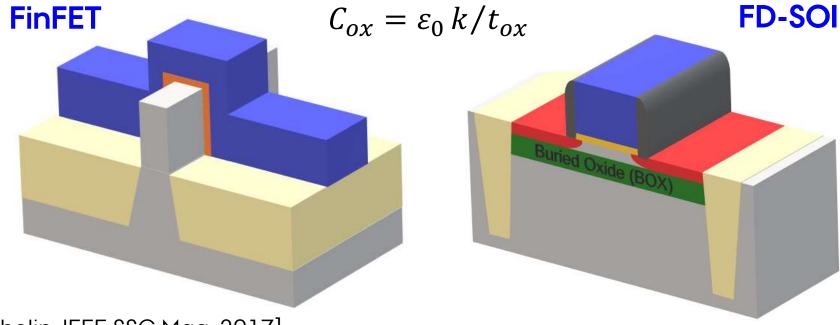


Compact Low-Power mm-wave ICs for Next-Generation (5G/6G) Wireless Transceivers

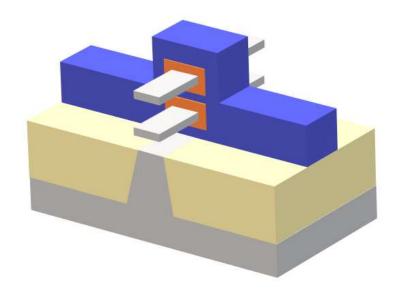
Domenico Zito


AGH University of Science and Technology, Krakow, Poland domenico.zito@icloud.com

Outline

- Ultra-Scaled Silicon Technologies
 - Impact of passive losses in low-power mm-wave ICs
- Low-Power Compact mm-wave ICs for 5G/6G
 Phased-Array Transceivers
 - Variable-Gain Low Noise Amplifier
 - Benchmarking and validation (rvt vs. slvt)
- Conclusions

Si Tech Evo: CMOS Techs

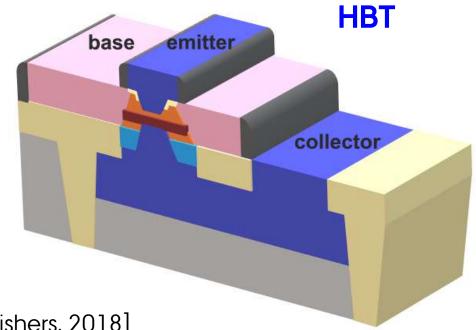

- Ultra-scaled device evolution driven by charge control improvement and leakage current reduction
- Two fully depleted (FD) techs emerged with 22/28nm
 CMOS node (double patterned, high-k dielectrics, metal gate, strained Silicon)

[Cathelin, IEEE SSC Mag. 2017]

Si Tech Evo: The "Last" CMOS Transistors

- Samsung has introduced a different transistor design starting from the 3nm node
- The next transistor has already many names
 - gate-all-around
 - multi-bridge channel
 - nano-beam
 - nano-sheet

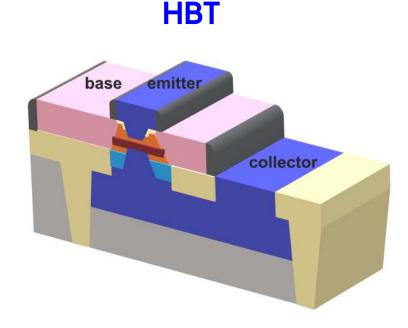
[Ye, Ernst, Khare, IEEE Spectrum, Jul. 2019]


Si Tech Evo: SiGe BiCMOS Techs

- Device evolution driven by **higher frequency operations** $(f_{T_i} f_{max})$ and **integration with scaled CMOS devices**
- High-speed SiGe/SiGe:C Heterojunction Bipolar Transistors (HBTs) together with high-density CMOS

•
$$f_{max} \approx \sqrt{\frac{f_T}{8\pi R_B C_{BC}}}$$

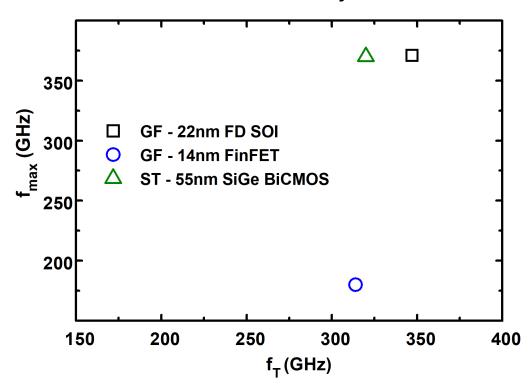
R_B: base resistance


C_{BC}: base-collector capacitance

[Rücker, Heinemann, Ch. 1, River Publishers, 2018]

Si Tech Evo: SiGe BiCMOS Advantages

- **HBT** f_T less sensitive to parasitic capacitance of metal layers
- More mature back-end-of-line (BEOL), leading to better passives
- Lower costs



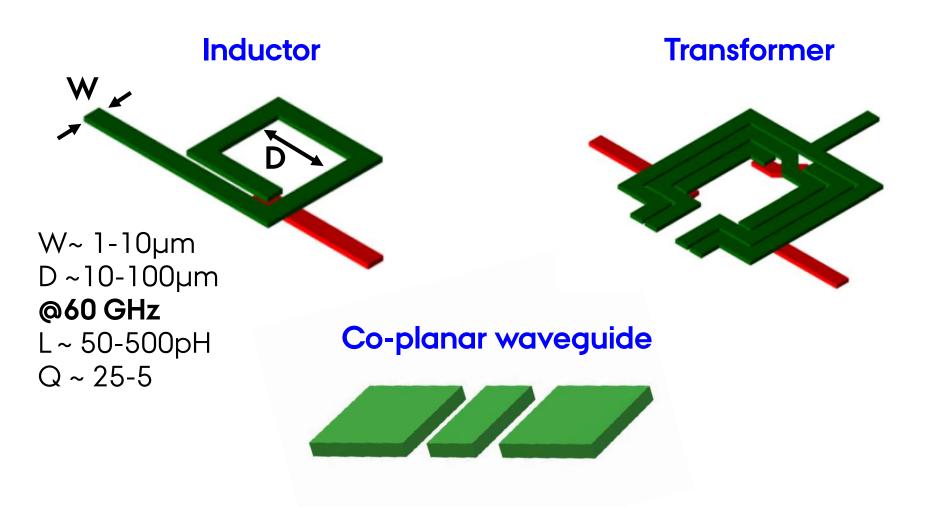
[Chevalier et al. IEEE BCICTS 2018]

