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 Introduction and context

 Addressing the lack of annotations: self-supervised learning approaches

 Application to prostate cancer detection



Introduction and context

Source: https://data.oecd.org/fr/healthcare/
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• Medical examinations: images we are now quite familar with

• First MRI in France: 1984

• Since then: drastic increase in images amount
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Introduction and context

• Data increase along with development of deep learning methods

• Natural images: ImageNet, CoCo, Places
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Cat, Dog, Car… ?

• Gap between available images and annotation amount

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009

Lin, Tsung-Yi et al. “Microsoft COCO: Common Objects in Context.” European Conference on Computer Vision (2014).

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva and A. Torralba, "Places: A 10 Million Image Database for Scene Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452-1464, 1 June 2018
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Available data

DogDog

• A lot of images and easy annotations
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Healthy / 

Pathological

Chest

pathology

Classification Localization

Box around region of 

interest

Segmentation

Pixel-wise contour of 

pathology or organ

< 2 minutes ~ 5/10 minutes Up to 30 minutes



Introduction and context

Addressing the lack of annotations : supervised transfer learning
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Introduction and context

Domain gap

• Visually dissimilar

• Medical images: smaller differences
between classes

• Medical images can be 3D
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C. Matsoukas et al. “What Makes Transfer Learning Work for Medical Images”. In: CVPR. 2022. 
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Self-supervised learning approaches
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decoder d

• Transformation types

• Link with target task

Generation based self-supervised methods
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Self-supervised learning approaches

Similarity loss

Contrastive learning methods



Application to prostate cancer detection
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Most frequent cancer and cause of death from cancer in men



Application to prostate cancer detection
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Morphology: T2w Diffusion Diffusion coefficient

Prostate

Prostate lesion



Application to prostate cancer detection

PI-RADS score

 lesion malignancy level, from 1 to 5

 High annotator variability
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Figure from Sonn et al, Europeran Urology Foxus, 2019



Application to prostate cancer detection

Multi modality MRI
Prostate 

segmentation
Lesion

segmentation

• Access to multi-modality MRI
• Prostate segmentation

• Easier task, less annotator
variability [1]

• Manual lesion segmentation
• More costly to obtain
• More variability

14[1] Montagne, S., Hamzaoui, D., Allera, A. et al. Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. Insights Imaging 12, 71 (2021)
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Patient’s metadata

- Lesion PIRADS score
- Patient’s age
- Radiological report
- ISUP / Gleason scores

- Patient’s age
- Radiological report

- Patient age
- PSA level
- Global PIRADS score from

radiological report

Multi modality MRI
Prostate 

segmentation
Lesion

segmentation

• Patient metadata also available

• Different types

• Not available for every patient

• Subject to annotator variability: PI-RADS scores

 Contrastive learning approaches to take advantage of 

unannotated data and available metadata



Application to prostate cancer detection
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Dufumier, B., Gori, P., Victor, J., Grigis, A., & Duchesnay, E. (2021). Conditional Alignment and Uniformity for Contrastive Learning with Continuous Proxy 
Labels. MedNeurIPS

• Assumption: two patients with similar metadata p (e.g PI-RADS score) 
should be close in the representation space

• Our contribution: including PI-RADS variability and confidence
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Application to prostate cancer detection
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Reference segmentation

Predicted lesion
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Conclusion

• Advent of neural networks on natural images with increased data availability

• Annotations much more complex to obtain in medical domain

• Self-supervised approaches: addressing the lack of annotations

• Promising results on prostate cancer detection taking variable metadata into account


