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Internet of Things : a few numbers
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Source: Statista 2023

By 2025 :

• 152 200 IoT devices connecting to the internet per minute
• 4 to 11 trillions USD in economic value generated
• 73,1 Zettabyte (1021 Bytes = 1 billion TB) of data generated

Source: https://dataprot.net/statistics/iot-statistics/
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Wireless sensor network architecture

Example of the Body Area Sensor Network
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New challenges

Security

• Data confidentiality and integrity
• Security mechanisms embedded into circuits

Interoperability

• Interferences between WSN
• Specific communication protocols

Data transfer

• Increasing amount of data and bandwidth
• Saturation of the RF spectrum

Power consumption

• Sensor working on batteries
• Energy source replacement is not always possible
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Case study: electrocardiogram (ECG) signal

Cardiac arrhythmia detection

• Heart diseases responsible for 15.5 % of worldwide death
• Well studied subject

ECG signal characteristics

• Continuous signal
• Cycle duration: 0.5 – 0.9 s
• Sampling frequency: 200 – 1000 Hz
• Precision: ~ 10 bits

Application

• Arrhythmia detection from [1]
• Signal is 800 10-bit samples
• 1 kHz sampling frequency
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Case study: simple sensor

Analog-to-digital 
converter [2]

• 0.18 µm CMOS
• 0.12 pJ/sample

96 pJ

Bluetooth Low Energy 
transceiver [3]

• 0.13 µm CMOS
• Emitter: 14.5 mW
• Receiver: 6.5 mW

Arrhythmia detection with 
linear classification [1]

• 0.13 µm CMOS
• Post-layout simulation

11.6 mJ 5.2 mJ 749 nJ 77 nJ

Sensor

Transmission require the most energy

Data Hub
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Case study: using compression

Sensor Data Hub

Compress the data during acquisition: compressed sensing

• Use knowledge on signal structure (sparsity)
• Reduce the amount of data to be transmitted

Analog-to-information (A2I) converter [4]

• 0.13 µm CMOS
• Compression ratio of 4
• 14 pJ/compressed sample

2,8 nJ 30,7 µJ

Sensor energy 
requirement is 
divided by 377

Limitations

• Reconstruction Algorithm is complex 
• Reconstruction error increases with the compression 

factor
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Proposed solution

Sensor Data Hub

Extracts only useful features

• Relevant to some specific task
• Directly from the analog signal

Advantages

• Do not relies on signal sparsity
• Can achieve higher data reduction
• Joint optimization of chosen features and Machine Learning model training
• Generic architecture for different type of signals

Analog-to-Feature Conversion
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Reconfigurable System Architecture

• Extraction of the Non-Uniform 
Wavelet Sampling [5] (NUWS)-
based analog domain features

• Analog-to-digital conversion
• Application-specific binary or 

multiclass classification
• Context detection
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Non-Uniform Wavelet Sampling

NUWS : Acquire a small subset of coefficients from wavelet transform.

Provides information in time and frequency domains

Provides several degrees-of-freedom

Provides a huge number of possible wavelets → Perform a smart features
selection (1 walevet  1 feature)



SFS scale in !Number of features:

• Use pre-selection method 
• Based on Information Gain
• Reduce feature set to 100 best features

3 types of SFS

• Basic SFS

• Adapted SFS

• Optimized SFS
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Feature Selection

• Maximize classification accuracy

• each extractor can extract multiple non-overlaping features
• limits the maximum number of parallel extractors �������

• also accounts for the energetic cost during feature extraction
• based on estimated power consumption

Sequential Forward Search (SFS) : successively adding the locally best 
feature in the set. 
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Database presentation

Application Arrhythmia detection

Dataset (signals)
MIT-BIH Arrhythmia [6] (single channel from 48 

ECG recordings of 30 min each, sampled at 360 Hz)

Classes 2 (normal, abnormal)

Initial feature number (Haar
wavelets)

502

Type of learning
supervised learning, 70/30% proportion 

between training and test sets

Analysis window

256 samples of one annotated heartbeat segment 
(R-peak located at 100th sample) ⇒ 0.711 s
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Application for ECG classification

• Adapted vs Optimized SFS
• Neural Network : feedforward with 1 hidden layer (10 neurons)

Only require 7 or 8 features from 3 extractors

Compression ratio: 53 vs 4 for compressed sensing
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Energy comparison

• Acquisition and transmission of a 10s signal

A2F is a good and promising method to allow low-
power communication and reduce bandwidth
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Conclusion and future work

• IoT brings new challenges with many small connected devices

• A2F as a solution to reduce power and bandwidth of smart IoT sensors

• Generic and reconfigurable architecture to perform A2F conversion

• Future work

• Circuit design of the full converter              Refine selection with optimized SFS

• Chip fabrication             Physical measurement of power consumption 

• Application to other applications (EEG, EMG, spectrum sensing …)
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