Si Tech Evo: FoMs

• FinFET, FD-SOI and HBT devices commercially available

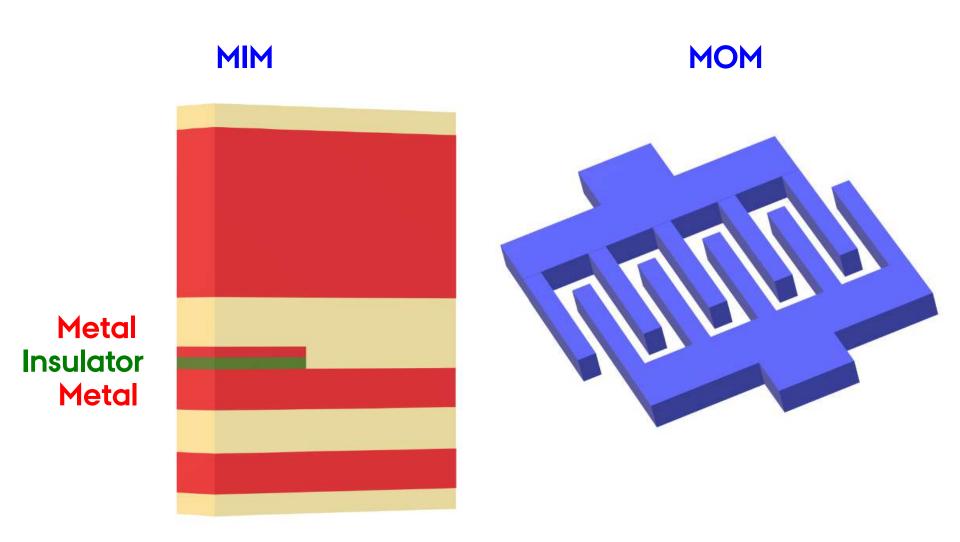
$$-f_T > 300 \text{ GHz}$$

 $-f_{max} > 150 \text{ GHz}$

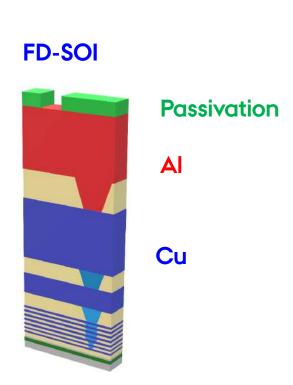

 Active devices have outstanding performances with great potential for high-frequency applications

[Ong et al. IEEE RFIC 2018] [Chevalier et al. IEEE IEDM 2014]

Si Tech Evo: mm-wave Applications


- These outstanding performances are enabling a plethora of applications
 - High data-rate communications for next generation wireless networks (5G and beyond)
 - High-speed wireline communications
 - Autonomous and near-autonomous vehicles
 - Virtual reality
 - Radio astronomy
 - Earth observations
 - Satellite communications
 - Quantum computing

Si Tech Evo: Inductors, Transformers, TX Lines

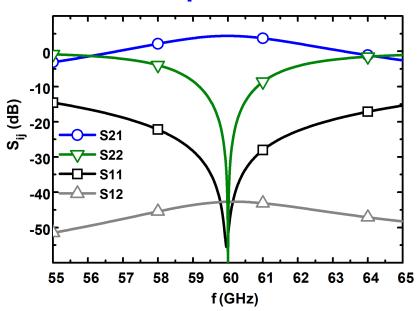

[Pepe, et al. ISSC 2016]

Si Tech Evo: Capacitors

Si Tech Evo: Back-End-Of-Line (BEOL)

The impact of losses in passives

BiCMOS

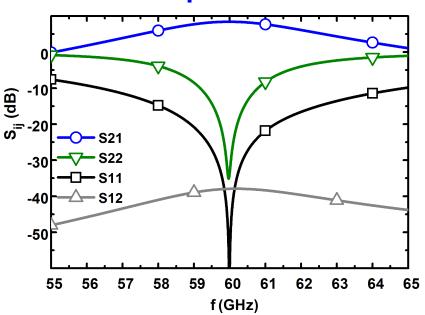

Losses have a dramatic impact on performance ⇒ up to 100%

Impact of Losses: Traditional Loss-Less Design Methodology

AN maximum stable gain

25 S^{SN} 24 23 55 56 57 58 59 60 61 62 63 64 65 f(GHz)

LNA S-parameters


- Despite AN maximum stable gain (G_{MSG}^{AN}) of **24.4 dB**, MN losses reduce S_{21} to **4.4 dB**!
- Losses spoil transistor gain potential

