

AI and medical imaging

Camille Ruppli, PhD - Data Scientist

Saving time. Saving lives. Together.

Overview

- Introduction and context
- Addressing the lack of annotations: self-supervised learning approaches
- Application to prostate cancer detection

- Medical examinations: images we are now quite familar with
- First MRI in France: 1984
- Since then: drastic increase in images amount

- Data increase along with development of deep learning methods
- Natural images: ImageNet, CoCo, Places

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009 Lin, Tsung-Yi et al. "Microsoft COCO: Common Objects in Context." *European Conference on Computer Vision* (2014). B. Zhou, A. Lapedriza, A. Khosla, A. Oliva and A. Torralba, "Places: A 10 Million Image Database for Scene Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452-1464, 1 June 2018

Healthy / Pathological

Chest pathology

< 2 minutes

Localization

Box around region of interest

~ 5/10 minutes

Segmentation

Pixel-wise contour of pathology or organ

Up to 30 minutes

Addressing the lack of annotations : supervised transfer learning

Domain gap

- Visually dissimilar
- Medical images: smaller differences between classes
- Medical images can be 3D

C. Matsoukas et al. "What Makes Transfer Learning Work for Medical Images". In: CVPR. 2022.

Self-supervised learning approaches

Generation based self-supervised methods

Self-supervised learning approaches

Most frequent cancer and cause of death from cancer in men

Estimated number of incident cases and deaths Europe, males, all ages

11

Prostate Prostate lesion

Diffusion

Diffusion coefficient

PI-RADS score

- lesion malignancy level, from 1 to 5
- High annotator variability

Figure from Sonn et al, Europeran Urology Foxus, 2019

[1] Montagne, S., Hamzaoui, D., Allera, A. *et al.* Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology. *Insights Imaging* **12**, 71 (2021)

Dufumier, B., Gori, P., Victor, J., Grigis, A., & Duchesnay, E. (2021). Conditional Alignment and Uniformity for Contrastive Learning with Continuous Proxy Labels. *MedNeurIPS*

Conclusion

- Advent of neural networks on natural images with increased data availability
- Annotations much more complex to obtain in medical domain
- Self-supervised approaches: addressing the lack of annotations
- Promising results on prostate cancer detection taking variable metadata into account