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* |Introduction and context
= Addressing the lack of annotations: self-supervised learning approaches
= Application to prostate cancer detection



Introduction and context

* Medical examinations: images we are now quite familar with
* First MRl in France: 1984
» Since then: drastic increase in images amount




Introduction and context

« Data increase along with development of deep learning methods
* Natural images: ImageNet, CoCo, Places
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J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 248-255, 2009
Lin, Tsung-Yi et al. “Microsoft COCO: Common Objects in Context.” European Conference on Computer Vision (2014).
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Introduction and context

Classification Localization Segmentation

Healthy / Chest Box around region of Pixel-wise contour of
Pathological pathology interest pathology or organ

< 2 minutes ~ 5/10 minutes Up to 30 minutes




Introduction and context

Addressing the lack of annotations : supervised transfer learning
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10% Cat
Transfer weights Fmetuned
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Introduction and context

Domain gap
* Visually dissimilar

* Medical images: smaller differences
between classes

* Medical images can be 3D

C. Matsoukas et al. “What Makes Transfer Learning Work for Medical Images”. In: CVPR. 2022.



Introduction and context

Large unlabeled / healthy database

Pretext task

Transfer weights

Small annotated cohort

Cmodel 90% Alzheimer

s 10% Healthy




Self-supervised learning approaches

Generation based self-supervised methods

Transformation types
Link with target task

encoder fy

decoder d

90% Pathological
10% Healthy

Trained from
scratch




Self-supervised learning approaches

Contrastive learning methods
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Application to prostate cancer detection

Most frequent cancer and cause of death from cancer in men

Estimated number of incident cases and deaths Europe, males, all ages
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Data source:GLOBOCAN 2020 . international Agency for Research on Cancer
Graph production: Global Cancer Observatory (http://gco.iarc.fr/) s 2
© International Agency for Research on Cancer 2023
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Application to prostate cancer detection

Diffusion Diffusion coefficient

Prostate
Prostate lesion
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Application to prostate cancer detection

PI-RADS score
= |esion malignancy level, from 1 to 5
= High annotator variability
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Figure from Sonn et al, Europeran Urology Foxus, 2019
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Application to prostate cancer detection

Multi modality MRI FISEIS e
Segmentathn Segmentatlon

[1] Montagne, S., Hamzaoui, D., Allera, A. et al. Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. Insights Imaging 12, 71 (2021)

Access to multi-modality MR
Prostate segmentation

Easier task, less annotator
variability p;

Manual lesion segmentation

More costly to obtain
More variability
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Application to prostate cancer detection

* Patient metadata also available
» Different types
* Not available for every patient
e Subject to annotator variability: PI-RADS scores

- Contrastive learning approaches to take advantage of
unannotated data and available metadata

Lesion PIRADS score
Patient’'s age
Radiological report
ISUP / Gleason scores

Patient age
PSA level

Global PIRADS score from

radiological report

Patient’'s age
Radiological report

N

/
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Application to prostate cancer detection

« Assumption: two patients with similar metadata p (e.g PI-RADS score) 0=4
should be close in the representation space
 Our contribution: including PI-RADS variability and confidence p=5

x1
Conditional
X2 )
contrastive loss
x3

p=1

Dufumier, B., Gori, P., Victor, J., Grigis, A., & Duchesnay, E. (2021). Conditional Alignment and Uniformity for Contrastive Learning with Continuous Proxy ge

Labels. MedNeur/PS



Application to prostate cancer detection

Reference segmentation
Predicted lesion

FN 1 FN 2 FP 1 FP 2 FP 3

Our conditioning Without conditioning
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Conclusion

* Advent of neural networks on natural images with increased data availability
* Annotations much more complex to obtain in medical domain
» Self-supervised approaches: addressing the lack of annotations

* Promising results on prostate cancer detection taking variable metadata into account

18