Impact of losses: advanced loss-aware design methodology

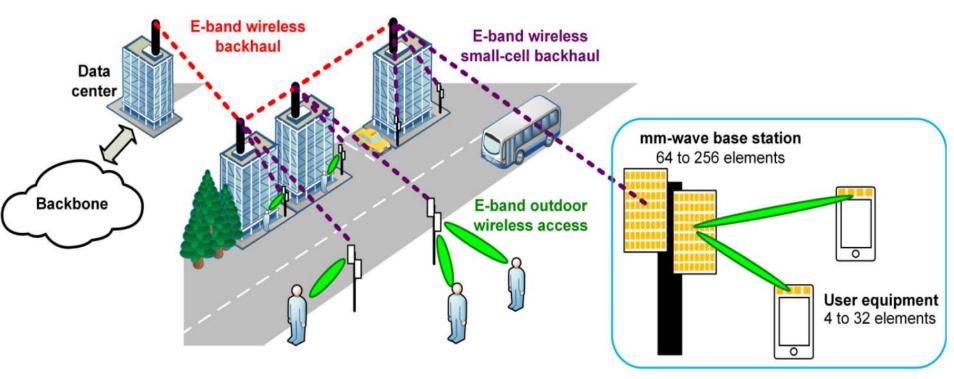
AN maximum stable gain

25 SSE 24 23 55 56 57 58 59 60 61 62 63 64 65 f(GHz)

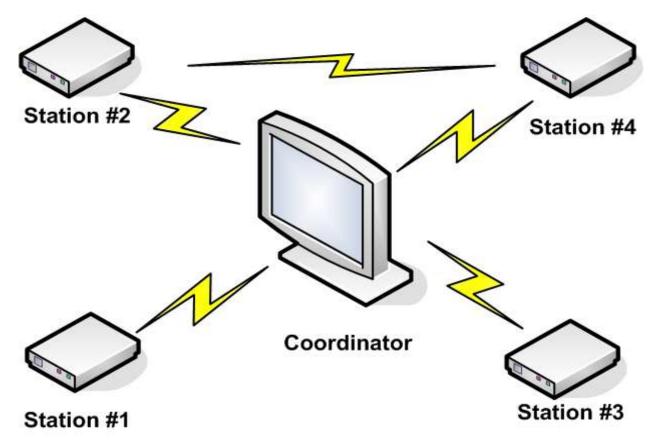
LNA S-parameters

- Despite AN maximum stable gain (G_{MSG}^{AN}) of **23.2 dB**, MN losses reduce S_{21} to **8.4 dB**
- The loss-aware methodology reduces the impact of losses

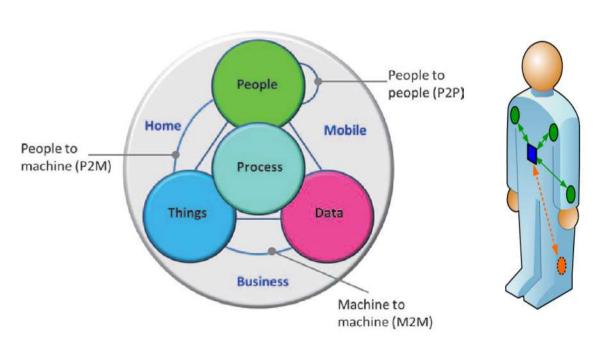
Takeaways (1/2)

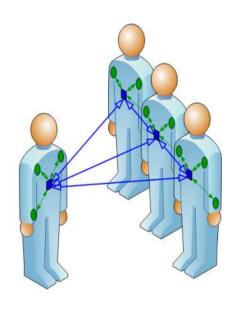

- The evolution of silicon technologies has led to transistors with excellent performance for operation at mm-waves
- However, losses in passive devices impede the full exploitation of transistors potential for low-power mm-wave ICs
- Our case study on mm-wave LNA design unveils (quantitatively) the dramatic performance degradation due to MN losses and the benefits of loss-aware design strategies

[Zito et al. IEEE ISC 2019]


Takeaways (2/2)

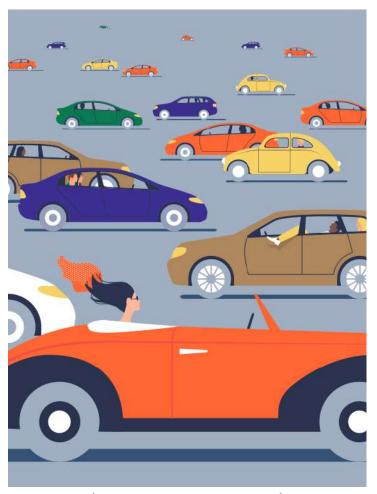
- The results indicate the strong need of further technology advances towards better passives
 - new materials
 - new technology processes
- Also, loss-aware design methodologies are a must and key to design ICs and systems in the mm-wave frequency range and beyond - especially for low-power ICs


- E-Band point-to-point & point-to-multi-point Wireless Local Area Networks & Broadband Internet Access
 - Massive MIMO Systems
 - Data Centers (Clouds)



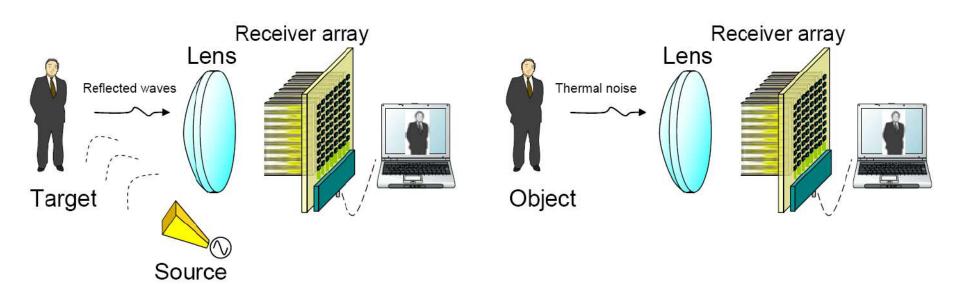
- 60 GHz Uncompressed Wireless HD Video Area Networks
 - -2.5 Gb/s

- Internet of Things (IoT) Internet of Everything!
 - P2P, P2M and M2M communications & contactless sensing
 - 60 GHz On- & Off-body communications



E-Walls, e-Cars (autonomous/driverless vehicles)

(Source: IEEE Spectrum)


(Source: IEEE Spectrum)

- Complex (Cyber-Physical) Autonomous Systems
 - Autonomous and near-autonomous vehicles
- Collision-avoidance automotive radars
- Vehicle-to-Vehicle and Vehicle-to-All Communications

Active & Passive Imagers

(a) Active imaging sensor (b) Passive imaging sensor

[Mereni et al. AICSP. Springer, 2013]

