagnosis and personalised therapies in COPD and pre- 
COPD.

INTRODUCTION
Chronic obstructive pulmonary disease (COPD) 
was the third- leading cause of death globally in 
2019.1 Despite identification of hundreds of genetic 
loci for COPD,2 which is defined by chronic airflow 
limitation,3 personalised therapies are lacking 
for most patients due, in part, to a lack of robust 
subphenotyping.

Historical attempts to subphenotype COPD 
included pulmonary emphysema, defined by 
enlargement and destruction of alveoli, and chronic 
bronchitis, defined by chronic cough and phlegm.4 5 
However, many patients with COPD have neither 
subphenotype and targeted treatments are limited.

Paradoxically, many individuals who do not have 
COPD have emphysema or chronic bronchitis,6–8 
which has recently been termed ‘pre- COPD.’3 
Emphysema on CT is predictive of morbidity and 
mortality independent of lung function,6 9–11 yet it 
remains uncertain which ‘pre- COPD’ phenotypes 
progress to COPD.3

Emphysema itself was subdivided into centrilob-
ular, panlobular and paraseptal emphysema based 
on 142 autopsies12 13; yet these subtypes are read 
with limited reproducibility by radiologists,14 15 
ignored or altered in guidelines,3 16 and little- used 
in practice. Hence, traditional subtypes do not 
provide gold standards and new approaches are 
warranted.

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Chronic obstructive pulmonary disease (COPD) 
and emphysema have long been recognised as 
heterogeneous, overlapping diseases and some 
patients with non- obstructive emphysema, or 
‘pre- COPD,’ may progress to COPD; yet modern 
unsupervised machine learning methods have 
not been applied at scale to the vast amount of 
imaging data in contemporary chest CT scans in 
order to subphenotype emphysema.
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Figure 1 Schema of unsupervised machine learning, data reduction, primary descriptive analyses, events analyses and GWAS. Unsupervised 
machine learning of possible emphysema subtypes was performed in two independent training sets in SPIROMICS. Both training sets yielded 10 
possible emphysema subtypes, and training was repeated on all of SPIROMICS. The resultant 10 possible emphysema subtypes were labelled on MESA 
Lung CT scans. Data reduction was performed in SPIROMCS and MESA Lung and yielded six CT emphysema subtypes; data reduction was confirmed 
longitudinally on coregistered CT scans in a subset of the MESA Lung Study oversampled for COPD and smoking. Primary descriptive analyses of 
these subtypes were performed in the MESA Lung Study. Cardiac scans in MESA were labelled for the Event Analyses in MESA. GWAS Discovery was 
performed in SPIROMICS; replication of genetic results occurred on labelled cardiac scans in MESA and MESA SHARe and in COPDGene. COPDGene, 
Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; MESA, Multi- Ethnic Study of Atherosclerosis; SPIROMICS, Subpopulations and 
Intermediate Outcome Measures in COPD Study. GWAS, genome- wide association study
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Clinical applications & impact2,4

è New therapies, 
è Digital Twin

è Limit number of scans
è Improve diagnosis

è Quantitative 
Diagnosis

è Personalised 
medicine
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Upstream research topics:
• ML in low-annotations regimen
• ML on multi-omics data for Cancer
• Full 3D exploitation of images
• Frugal AI

As a community:
• Large Foundational Models (SAM for 

medical images)
• Robust & Fair & Open AI
• Multi-modal open cohorts (cf PSCC)

è Our vision 
for tomorrow 
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1st PSCC-IPParis Medical Data Challenge  

on "AI for Lung Cancer Imaging" 
 
The Institut Polytechnique de Paris is organizing the first PSCC-IPParis Medical Data 
(IPPMeD) Challenge on "AI for Lung Cancer Imaging", under the Patronage of Sanofi, and 
Telecom Paris Alumni. It will take place remotely from Nov. 21, 2023 to Jan 31, 2024.  
 
Registration - under conditions detailed below - is open on 
https://forms.gle/MeCZZUDajvdUr3wdA  from November 14th 2023 until  November 20th 
2023 Noon. Registration criteria will be checked by the organisers before individual official 
invitations to participate are sent.  
 
Introduction 
The PSCC is a Biocluster funded by France2030 to foster innovation in Oncology. IPParis is a 
founding member of the PSCC, along with Sanofi, Gustave Roussy, Université Paris Saclay 
and INSERM.  
 
The theme of the IPPMeD challenge this year is "AI for Lung Cancer Imaging" with a specific 
task on lung cancer diagnosis on CT scan images.  
Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for the 
highest mortality rates among both men and women, with an estimated 1.8 million deaths 
(18%) in 2020. The challenge focuses on automated lung tumor contouring, also known as 
segmentation, from Computer Tomography (CT) thoracic scans. 
 
Lung tumor segmentation is a key element for diagnosing and then guiding therapy, either 
with resection (surgery) or radiotherapy. In particular, it is necessary to plan the radiation 
dose and know which area to target in radiotherapy. Hence many approaches to automate 
lung tumor segmentation from CT scans have been proposed in the past years, and they 
constitute a clinically meaningful application of AI. 
 
Ranking of submitted AI solutions will involve segmentation quality criteria as well as 
frugality criteria for minimal computational footprint (see below for details).  

Feb 2024

IP-Paris is a founding member of the Paris 
Saclay Cancer Center 
(https://www.parissaclaycancercluster.org/) 

+ PSCC Connect Association
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