PhD defense Zoé Berenger: Deep learning and SAR tomography for monitoring forest structures
Télécom Paris, 19 place Marguerite Perey F-91120 Palaiseau [getting there], amphi 2 and in videoconferencing
Jury
-
Yajing Yan, Maı̂tre de conférences, Université Savoie Mont-Blanc (Rapporteuse)
-
Laetitia Thirion-Lefèvre, Professeure, CentraleSupélec, Université Paris Saclay (Rapporteuse)
-
Christian Germain, Professeur, Université de Bordeaux (Examinateur)
-
Andreas Reigber, Professor, DLR (Examinateur)
-
Florence Tupin, Professeure, Télécom Paris, Institut Polytechnique de Paris (Directrise de thèse)
-
Loı̈c Denis, Professeur, Université Jean Monnet Saint-Etienne (Co-encadrant de thèse)
-
Laurent Ferro-Famil, Professeur, ISAE-SUPAERO/CESBIO, Université de Toulouse (Co-encadrant de thèse)
Abstract
Forests regulate the Earth’s climate by absorbing and storing carbon, but monitoring their height and structure at global scale is difficult: field measurements are limited, and existing radar-based 3D reconstruction methods either lack precision or are too computationally slow. Synthetic Aperture Radar (SAR) tomography offers canopy-penetrating and all-weather imaging, yet current techniques face trade-offs that limit their suitability for upcoming missions such as ESA’s BIOMASS satellite.