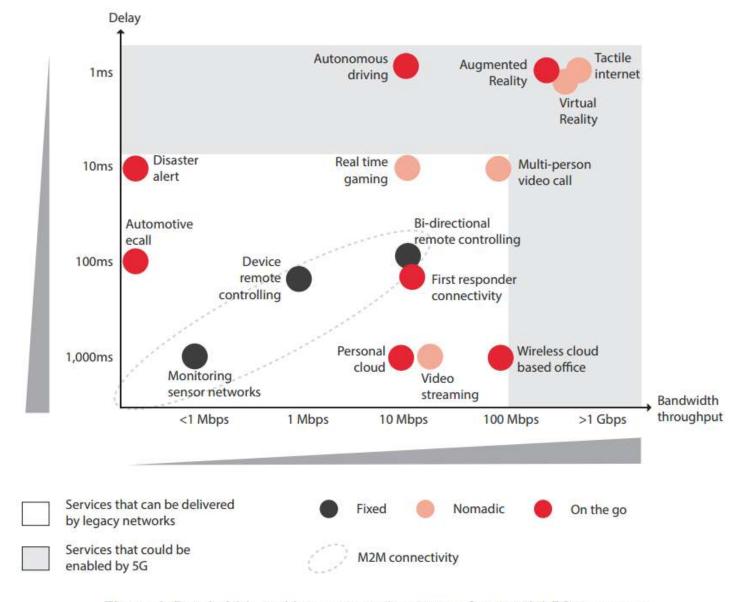
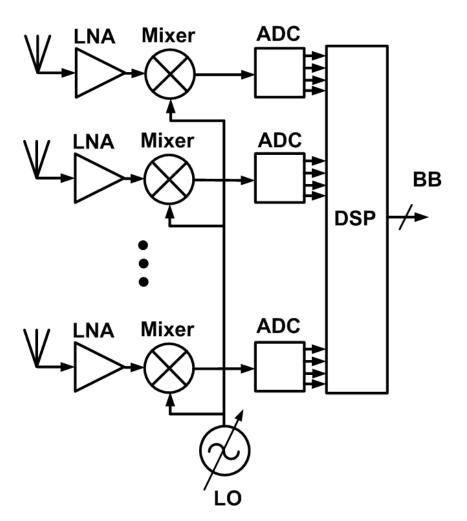
- Expected by 2020
 - Massive growth in data traffic volume (×1000)
 - Massive growth in connected devices (25 Billion devices)
- Key drivers for the development of 5G
 - Low latency (< 1ms)
 - High throughput (>1Gb/s)

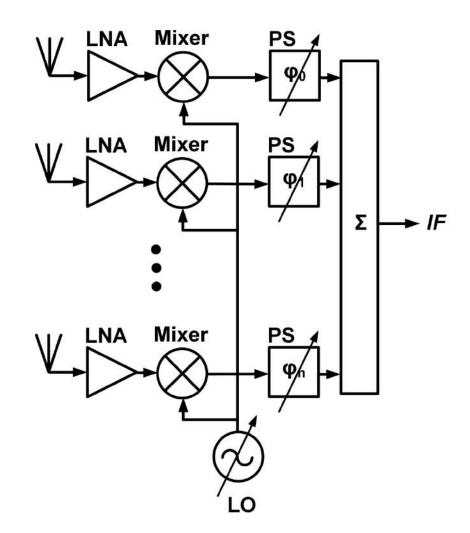
[Rappaport et al. IEEE Access 2013] [Koverman. IEEE Consumer Elec. Mag. 2016]

22

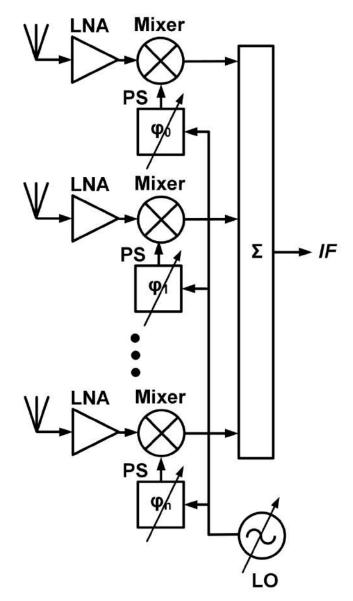
Next-Generation (5G) Wireless Comms

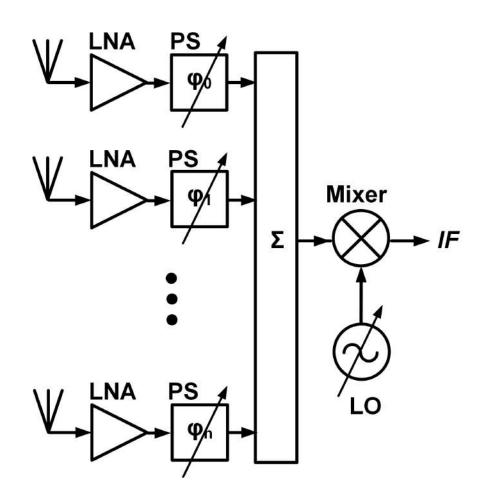
• 3D (Data-rate, Delay, Devices) **Data Capacity Devices** (data highways) Responsive Objects ("real time") Bandwidth -> mm-wave Delay **Transceivers** Gb/s Data-rate

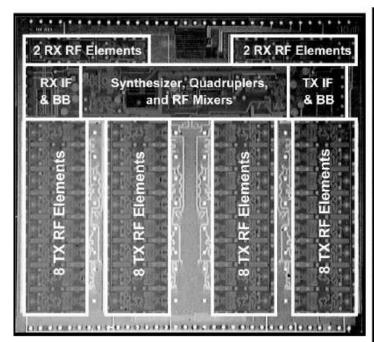



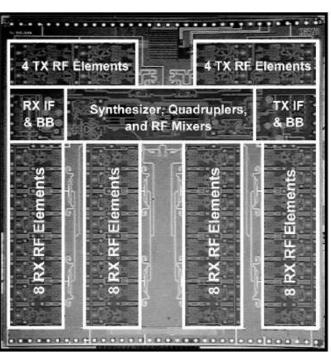

Figure 1: Bandwidth and latency requirements of potential 5G use cases

Source: GSMA Intelligence


- Phased-Array Architectures
 - Digital (BB) phase shifting
 - True MIMO


- Phased-Array Architectures
 - IF phase shifting
 - "Pseudo" MIMO (MISO)


- Phased-Array Architectures
 - LO phase shifting
 - "Pseudo" MIMO (MISO)


- Phased-Array Architectures
 - RF phase shifting
 - "Pseudo" MIMO (MISO)

- 60 GHz Uncompressed Wireless HD Video Area Network
 - Commercial development (SiBeam)

Source Transceiver (32 TX / 4 RX)

Sink Transceiver (32 RX / 8 TX)

Evolution timeline

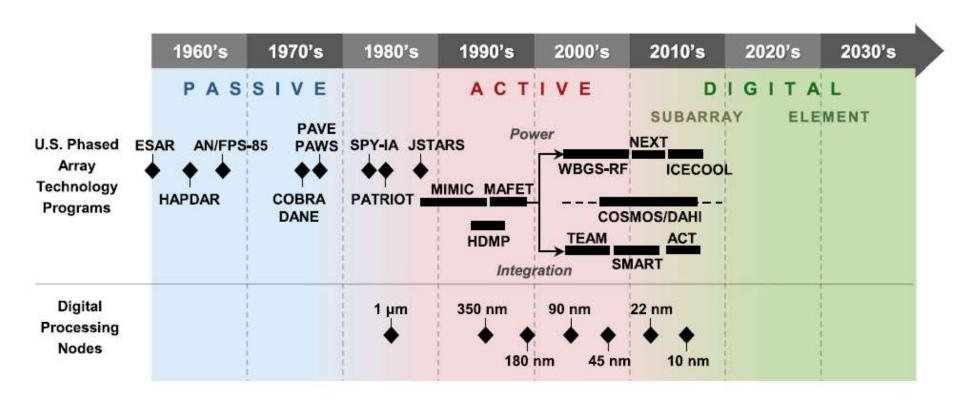


Fig. 1. U.S. phased array technology development programs and digital processing nodes timeline.

[Herd et al. Proc. of the IEEE 2016]

- Cost distribution
 - Phased-array: 50%

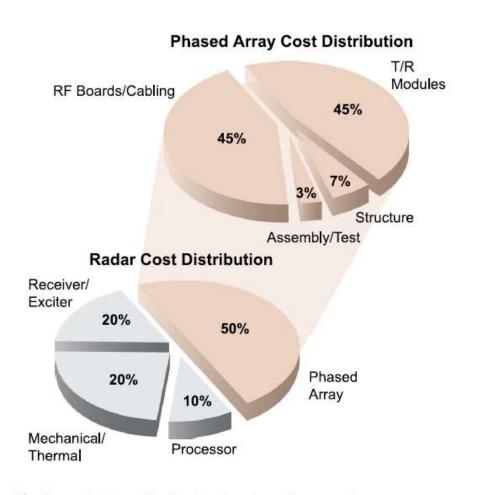
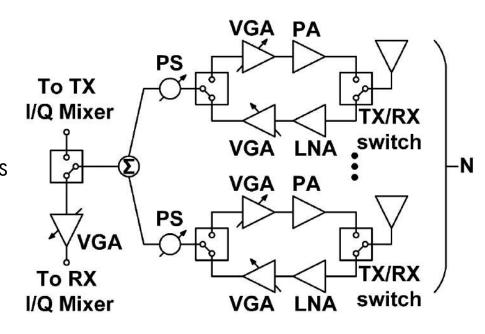



Fig. 9. Typical cost distribution for phased array radar.

[Herd at al. Proc. of the IEEE 2016]

5G/6G Phased-Array Transceivers ICs

- 5G New Radio (NR) standard
 - Freq. Range 2 (FR2): 24.25-52.6 GHz
 - Fosters research on phased-array ICs
- First-reported 28GHz IC for 5G
 - 32 TX/RX (TRX) elements
 - LNA with 12dB gain & 6dB NF (incl. TRX switch losses)
 - Phase-invariant VGA ⇒ beam shaping

[Sadhu, IEEE JSSC, 2017]

[Spasaro and Zito. IEEE IMS 2022]

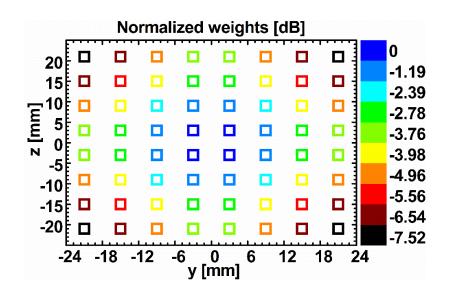
VG-LNAs for Phased-Array ICs

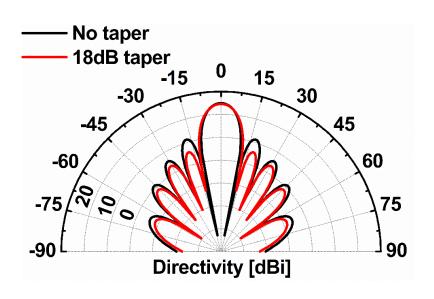
- ICs with RF phase shifting
 - VG-LNA ⇒ no VGA ⇒ power/area saving
 - Switchless TRX architectures relax
 gain & NF requirements for LNAs
 ⇒ Enable low-power designs
- To TX
 I/Q Mixer
 PS VGA PA
 PS VGA PA
 PS VGA LNA

 TO RX
 I/Q Mixer
 VGA
 PS VGA LNA

 PS VGA LNA

- ICs with digital beamforming [Gao, IEEE T-MTT, 2021]
- Compact low-power VG-LNAs are key for 5G/6G RXs
 - Complexity reduction, performance enhancement and functionality extension
 - Cost-effective (small form factor) and energy-efficient (low power) solutions


Sub-mW 30 GHz VG-LNA

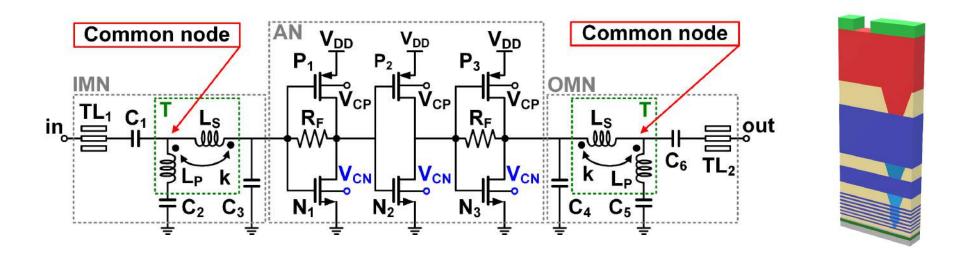

- Prior-art VG-LNAs operating in 5G NR FR2
 - Power consumption: a few/tens of milliwatts
 - Silicon area larger than 0.1 mm²

- Sub-mW 30GHz VG-LNA in 22nm FDSOI CMOS
 - Core area: 0.044 mm²
 - Designed for low-power tapered phased array
 - Taylor window taper up to 18 dB
 - Planar 8x8 antenna array

[Spasaro and Zito. IEEE IMS 2022]

Requirements for Gain Control: Tapering

Normalized weights

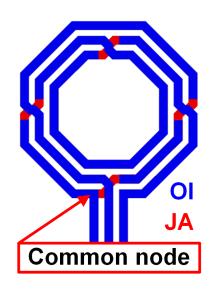

Radiation pattern of antenna array

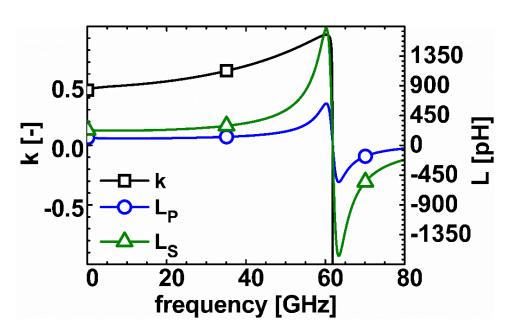
- 30GHz 8×8 3GPP TR 38.901 compliant-antenna array (6mm pitch)
- 18dB Taylor window taper ⇒ 7.5dB gain-control range required

Requirements for Gain Control: VG-LNA

- VG-LNA design goals
 - 8dB gain control range
 - sub-mW P_C for all gain states
 - Peak gain of 16 dB for high-gain state
 - 6dB NF, similarly to other designs [Sadhu, IEEE JSSC, 2017]
- In absence of blockers, max. sensitivity condition: Uniform weigths
 & high gain ⇒ SNR after beamforming network improves by
 10×Log₁₀(64) = 18 dB

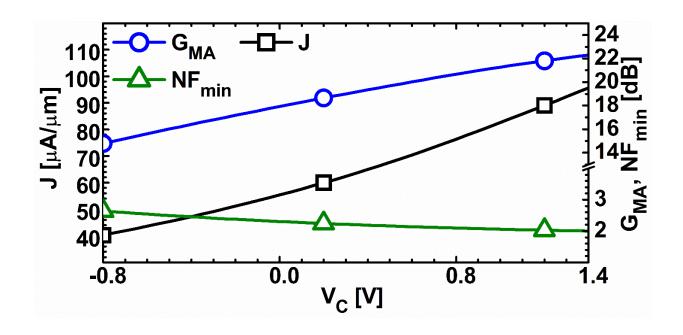
VG-LNA Features: Circuit


- Inductorless active network (AN)
- Feedworward input (IMN) & output (OMN) matching networks
- Nominal gain of 12 dB with P_C of 0.6 mW
- Single gain-control voltage $V_{CN} = V_C$ (with $V_{CP} = 0 \text{ V}$)

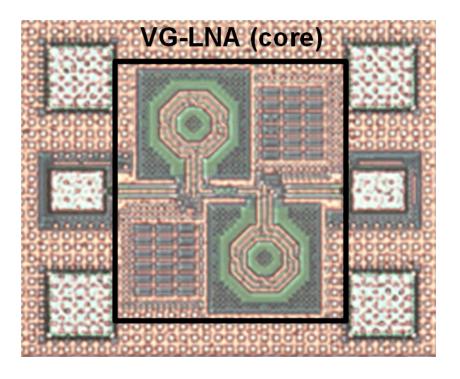

VG-LNA Features: Low-Power Techniques

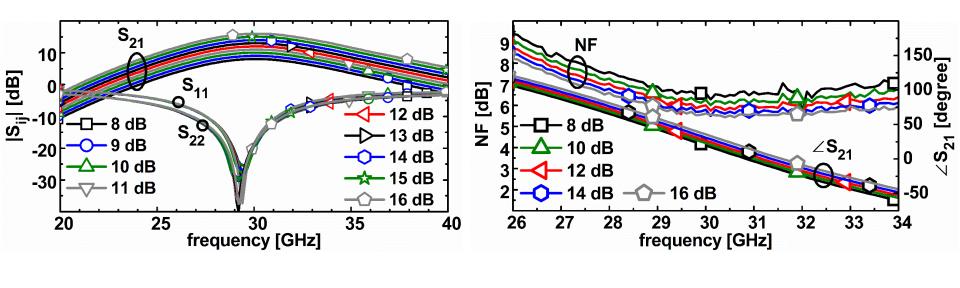
- Inductorless AN with current reuse and three gain stages
 - No peaking inductors or inter-stage matching networks (MNs)
 - Compact layout
 - Reduced parasitics/lossy interconnects
- MNs with cascaded L-network stages and coupled inductors
 - Compact layout
 - Coupling factor (k) & intermediate impedance as free parameters
 - Enable integration and NF optimization

[Spasaro et al. IEEE IMS 2022] [Spasaro et al. IEEE TCAS-II 2023]


VG-LNA Features: Transformer

- Top-most copper metal layers (JA and OI)
- $L_P = 119 \text{ pH}$, $L_S = 267 \text{ pH}$, and k = 0.59 at 30 GHz

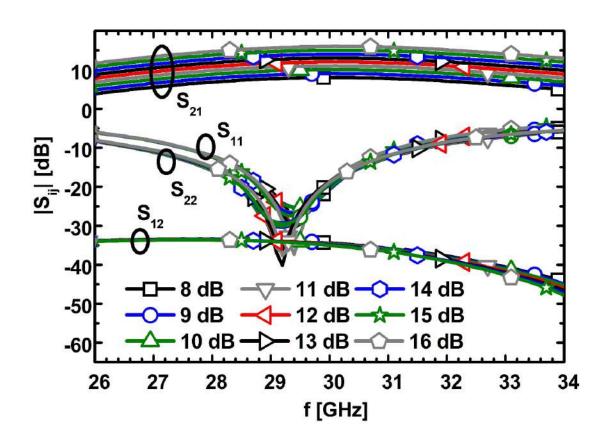

VG-LNA Features: Gain Control


- Post-layout simulations (PLS)
 - Transistor current density (J)
 - Max. available gain (G_{MA}) and NF_{min} of AN at 30 GHz
 - G_{MA} increases from 15 dB to 22 dB as control voltage (V_C) increases

VG-LNA Meas. Results: Test Chip

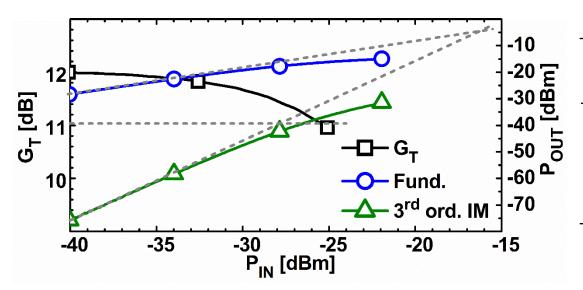
- Silicon area
 - Core: 0.20×0.22 mm²
 - With pads: 0.32×0.26 mm²
- On-die measurements
 - PNA-X N5245A
 - Power meter N1914A
 - Power sensor N8487A
 - ECal N4693A

VG-LNA Meas. Results: S-Parameters & NF



- High gain: $S_{21} = 16$ dB at 30.1 GHz, NF = 5.5 dB, $P_C = 0.97$ mW
- Low gain: S_{21} = 8 dB at 30.1 GHz, NF = 6.3 dB, P_C = 0.41 mW
- Variation of $\angle S_{21}$ in the 7GHz BW_{3dB}: $\Delta \varphi_{21} < 16.7^{\circ}$

S-parameters


 $\angle S_{21}$ and NF

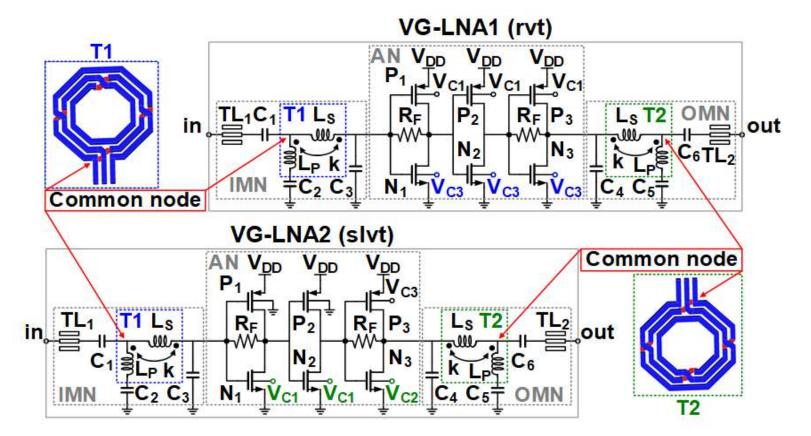
VG-LNA Meas. S-Parameters

Isolation > 30 dB (important result)

VG-LNA Meas. Results: Linearity

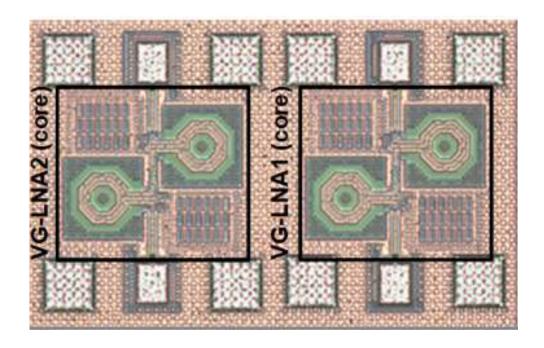
Gain [dB]	IP _{1dB} [dBm]	IIP ₃ [dBm]				
16	-28.8	-19				
12	-25.5	-16				
8	-21.0	-12				

Nominal (12dB gain)

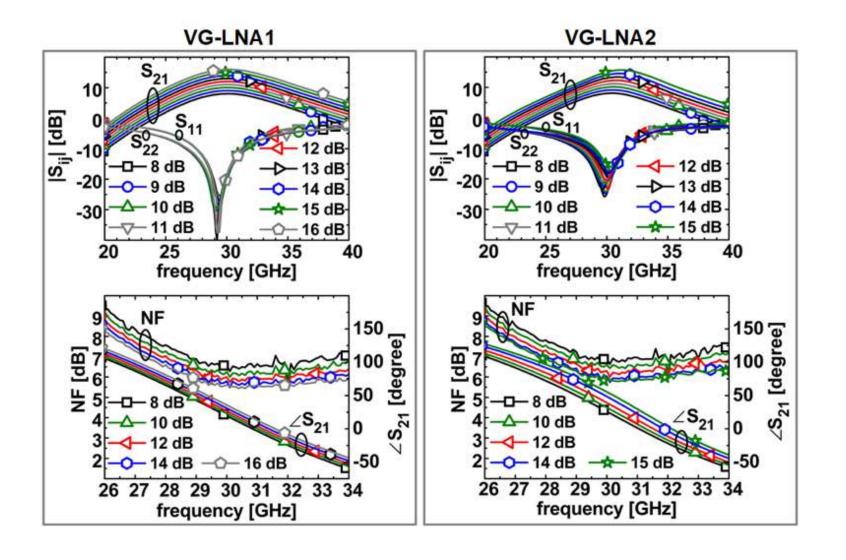

- Transducer gain (G_T) at 30 GHz
- IP₃ for input tones at 30 and 30.05 GHz (as per 5G channelization)

VG-LNA Meas. Results: Comparison with Prior Art

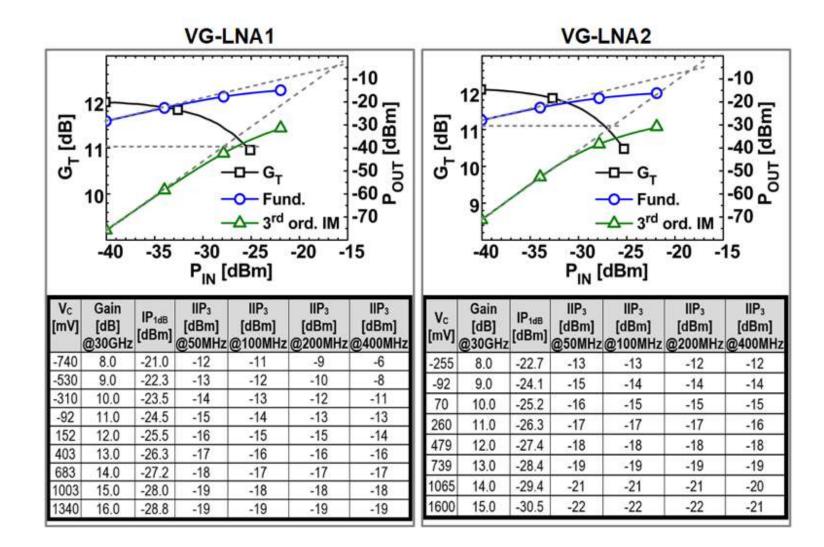
Ref.	Tech. [nm]	S ₂₁ [dB]	f _C [GHz]	BW _{3dB} [GHz]	NF [dB]	IP _{1dB} [dBm]	Δφ ₂₁ [°]	P _C [mW]	Area [mm²]
This	22 FDSOI	16 8	30.1 30.1	7.1 7.2	>5.5 >6.3	-28.8 -21.0	16.7	0.97 0.41	0.044
[T-MTT, 2021] ¹	22 FDSOI	24.2 16.2	30.4 30.4	23.7 23.7	>2.4 >3.0	-25 -19	-	16 16	-
[MWCL, 2018]	40 Bulk	27.1 18.4	27.1 27.8	7.4 9.3	>3.3 >3.4	-21.6 -13.4	18	31.4 21.5	0.26
[MWCL, 2019]	65 Bulk	20.8 10.2	30.4 30.4	4 4	>3.7	-20.4 -	8	26.7 16.5	0.20
[IMS, 2021]	90 Bulk	21.4 11.6	37 37	11.3 11.3	>4.7 -	-25.1 -22	7.2	17.9 17.9	0.452
[IWS, 2021]	65 Bulk	11.4 -5	28 28	11.5 -	>4.7 -	-	-	2.16 -	0.13


¹Simulation results; ²including pads

Benchmarking and Validation: rvt vs. slvt MOSFETs



- Inductorless active network (AN), with IMN & OMN
- 12dB nominal gain with $P_C = 0.6 \text{ mW}$
- Single gain-control voltage: VG-LNA1 ($V_{C1}=0$ V, $V_{C3}=V_{C}$); VG-LNA2 ($V_{C3}=0$ V, $V_{C1}=V_{C2}=V_{C}$)


Benchmarking and Validation: Test Chips

Benchmarking and Validation: Performance (1/2)

Benchmarking and Validation: Performances (2/2)

Benchmarhing and Validation: Comparison with Prior-Art VG-LNAs in 5G NR FR2

Work	VG-L	NA2	VG-LNA1 [6]		[2]1		[3]		[4]		[5]		[19]	
CMOS Tech. [nm]	22 (FDSOI)		22 (FDSOI)		22 (FDSOI)		40 (Bulk)		65 (Bulk)		90 (Bulk)		65(Bulk)	
Peak gain [dB]	15.7	8.1	16	8.0	24.2	16.22	27.1	18.4	20.8	10.2	21.4	11.6	11.4	-5
fc [GHz]	31.2	30.4	30.1	30.1	30.45	30.45	27.1	27.8	30.42	30.42	37	372	28	28
BW _{3dB} [GHz]	5.7	6.4	7.1	7.2	23.7	23.72	7.4	9.3	4	42	11.34	11.32	11.5	
Min. NF [dB]	5.9	6.9	5.5	6.3	2.4	3.0	3.3	3.4	3.7	-	> 4.7	-	> 4.7	
IP _{1dB} [dBm]	-30.5 ³	-22 .7³	-28.8 ³	-21.0 ³	-25	-19	-21.6	-13.4	-20.4	-	-25.15	-222	-	-
∠S ₂₁ variation* [°]	29.5		16.7		-		18		8		7.2		-	
Pc [mW]	0.91	0.40	0.97	0.41	16	16	31.4	21.5	26.7	16.5	17.9	17.9	2.16	a-
Core area [mm²]	0.044		0.044 0.044		-		0.26		0.20		0.456		0.13	

¹Simulation results; ²deduced from plots; ³measured at 30 GHz; ⁴dual band (26-30.5 GHz and 33.8-40.6 GHz) ⁵calculated from available data; ⁶including pads; ^{*}max variation in 3dB band.

VG-LNA: Conclusions

- 30GHz VG-LNA with 8dB gain-control range
 - Record power consumption (world-1st sub-mW) and area on silicon
 - Compliant with targeted tapered phased-array IC with switchless TRXs
 - 4-to-32 VG-LNA units consume less than one unit of prior-art VG-LNAs
 - Very compact size (one or more orders of magnitude)
 - S₂₁ phase variation, IP_{1dB}, BW_{3dB}, & NF comparable with prior works
 - Benchmarging and validation across technology flavours (rvt and slvt)
 - Higher frequency limitations

Conclusions

- Ultra-scaled Silicon techs show the largest potentional as platform for many current and future emerging technologies (e.g. wireless and quantum), but the losses require innovative topologies and loss-aware design methodologies
- Our ultimate innovative (new design paradigm) building blocks with world-record performance – These have open new technology developments and technology directions (Wireless, IoTs & Quantum) – transistor-size low-power mm-wave ICs

Acknowledgments

This work has been co-funded by the European Union's Horizon 2020 Research & Innovation Programme through the FET Open project IQubits under Grant Agreement N. 829005

This lecture has been co-funded by IEEE CASS Distinguished Lecturer Programme & IEEE CAS France Chapter

Sponsors

